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Abstract: In the task of upper-limb pattern recognition, effective feature extraction, channel selection,
and classification methods are crucial for the construction of an efficient surface electromyography
(sEMG) signal classification framework. However, existing deep learning models often face lim-
itations due to improper channel selection methods and overly specific designs, leading to high
computational complexity and limited scalability. To address this challenge, this study introduces
a deep learning network based on channel feature compression—partial channel selection sEMG
net (PCS-EMGNet). This network combines channel feature compression (channel selection) and
feature extraction (partial block), aiming to reduce the model’s parameter count while maintaining
recognition accuracy. PCS-EMGNet extracts high-dimensional feature vectors from sEMG signals
through the partial block, decoding spatial and temporal feature information. Subsequently, channel
selection compresses and filters these high-dimensional feature vectors, accurately selecting channel
features to reduce the model’s parameter count, thereby decreasing computational complexity and
enhancing the model’s processing speed. Moreover, the proposed method ensures the stability
of classification, further improving the model’s capability of recognizing features in sEMG signal
data. Experimental validation was conducted on five benchmark databases, namely the NinaPro
DB4, NinaPro DB5, BioPatRec DB1, BioPatRec DB2, and BioPatRec DB3 datasets. Compared to
traditional gesture recognition methods, PCS-EMGNet significantly enhanced recognition accuracy
and computational efficiency, broadening its application prospects in real-world settings. The experi-
mental results showed that our model achieved the highest average accuracy of 88.34% across these
databases, marking a 9.96% increase in average accuracy compared to models with similar parameter
counts. Simultaneously, our model’s parameter size was reduced by an average of 80% compared to
previous gesture recognition models, demonstrating the effectiveness of channel feature compression
in maintaining recognition accuracy while significantly reducing the parameter count.

Keywords: sEMG; hand gestures classification; channel feature compression; channel feature selection

1. Introduction

Surface Electromyography (sEMG) allows for non-invasive detection of electrical
activity generated by muscle fibers on the surface of the skin. These signals reflect muscle
activity and provide information about limb movement [1]. Gesture recognition is one of
the most crucial perceptual channels in human–computer interaction. It finds extensive
applications in virtual reality, intelligent sign language translation for the deaf and mute [2],
rehabilitation therapy and assessment [3,4], and bionic prosthetics [5], among other scenar-
ios, showing vast potential across various applications. In the field of gesture recognition,
surface electromyography signals serve as a common signal source, capturing muscle
activity from electrical signals on the skin’s surface [6]. sEMG signals offer numerous
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advantages, including non-invasiveness, ease of acquisition, and suitability for dynamic
gesture recognition. Consequently, sEMG has garnered significant attention from scholars
and is widely applied in contexts where high-precision gesture recognition is demanded.
Gesture recognition based on surface electromyography features high accuracy, ease of
wear, and non-invasiveness, making it a focal point of research in the field.

Traditional gesture recognition frameworks based on sEMG consist of data prepro-
cessing, feature extraction, feature selection, and gesture classification. Among these stages,
feature extraction and gesture classification are two critical phases within the framework
of sEMG-based gesture recognition. Common feature extraction methods encompass
time-domain features [7], frequency-domain features [8], and time–frequency-domain fea-
tures [9]. For instance, time-domain features often include metrics such as Mean Absolute
Value (MAV), Root Mean Square (RMS), Mean Absolute Value Slope (MAV Slope), Wave-
form Length (WL), Slope Sign Changes (SSCs), Zero Crossing (ZC), and EMG Histogram
(HIST), with EMG histogram being an extension of zero crossing. Following the feature
extraction methods, traditional classification techniques are employed for gesture classifica-
tion. Different classifiers have been introduced, such as k-Nearest Neighbors (KNN) [10],
random forest [11], Linear Discriminant Analysis (LDA) [12], Support Vector Machine
(SVM) [13], and Hidden Markov Models (HMMs) [14]. Khomami and Shamekhi [15]
employed a KNN classifier using 25 features of sEMG and accelerometer signals to clas-
sify Persian sign language symbols, achieving an average accuracy of 96.13%. Altimemy
et al. [16] classified 15 hand movements for individuals with intact limbs and 12 hand
movements for amputees using linear discriminant analysis (LDA) and SVM with AutoRe-
gressive (AR) features. Given that EMG signals represent sequential data, hidden Markov
models are suitable for modeling the latent information in EMG signals. Yun et al. [17] used
an HMM classifier to create an sEMG-based sign language recognition system. Despite
the significant potential of sEMG technology, traditional gesture recognition methods still
face several challenges. sEMG signals are usually of high dimensionality and complexity,
involving multi-channel and high-sampling-rate data, which poses challenges for feature
extraction and dimensionality management. Moreover, sEMG signals are susceptible to
interference from muscle fatigue, electrode displacement, and environmental noise, which
affects the stability and accuracy of the model. Finally, existing gesture recognition meth-
ods usually rely on complex feature engineering, which may limit the performance of
the model.

In recent years, deep learning has gained substantial popularity and made ground-
breaking advances in various domains, such as image processing [18] and speech recog-
nition [19]. More recently, the use of deep learning for sEMG-based gesture recognition
has started to capture researchers’ attention. They have begun exploring the application
of deep neural networks (DNNs) for gesture recognition. DNNs offer powerful feature
learning and classification capabilities, eliminating the need for manual feature engineering
and enabling the automatic learning of gesture feature representations, consequently signif-
icantly enhancing gesture recognition accuracy. Among various deep learning techniques
used for sEMG-based gesture recognition, the Convolutional Neural Network (CNN) ar-
chitecture stands out as one of the most widely employed. Researchers have categorized
these into two primary types based on different evaluation methods. For example, At-
zori et al. [5] conducted sEMG classification tasks on four publicly available datasets using
a deep convolutional neural network (CNN) architecture comprising two convolutional
layers. Their work demonstrated a performance improvement of 2–5% compared to ex-
isting machine learning classifiers such as KNN, SVM, random forests, and LDA [20]. Jia
et al. [21] proposed a deep learning model that combines Convolutional Autoencoders
(CAEs) and CNNs for classification of sEMG datasets consisting of ten hand gestures.
The results indicated high levels of performance and robustness. Zhai et al. [22] fed the
spectral representations of sEMG into a CNN for gesture recognition, but they achieved
only 78.7% accuracy on the second sub-database of the NinaPro dataset. Furthermore, due
to the temporal characteristics of sEMG, Recurrent Neural Networks (RNNs) and Long
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Short-Term Memory (LSTM) architectures have been applied to hand-related problems
based on surface electromyography. In [23], Koch et al. employed a ConvLSTM cascaded
with an LSTM architecture for gesture sequence classification. In [24], a two-level network
composed of a fully connected network and stacked RNNs was implemented to classify
high-density (HD) and sparse sEMG signals. Amor et al. [25] collected sEMG signals using
the Myo armband for sign language recognition and applied an RNN architecture to extract
features from sequential data for analysis of sign language gestures.

Despite the promising outcomes in sEMG signal analysis, the broader application of
existing methods is impeded by their complexity, computational demands, and extended
training times. Current models predominantly focus on augmenting feature information
from temporal and frequency domains [26], neglecting inter-channel correlations [27]. This
oversight leads to increased model parameters and complexity due to excessive feature
extraction, necessitating higher levels of computational resources.

Addressing this challenge requires methodologies capable of both extracting valuable
inter-channel feature information and efficiently filtering and compressing redundant fea-
tures. This paper introduces a novel deep learning-based approach for gesture recognition.
The methodology presented in this paper was inspired by the work of Jia et al. [28], partic-
ularly the multimodal squeeze-and-excite feature fusion module in the SEN-DAL model.
Given the unequal contributions of electroencephalogram (EEG) and electro-oculogram
(EOG) data in different sleep stages, it is necessary to assign varying levels of importance
to them. Hence, by modeling the interdependencies among channels through squeeze-and-
excite (SE), SEN-DAL recalibrates the response contributions of channel features. Building
upon the aforementioned process, this paper considers how to design modules to extract
inter-channel feature information, thereby establishing the correlation between channel
features and actions. Importance is assigned to different channel features based on their con-
tributions during different action processes, thereby filtering and compressing the model’s
features. The model incorporates a channel feature selection unit to comprehensively ad-
dress the interplay between distinct feature channels. It excels at amplifying the importance
of valuable features, suppressing redundant attributes, and employs partial convolution
to efficiently capture essential feature channel information while economizing on param-
eter count. This not only enhances algorithm robustness but also fosters generalization.
Our innovative approach not only offers a fresh vantage point in sEMG signal processing
and analysis but also ushers in new horizons for the application of deep learning in the
realm of biomedical signal processing. Experimental results unequivocally underscore the
effectiveness of our method and provide profound insights for the advancement of sEMG
gesture recognition.

The structure of this paper is outlined as follows. First, we briefly introduce the impor-
tance of gesture recognition and its application areas to outline the research theme. Next,
we provide an overview of existing gesture recognition methods and point out the existing
issues. Then, we present the details of the method proposed in this paper. Subsequently, we
describe the experimental results, including accuracy, recall, and other metrics, followed
by a comparative analysis of the experimental results. Finally, we summarize the research
achievements of this paper and provide insights into future research directions. The main
contributions of this paper are summarized as follows:

• We introduce a channel selection mechanism empowered by gating unit mechanisms
to selectively filter channel feature vectors. This innovation compresses and selects key
features within high-dimensional feature vectors of the model, reducing its complexity
and laying a foundation for further enhancements.

• We implement a combination of partial convolution and channel selection units.
Through the collaborative operation of these modules, our approach not only ex-
tracts inter-channel features but also efficiently filters intrinsic redundant features
in feature maps while maintaining recognition accuracy. Consequently, it signifi-
cantly reduces the model’s parameter count, marking progress in model efficiency and
resource optimization.
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• Our model is evaluated across various publicly available databases to demonstrate
its effectiveness and robustness. Through comprehensive analysis and comparison
with state-of-the-art deep learning methods, we show that our model achieves higher
accuracy with fewer trainable parameters across different databases while maintaining
exceptional recognition stability. These results provide strong evidence of the efficacy
of our proposed model.

2. Methods
2.1. Patch Embedding

We utilize patch embedding to segment sEMG signals and employ one-dimensional
convolutional layers to extract local features based on the temporal aspects of the sEMG
signals, as depicted in Figure 1. Patch embedding plays a crucial role in transforming
these segments into a representation suitable for neural networks. Furthermore, patch
embedding subdivides sEMG signal segments into smaller patches, thereby reducing
the parameter count at the input layer and making the network more lightweight. This
enhancement enables the network to capture local contextual sEMG information more
effectively. Additionally, patch embedding adds scalability to the network, enabling it to
process sEMG segments of varying sizes without requiring modifications to the network
structure. This significantly enhances its versatility.
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Figure 1. The general procedure of the proposed method. The gray area is the structure
of PCS-EMGNet.

The employed one-dimensional convolutional layer comprises 128 filters with di-
mensions of 10 × 1 and a stride of 6. Convolutional neural networks (CNNs) are neural
networks equipped with a “receptive field” to extract local features. In one-dimensional
CNNs, the convolutional kernel convolves along the temporal dimension to extract local
features from the time-based sEMG signal. Gaussian Error Linear Units (GELUs) are then
employed as the activation function for the nonlinear transformation of the extracted fea-
tures. Additionally, due to the strong correlation between adjacent time steps in the sEMG
signal, Layer Normalization (LN) is applied to normalize the output.

2.2. Partial Block

In the realm of signal processing, precisely recognizing and utilizing essential features
is a paramount challenge, especially in applications like sEMG-based gesture recognition.
Our innovative approach tackles this challenge by introducing feature importance learning,
a pivotal component that dynamically identifies and prioritizes the most critical features
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within the sEMG signal. The feature importance learning process revolves around our
feature importance network, a tailored neural network meticulously designed for this task.
This network boasts a 1D convolutional layer that diligently evaluates the significance of
each feature. By harnessing this layer, it quantifies the importance of features and generates
importance scores. These scores, constituting a multidimensional importance distribution,
undergo normalization via the softmax function. This ensures that they accurately reflect
the relative importance of each feature in the input channels.

importance_scores = So f tmax(Conv(xinput)) (1)

where xinput represents the input signal data within the partial block in Figure 1, which
has is processed through patch embedding. The term importance_scores denotes the im-
portance scores of feature vectors, referred to as filters in Figure 1. Complementing our
feature importance extraction is the partial conv module, a lightweight local convolutional
layer that optimizes the signal processing pipeline. The partial conv module plays an
indispensable role in feature processing and the reduction of computational overhead.
The architecture of the partial conv module consists of a standard convolutional layer
augmented by a GELU activation function and a partial convolution layer.

x = xinput ⊙ importance_scores (2)

where x represents the processed output signal in Figure 1. The symbol ⊙ denotes the
dot product operation. This combination enables the efficient processing of input chan-
nels while preserving the vital components of the signal. This is achieved by selectively
applying convolution to a fraction of the input channels, a crucial element for efficient
feature extraction.

Our unique methodology seamlessly intertwines feature importance learning and the
partial conv module, leveraging the strengths of both components for optimized signal
processing. The process begins with the feature importance network, which calculates
importance scores for individual features. These scores serve as guidance for the selective
feature weighting, emphasizing those features deemed most crucial. Following the feature
importance-based weighting, the data are handed over to the partial conv module. This
component, working in tandem with the importance scores, performs the processing. It
partitions the input data into two segments, with one segment being selectively weighted
based on the feature importance scores. By focusing computation on the most critical
features, we substantially reduce redundancy and computational overhead.

Our approach marries feature importance learning with the lightweight partial conv
module, presenting a powerful solution for efficient sEMG signal processing. This approach
not only adapts to the dynamic importance of features in various gestures but also signif-
icantly streamlines computational complexity. It stands as an ideal choice for real-time
applications by reducing computational load and enhancing the effectiveness of gesture
recognition systems while preserving high accuracy.

2.3. Channel Selection Block

The channel selection block is at the core of this mechanism, playing a pivotal role in the
process. During the forward propagation phase, it dynamically evaluates the significance
of each input channel by computing gating signals denoted as g. These gating signals are
generated based on the input data features, as seen in the following equation:

g = σ(Wg × x + bg) (3)

where g represents the gating signal, σ is the sigmoid activation function, and Wg and bg
stand for the weight and bias of the gate convolution, respectively.

The gating signals are instrumental in determining which channel features should
progress to the subsequent processing layer, selectively allowing certain feature channels to
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pass through while deliberately suppressing others. This selective activation is described
by the following equation:

x′ = x × g (4)

Equation (4) demonstrates that the input features (x) are selectively modified by the
gating signals (g) to produce x′, which represents the channel features after activation
or suppression.

The convolution module complements this process by handling feature processing. It
employs a convolutional layer specialized in processing input data features. Notably, it
differs from standard convolutional layers in that the output of the convolution module is
selectively influenced by the gating signals. This means that only those channel features
deemed essential by the model are permitted to pass through the convolution module,
while others are intentionally suppressed. This selective processing can be expressed
as follows:

x
′′
= Conv(x′) (5)

where x
′′

represents the channel features after selective convolution processing.
Moreover, the unique strength of the channel selection mechanism lies in its adaptabil-

ity. By autonomously learning and assigning importance to individual input channels, the
model becomes adept at dynamically enabling or inhibiting specific channels as needed.
This adaptability proves invaluable in effectively managing a wide range of tasks, as the
relevance of different channels can fluctuate depending on the specific requirements of
each task. In models that incorporate the channel selection mechanism, input data undergo
processing, resulting in an output tensor. The output tensor exclusively comprises fea-
tures from channels the model deems crucial, with features from less important channels
consciously suppressed. This reduction in computational redundancy significantly sim-
plifies the model, making it a robust and efficient solution for various gesture recognition
tasks. The channel selection mechanism’s adaptability and efficiency make it a valuable
addition to the field of sEMG signal processing, where streamlined models capable of
accommodating diverse gestures and tasks are in high demand.

2.4. Classification Head

In the final classification stage, we begin by flattening the preceding input features
and pass them through a global average pooling layer, followed by three fully connected
(FC) layers. The first FC layer consists of 128 neurons, corresponding to the features
extracted from the two previously mentioned blocks. Subsequently, the feature vector is
fed into a classification network comprising two fully connected layers, each consisting of
512 neurons. In both of these blocks, nonlinear GELU activations and layer normalization
are applied after each FC layer. Within the classifier, we also apply a 20% dropout after the
first and second fully connected layers to mitigate overfitting. This randomized dropout
of neurons reduces the chances of common adaptation among parameters, subsequently
decreasing interdependencies among neurons, thus mitigating the risk of overfitting.

3. Experimental Setup
3.1. Dataset Description

In this section, we briefly discuss the five publicly available benchmark datasets used
in our experiments. These datasets are the Ninapro DB4 [29], Ninapro DB5 [29], BioPatRec
DB1 [30], BioPatRec DB2 [30], and BioPatRec DB3 [30] datasets. sEMG sensors were
placed at various muscle locations in the upper limbs during their respective measurement
processes. The datasets encompass hand activities, broadly categorized into gestures, wrist
movements, object grasping, and hand motions. Detailed descriptions of the datasets are
provided in the references listed below.

The Ninapro DB5 dataset comprises muscle activity signals collected through two
Thalmic Myo armbands, which contain 16 active single-differential wireless electrodes.
The sampling frequency was 200 Hz. The dataset includes recordings of 10 participants
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performing 53 gesture movements, as well as a rest condition, with each movement repeated
six times. The 53 gestures are categorized into the following three groups: A, B, and C.
Group A primarily documents fundamental finger movements, while Group B encompasses
finger flexion and extension, along with wrist gestures. Group C focuses on grasping actions
involving everyday objects. Furthermore, analysis was conducted using the Ninapro DB4
dataset, which utilized the same experimental design but was collected using 12 sensors
with a sampling frequency of 2000 Hz. For training, we used trials numbered 1, 3, 4, and 6
of all 10 subjects, and for testing, we used trials numbered 2 and 5.

The BioPatRec DB1, DB2, and DB3 databases are subsets of the BioPatRec toolbox.
BioPatRec DB1 and BioPatRec DB3 capture 10 hand movements using 4 EMG electrodes,
while BioPatRec DB2 records 26 hand movements employing 8 EMG electrodes. These
datasets comprise EMG signals collected from 20, 17, and 8 subjects, respectively. Each
gesture repetition was performed thrice, with a 3 s relaxation period between repetitions.
The sampling rate was set to 2000 Hz. The duration of muscle contraction is determined
by a contraction time percentage, with a default value of 0.7. Electrodes were spaced at an
inter-electrode distance of 2 cm and evenly distributed around the most proximal third of
the forearm. For the training phase, data from trials 1 and 3 of all subjects were utilized,
while for testing, data from trials 2 were employed. More details are described in Table 1.

Table 1. Specifications of the sEMG databases used in this paper.

Database Gestures Subjects Channels Trials Training Testing Sampling
Rate

Ninpro
DB4 53 10 12 6 1, 3, 4, 6 2, 5 2000 Hz

Ninapro
DB5 53 10 16 6 1, 3, 4, 6 2, 5 200 Hz

BioPatRec
DB1 10 20 4 3 1, 3 2 2000 Hz

BioPatRec
DB2 26 17 8 3 1, 3 2 2000 Hz

BioPatRec
DB3 10 8 4 3 1, 3 2 2000 Hz

3.2. Dataset Preprocessing

The data preprocessing stage is mainly divided into the following three stages: wavelet
denoising, normalization, and sliding-window segmentation. The sEMG signal can be
disturbed by various types of noise, such as noise from electronic devices (from 0 Hz to
thousands of Hz) and noise from motion artefacts. Therefore, filtering operations are needed
to remove the noise information in order to preserve the original signal’s characteristic
information as much as possible. The same filtering method is used for the five public
datasets to filter the original EMG signals. Wavelet denoising is used to filter the original
EMG signals, and the third-level mother wavelet “db7” is selected for wavelet filtering.
The filtered data are then normalized using min–max normalization to ensure that all data
are distributed between [0, 1]. The formula for min–max normalization is as follows:

x =
x − xmin

xmax − xmin
(6)

where xmin represents the minimum value of the signal vector (x), and xmax represents the
maximum value of the signal vector (x).

To achieve real-time classification of muscle activity, patterns need to be captured
rapidly within as short time windows as possible [31]. This allows for a quick response
without physiological awareness of latency. In order to achieve this, we decomposed
sEMG signals into small segments using the sliding-window strategy with an overlapped
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windowing scheme [32]. The sliding window is used to simulate the real-time processing
and classification of continuous-stream EMG signals to realize real-time gesture recognition.

The length of the window represents a compromise between time latency and classifi-
cation accuracy. As described in [31], to satisfy the requirements of real-time control, the
time latency should be less than 300 ms. Longer extended-window length leads to more
controller delays, although it also increases classification accuracy [12,33,34]. To test the
performance of the proposed algorithm in different scenes, in this study, we selected three
different window sizes of 50 ms, 150 ms, and 250 ms and a stride of 25 ms for comparison
with similar works. Figure 1 presents the segmentation and combination of sEMG signals.
Figure 2 shows the process of segmentation.

Window 1

Window 2

Stride

Figure 2. Process of segmentation. The red box indicates the preceding sliding window, the yellow
box indicates the subsequent sliding window. The stride represents the overlapping region between
the two sliding windows.

3.3. Network Settings and Evaluation Indicators

The proposed architecture was implemented within the PyTorch 1.11 deep learning
framework and trained using the AdamW optimizer, which demonstrated faster empirical
convergence and achieved higher accuracy in this work. Model training parameters were
carefully selected through a series of experiments. The dropout rate was set to 0.2, and
the model was trained for 200 epochs with a batch size of 1024. To ensure reproducibility,
the parameters were initialized using a fixed random seed, and the initial learning rate
was set to 5 × 10−3. All experiments are conducted on a computer with an Intel CPU i5-
13600KF 3.50 GHz and an Nvidia RTX 4090 GPU, which are sourced from Intel Corporation
and Nvidia Corporation, respectively, in Santa Clara, USA. The detailed structure and
parameters of the proposed model are listed in the Table 2.

Table 2. Detailed parameters of each block used in the proposed model.

Block Type Output Shape Kernel
Size

Activation
Unit Parameters

Patch
1D Convolution [1, 128, 16] 5 GELU 10,368

embedding
Layernorm [1, 128, 16] - - -
1D Convolution [1, 128, 16] 3 GELU 49,280
Dropout(0.2) [1, 128, 16] - - -

Partial block
1D Convolution [1, 32, 16] 3 - 4128
Softmax [1, 32, 16] - - -
1D Convolution [1, 32, 16] 1 - 3104
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Table 2. Cont.

Block Type Output Shape Kernel
Size

Activation
Unit Parameters

Channel 1D Convolution [1, 64, 16] 3 Sigmoid 24,640
selection block 1D Convolution [1, 64, 16] 3 - 24,640

Classification

AdaptiveAvgPool [1, 64, 1] - -

head

FC layer [1, 256] - GELU 16,640
LayerNorm [1, 256] - - 512
Dropout(0.2) [1, 256] - - -
FC layer [1, 256] - GELU 65,792
LayerNorm [1, 256] - - 512
Dropout(0.2) [1, 256] - - -
FC layer [1, 53] - - 13,621

During training, all the data are randomly shuffled. To address potential distribution
differences between the training and test data, a total trial is used for the training and
testing [26]. Specifically, NinaPro DB4 trials numbered 1, 3, 4, and 6 of all 10 subjects were
used for training, while trials numbered 2 and 5 were used for testing.

In this work, the performance of methods is evaluated by classification accuracy
and F1-score. Accuracy is the most commonly used classification evaluation metric. The
formula is defined by Equation (7).

Accuracy =
Correctedly predicted samples

All samples
× 100 (7)

The F1-score is selected as another evaluation index due to the presence of a large
number of similar actions in the data, which, together with accuracy, forms the evaluation
index system of the method. Its formula is defined by Equation (8).

F1 score =
Precision × Recall
Precision + Recall

× 2 (8)

in which precision and recall are determined by the following equation:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(9)

where the operators TP, FP, and FN are true positives, false positives, and false negatives,
respectively. The results for each label are weighted by the number of samples in each class
to calculate the F1-score.

4. Experiment and Results
4.1. Evaluation of the Proposed Network

Our proposed method’s classification accuracy and F1-score on the Ninapro DB4
and DB5 and the BioPatRec DB1, DB2, and DB3 datasets are presented in Table 3. To
comprehensively assess the model’s performance, we conducted tests with window sizes
of 50 ms, 150 ms, and 250 ms. For Ninapro DB4, the classification accuracy and F1-score
were 83.0% and 83.1%, respectively, with a window size of 250 ms. In the case of Ninapro
DB5, a window size of 250 ms resulted in a classification accuracy of 87.6% and an F1-score
of 87.4%. For BioPatRec DB1, DB2, and DB3, the best results were obtained with a window
size of 250 ms, with identical classification accuracies and F1-scores of 91.4%, 91.3%, and
91.3%, respectively. This consistency demonstrates the stability of the model.

Our experimental results suggest that larger window sizes generally lead to higher
accuracy but introduce increased latency. Striking a balance between accuracy and latency
is crucial. The results indicate that a window size of 150 ms represents a favorable choice,
offering performance close to the 250 ms window with minimal performance loss while
reducing real-time recognition latency, and it outperforms the 50 ms window in terms of
accuracy. Figure 3 illustrates the confusion matrices for BioPatRec DB1 at 50 ms, 150 ms,
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and 250 ms. It is apparent from the figures that the model can correctly predict most classes,
achieving single-class recognition accuracies of 94%, 95%, and 96% for the three different
window sizes, respectively.

Table 3. Performance analysis using accuracy and F1-score with different window sizes for differ-
ent databases.

Database Evaluation Metric 50 ms 150 ms 250 ms

NinaPro DB4 Accuracy 77.0 81.2 83.0
F1-score 76.5 81.1 82.7

NinaPro DB5 Accuracy 82.0 87.5 88.3
F1-score 81.7 87.4 88.2

BioPatRec DB1 Accuracy 84.1 89.7 91.5
F1-score 84.1 89.0 91.2

BioPatRec DB2 Accuracy 84.3 88.4 91.6
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Figure 3. The normalized confusion matrix of BioPatRec DB1 with different window sizes.

To further analyze the performance of the model and attempt to visualize it, the
machine learning method t-SNE (t-distributed Stochastic Neighbor Embedding) [35] was
employed to perform dimensionality reduction analysis on the model’s output. This was
done to measure the Euclidean distance between different categories and samples of the
same category, thereby facilitating an analysis of the model’s performance. t-SNE is a
nonlinear dimensionality reduction technique designed to map high-dimensional data
into two or three-dimensional space for visualization. By applying t-SNE for nonlinear
dimensionality reduction and data visualization techniques, we conducted an in-depth
visual analysis of the model’s classification performance. It effectively projected complex
high-dimensional feature information into a two-dimensional space. As illustrated in
Figure 4, as the window segment length increased from 50 ms to 250 ms, the model’s
performance in recognizing different hand gesture actions progressively improved. This
improvement was evident in the increased clustering of similar gestures and the more pro-
nounced distinction between different gestures. Notably, when the window lengths were
set at 150 ms and 250 ms, there was no significant difference in the model’s performance
in classifying various hand gestures. This finding suggests that within a certain range of
window lengths, further increasing the length has a limited effect in terms of enhancing the
model’s classification capabilities.
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(a) 50 ms (b) 150 ms

Class0

Class1

Class3

Class2

Class4

Class5

Class6

Class7

Class8

Class9

(c) 250 ms
Figure 4. The t-SNE visualization of BioPatRec DB1 with different window sizes.

4.2. Ablation Studies of the Proposed Network

In this section, to demonstrate the effectiveness of our proposed feature extraction
method with partial convolutional fusion, we conduct ablation experiments. Additionally,
we perform ablation experiments on the channel selection unit to demonstrate its capability
in reducing computational complexity and compressing the channel features. We compare
the recognition accuracy of partial convolution with feature importance learning. These
comparisons were performed continuously with three different window sizes (50 ms,
150 ms, and 250 ms) on the Ninapro DB4 and DB5 and BioPatRec DB1, DB2, and DB3
datasets while maintaining constant experimental settings. The results are shown in Table 4.

Table 4. Classification accuracy (%) ablation of the proposed method.

Database Ablation Params
(M) 50 ms 150 ms 250 ms

Full 0.22 77.0 81.2 83.0
NinaPro DB4 Without partial block 0.21 76.0 80.6 82.1

Without channel selection 0.48 77.7 81.8 83.3

Full 0.21 82.0 87.5 88.3
NinaPro DB5 Without partial block 0.20 80.5 85.3 86.3

Without channel selection 0.47 82.1 87.4 87.3

Full 0.20 84.1 89.7 91.5
BioPatRec DB1 Without partial block 0.19 81.8 86.8 87.8

Without channel selection 0.45 84.4 90.3 92.3

Full 0.21 85.0 88.4 91.6
BioPatRec DB2 Without partial block 0.20 83.9 86.2 89.7

Without channel selection 0.46 85.5 89.2 91.8

Full 0.20 85.4 89.0 90.9
BioPatRec DB3 Without partial block 0.19 80.9 84.8 86.8

Without channel selection 0.45 85.6 89.1 90.2
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As shown in Table 4, the use of partial convolution consistently enhances accuracy
across all datasets. Across the five datasets and three different window sizes, the average
improvement in classification accuracy due to partial convolution is 3%, 2%, 2.23%, 1.03%,
and 3.93%, respectively. This highlights the important role of partial convolution, as it is
effective in extracting valuable features from the sEMG signals, thus improving the training
efficiency. In addition, the introduction of the channel selection unit can significantly reduce
the number of parameters with minimal impact on accuracy.

To validate the effectiveness of the proposed model in channel selection, a comprehen-
sive analysis was conducted using Shapley Additive exPlanations (SHAP), which is python
package shap 0.44.1, as illustrated in Figure 5. Initially, SHAP was employed to delve
into the correlation between each sEMG channel and the final gesture action. Specifically,
we compared the model integrating both a partial block and a channel selection block
with the models lacking either of these blocks in terms of the correlation scores between
channel features and gesture action outcomes. Figure 5a,c reveal that the introduction of
the channel selection block did not alter the model’s classification performance, nor did it
significantly change the focus on respective channel features. However, the incorporation
of this block led to a nearly 50% reduction in the model’s parameter count, substantially
decreasing its size and thereby highlighting the significant role of the channel selection
block in filtering and focusing on relevant channel features. Concurrently, Figure 5a,b
demonstrate the impact of the presence or absence of the partial block on the model’s
performance in channel feature extraction, as well as a more dispersed representation of
related channel features.
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Figure 5. The SHAP visualization of our model relevance scores of channels (4 channels on x-axis) for
different gestures in BioPatRec DB1 with a window size of 250 ms. The various colors represent the
differential emphasis of model on signal channels corresponding to distinct actions. Intensified colors
denote heightened model focus on particular signal channels, indicative of heightened correlation
with the final classification outcome. Conversely, light colors suggest diminished focus, reflecting a
weakened correlation with the final classification outcome.

To further showcase the model’s focus on channel features, a segment of the sEMG
signal corresponding to the agree gesture and fine grip gesture in the BioPatRec DB1
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dataset were selected as a case study, as shown in Figures 6 and 7. The red highlight areas
in Figures 6 and 7 align with the model’s focus on channel features for the corresponding
action, further substantiating the precision and practicality of our model in terms of channel
feature attention.
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Figure 6. The SHAP visualization of our model for the agree gesture (class 9) in BioPatRec DB1 with
a window size of 250 ms and 4 channels (red highlight areas indicate higher correlations).
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Figure 7. The SHAP visualization of our model for the fine grip gesture (class 8) in BioPatRec DB1
with a window size of 250 ms and 4 channels (red highlight areas indicate higher correlations).

4.3. Comparison With the Current Gesture Recognition Methods

In this section, we conduct a performance comparison with existing research methods
on five publicly available datasets, namely Multi-view CNN [26], HVPN [36], Attention
sEMG [37], EMGHandNet [38], TDCT [39], and SE-CNN [40]. The SE-CNN [40] method
utilizes a strategy that integrates squeeze-and-excite (SE) modules within a CNN framework
to suppress irrelevant features while enhancing important ones. This approach integrates
SE, CNN, and attention mechanisms to recognize features. EMGHandNet [38] is built upon
a hybrid architecture of CNN and Bi-LSTM for the learning of inter-channel and temporal
features. Spatial and short-term temporal relationships are encoded by convolutional
layers, while long-term temporal relationships are learned by the Bi-LSTM layer. The
proposed framework is capable of extracting cross-channel and temporal features, where
one-dimensional convolution encodes cross-channel and short-term temporal information,
while Bi-LSTM encodes long-term temporal information in both forward and backward
directions. In contrast, Attention sEMG [37] and TDCT [39] are variants based on attention
mechanisms to extract global feature information, facilitating the learning of global long-
term features for gesture classification. Attention sEMG utilizes a feed-forward simple
attention mechanism to extract representation features in the time domain from multiple
channels, while TDCT enhances the extraction of local temporal and channel correlation
features in sEMG by replacing the linear transformation in the multi-head self-attention
mechanism with temporal depth convolution. This modification boosts feature-learning
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capabilities and decreases parameter size. Both Multi-view CNN [26] and HVPN [36]
employ similar approaches by integrating multiple sets of feature information. They extract
feature information from various perspectives and integrate it using different network
architectures. In multi-view learning, each perspective has specific viewpoint features,
and all perspectives can access common viewpoint features. These models learn feature
information from multi-channel sEMG signals from both local and global perspectives.
The key aspect of these models lies in their rich feature information, which may, however,
introduce feature redundancy.

Due to variations in the window sizes used by different models, for the sake of fairness,
we unify the comparison based on each model’s best classification results, as shown in Table 5.

Table 5. Classification accuracy (%) with different models. Bold indicates the best results under
different models for the same dataset.

Database/
Methodology

NinaPro
DB4

NinaPro
DB5

BioPatRec
DB1

BioPatRec
DB2

BioPatRec
DB3

Multi-View CNN [26] 54.3 90.0 78.2 94.0 50.5
HVPN [36] 67.0 87.1 - - -

Attention sEMG [37] 73.0 87.0 - - -
EMGHandNet [38] 89.5 - - 83.9 -

TDCT [39] - 72.8 - - -
SE-CNN [40] 77.6 87.4 - - -

Ours 83.0 88.3 91.5 91.6 90.9

From Table 5, it is evident that our proposed model delivers strong performance across
multiple datasets, achieving an average classification accuracy of 88.98% across the five
datasets. For the NinaPro DB4 dataset, our model achieved an accuracy of 83.3%—slightly
lower than EMGHandNet’s 89.5%. However, it is important to note that our model main-
tains a significantly lower parameter count, with only 0.20 million parameters compared to
EMGHandNet’s 6.4 million. This underscores the effectiveness of our approach.

For the Ninapro DB5 dataset, our model achieved a classification accuracy of 87.6%,
coming close to the best results. In contrast, Multi-View CNN exhibits notable instability
and significant performance variations across different datasets, with an average classifica-
tion accuracy of 73.4% across the five datasets, trailing our model by 15.4%. Our model
leverages compact convolution to learn temporal dependencies and dynamically model cor-
relations between different channels, enabling strong generalization across diverse datasets.

Similar to the Ninapro DB5 results, for the BioPatRec DB2 dataset, our model main-
tained excellent classification performance, outperforming EMGHandNet by a substantial
margin of 7.4%. For the BioPatRec DB1 and BioPatRec DB3 datasets, our model achieved re-
markable classification accuracies of 91.4% and 91.3%, respectively, significantly surpassing
Multi-View CNN. While our model may not achieve the absolute highest accuracy on cer-
tain databases, it consistently ranks second overall, comparable to the average accuracy of
all other models, and this is accomplished with an impressively minimal parameter count.

4.4. Computational Complexity Analysis

In this section, we compare the computational complexity of the model proposed
in this study with popular sEMG-based hand gesture recognition methods to highlight
the advantages of our approach in managing complexity. Drawing on the previously
mentioned dataset, we selected the widely used NinaPro dataset as a benchmark and
compared models with window lengths of up to 300 ms. Given the lack of a unified
standard for window lengths in prior research, we opted for a comparison using a 250 ms
window length.

In Table 6, we present the recognition performance and parameter size of current
popular gesture recognition models on the NinaPro DB4 and DB5 datasets. Compared to the
existing optimal model, EMGHandNet, which boasts an accuracy of 89.5%, our proposed



Appl. Sci. 2024, 14, 3389 15 of 18

model is slightly behind by 6.5% in accuracy. However, in terms of parameter size, our
model accounts for only 3.8% of EMGHandNet. This significant difference demonstrates
that our model substantially reduces parameter size while maintaining relatively high
accuracy, thereby greatly saving on the resource consumption of the model. Apart from the
optimal model, compared to other models, our model exhibits clear advantages in both
accuracy and parameter size.

Table 6. Comparison of the accuracy and computational complexity on NinaPro databases with
different models. Bold indicates the best results under different models for the same dataset.

Database Methodology Accuracy (%) Number of
Parameters (M)

NinaPro DB4

Multi-View CNN [26] 54.3 3.44
HVPN [36] 67.0 4.76

Attention sEMG [37] 73.0 1.44
EMGHandNet [38] 89.5 5.76

Ours 83.0 0.22

NinaPro DB5

Multi-View CNN [26] 90.0 4.03
HVPN [36] 87.1 5.54

Attention sEMG [37] 87.0 1.44
TDCT [39] 72.8 1.20

Ours 88.3 0.21

In comparison to the HVPN and Multi-View CNN models, which employ a multi-
feature approach on the NinaPro DB5 dataset, our proposed model exhibits a slight decrease
in accuracy—approximately 1.7% lower than that of the Multi-View CNN model. However,
our model achieves this performance with only 5% of its parameter scale. Unlike methods
focusing on the fusion of multiple features, our approach, centered on channel feature se-
lection and compression, appears to be better-suited for relevant recognition tasks. Despite
a minor performance loss compared to the optimal model, the reductions in parameter
scale and computational complexity contribute to an overall enhancement of our model’s
performance. Additionally, when contrasted with attention mechanism-based models such
as Attention sEMG and TDCT, our model outperforms them both in terms of accuracy and
parameter count. This suggests that in recognition tasks, improving model performance
through local feature attention and the selection of key features, as opposed to a global
focus on sEMG signal features, may be pivotal.

5. Conclusions

In this paper, we introduce a PCS-EMGNet based on a channel selection mechanism
powered by gating units mechanisms to tackle the enduring challenges within the domain
of sEMG gesture recognition. By recognizing the imperative for more precise and com-
putationally efficient methodologies, our proposed model significantly enhances feature
extraction capabilities, yielding a model that is both more generalizable and robust. The
empirical validation of our model on diverse datasets, including NinaPro DB4, NinaPro
DB5, BioPatRec DB1, BioPatRec DB2, and BioPatRec DB3, demonstrated an impressive av-
erage classification accuracy of 88.34%, with a notable increase in accuracy and a substantial
reduction in computational requirements compared to existing methods. Our findings indi-
cate that our model not only achieves superior performance in terms of accuracy but also
in computational efficiency, marking a significant advancement in the practical application
of sEMG gesture recognition technologies.

Furthermore, by incorporating a novel partial convolution module alongside a channel
feature selection unit, our approach effectively capitalizes on the redundancy within feature
maps. This methodical application of convolution to select portions of input channels
drastically reduces the model’s parameter count, thereby streamlining the computational
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process. This innovation is poised to set a new benchmark for resource efficiency in the
field of sEMG gesture recognition.

Gesture recognition through sEMG signals is rapidly gaining traction for its non-
invasive nature, ease of acquisition, and high signal stability, making it an exemplary
choice for dynamic gesture recognition applications. However, the field continues to
grapple with challenges stemming from the diversity and complexity of gestures, as well as
vulnerability to signal interference. Current gesture recognition techniques are often limited
by their low accuracy and high computational demands. In response to these challenges,
future research will focus on optimizing model architectures, advancing feature extraction
methods, and broadening the scope of this technology’s applications to tackle a wider
array of real-world issues, thereby enhancing the accessibility and efficacy of sEMG-based
gesture recognition systems.
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