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Featured Application: This work is being developed as part of a digital health system designed to
assist in the therapeutic treatment of people with autism spectrum disorder.

Abstract: Digital health apps have become a staple in daily life, promoting awareness and providing
motivation for a healthier lifestyle. With an already overwhelmed healthcare system, digital therapies
offer relief to both patient and physician alike. One such planned digital therapy application is the
incorporation of an emotion recognition model as a tool for therapeutic interventions for people with
autism spectrum disorder (ASD). Diagnoses of ASD have increased relatively rapidly in recent years.
To ensure effective recognition of expressions, a system is designed to analyze and classify different
emotions from facial landmarks. Facial landmarks combined with a corresponding mesh have the
potential of bypassing hurdles of model robustness commonly affecting emotion recognition from
images. Landmarks are extracted from facial images using the Mediapipe framework, after which a
custom mesh is constructed from the detected landmarks and used as input to a graph convolution
network (GCN) model for emotion classification. The GCN makes use of the relations formed from
the mesh along with the special distance features extracted. A weighted loss approach is also utilized
to reduce the effects of an imbalanced dataset. The model was trained and evaluated with the
Aff-Wild2 database. The results yielded a 58.76% mean accuracy on the selected validation set. The
proposed approach shows the potential and limitations of using GCNs for emotion recognition in
real-world scenarios.

Keywords: deep learning; digital health; emotion recognition; facial point landmarks; graph convolution
network; mental well-being; mesh analysis; pattern recognition

1. Introduction

Digital health apps have seen rapid growth over recent years as they promote physical
and mental well-being and provide motivation for a more health-conscious lifestyle. As
many healthcare systems are increasingly overwhelmed by demand, these health apps
coupled with digital therapies offer the potential to benefit patients and clinicians through
digital patient-led care [1,2]. Digital health apps can also offer a more individualized
patient-centered approach to care. By supplying vital information collected from these
intelligent systems over a longer duration than the few minutes physicians spend with
patients in one-on-one sessions, more efficient diagnosis and treatment can be achieved.
Intelligent learning systems may offer further opportunity to enhance the quality and
productivity of patient care, and equity of access to it, e.g., [3].

A digital emotion recognition tool to assist in the therapeutic intervention of people with
autism spectrum disorder (ASD) is being developed. ASD is estimated to affect 1~2% of the
general population, which constitutes roughly 1 out of every 59 people [4,5]. ASD is defined
as a neuro-developmental condition impairing a person’s social skills, such as their interaction,
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communication, behaviors, and interests [4,6,7]. This condition may often lead to more severe
health problems attributed to isolation and unemployment (or reduced/under employment),
which can result in depression and anxiety [4]. To counteract these problems, group or single
therapies are devised for each level of ASD. A closed-loop emotional feedback system is in
development to immerse subjects in a virtual world and have them take part in different
gamified scenarios and tasks designed to stimulate emotional responses as part of therapy.
This system also aims to assist clinicians by providing vital information to monitor progress
and adapt the therapy level, assuring better quality and more personalized care. Such digital
therapeutic intervention systems have the potential to assist individuals with ASD to cope
better in different social environments [8–10].

Defining an emotion is a topic of great debate [11]. In this work, an emotion is
considered as defined by the framework of a component process model, a sequence of
triggers interrelated to changes in organism states in response to an external or internal
stimulus [11]. Over the years, the understanding of emotional stimuli, in particular their
influence and role in clinical settings, has evolved. Emotional stimuli, more specifically
those identified as threats, have significant influence on selective attention, processing
prioritization, and Pavlovian response [12,13]. However, an interesting perspective has
emerged in recent studies, that reactions to such stimuli are aligned with personal objectives.
This perspective suggests a context-dependent response of facial expressions [14,15].

To ensure efficient emotional feedback of the proposed system, an effective model for
the recognition of expressions must be developed. Identifying emotions is often a difficult
task given the numerous ways a person can express themselves [16]. However, emotions
are often perceived through either facial expressions (55%); speech and voice patterns (35%);
or physiological signals (10%) [17]. This study concentrates on the use of facial expressions
as a basis for emotion recognition. It is also worth noting that previous research [18,19]
has shed light on the importance of whole-body expressions in relating to the emotional
states of others, such as by recognizing emotions when the face is occluded and conveying
action intentions.

The prevalence of studies [20–25] on non-verbal emotional cues highlights the growing
interest in the evolving field of recognizing emotions to bridge the gap in human–machine
interactions. Extracting information from facial expressions is achieved via two methods:
(1) image-based; and (2) geometric-based. This study uses a geometric-based approach,
where facial point landmarks are extracted and used in combination with a graph convolu-
tion network to provide a robust representation of emotion state data.

The use of facial landmarks provides a more interrelated and holistic approach to
the identification of emotions from facial expressions. In [16], the use of facial landmark
locations incorporated in the classification process with a unique loss function revealed
promising results when tested on distinct emotional datasets. The work of [26] highlighted
the use of facial landmarks extracted from a Kinect 3D device to identify action units (AUs)
based on the representation from the facial action coding system (FACS) [27]. The use
of the AUs allowed the classification model performance to reach 96% accuracy on the
Karolinska directed emotional faces (KDEF) [28] dataset. A combination of facial landmark
localization, with 68 facial landmarks, and physiological signals was studied in [29]. The
implemented model was able to effectively classify six emotional classes with an accuracy
of 86.94% on the gathered dataset. In [30], key facial landmarks were selected and used
for geometric analysis of facial gestures on three different datasets using machine learning
models for classification. The models achieved good performance, reaching 97% accuracy
on the extended Cohn–Kanade (CK+) dataset with a k-nearest neighbor (KNN) classifier
and real-time processing time of 250 Hz.

This study’s proposed approach relies on a graph convolution network (GCN) as the
classification model. The GCN adopts a spatially unconstrained methodology, allowing
points to exist freely in three-dimensional space. Unlike methods constrained to a specific
plane, the GCN leverages the interconnections among linkages and establishes relations
with point anchors, resulting in a more resilient and robust outcome [31]. Graph networks
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can be used in a wide array of applications from generative models and traffic network
predictions [32] to text sequence labeling [33].

To evaluate the proposed approach, the Aff-Wild2 [34–44] database was employed.
This database is considered large and is composed of in-the-wild, e.g., non-posed, captured
image frames. The images were first passed through the point landmark feature extractor of
Mediapipe [45], where 478 facial landmarks were extracted and depicted in a 3D coordinate
plane. A subset of Aff-Wild2 was used for the analysis of the proposed approach. The
subset was split according to an 80% training and 20% validation partition.

As Aff-Wild2 is a challenge database, different techniques and approaches have been
studied for emotion recognition. In [46], a semi-supervised approach to improve facial
expression recognition was implemented using unlabeled data and a dynamic threshold
module, achieving an F1-score of 0.3075 [44]. An expression-related self-supervised learn-
ing method was developed in [47] to classify facial expressions, achieving an F1-score of
0.3218 [44]. A multi-layered perceptron ensemble was studied in [48] with a pre-trained
EmotiEffNet architecture for feature extraction from frames. This approach achieved an
F1-score of 0.3292 [44]. A fused transformer encoder model using audio-visual input with
an affine module was implemented in [49], reaching an F1-score of 0.3337 [44]. In [50], a
multi-modal fusion model was developed. This approach leverages a temporal convo-
lutional network and transformer models to enhance performance, reaching an F1-score
of 0.3532 [44].

Specifically, the study in this work leverages the unique characteristics of facial meshes
and the interrelations among facial landmarks, which is an approach which, to the best of
the authors’ knowledge, has not been extensively explored in prior research. In particular,
while previous studies touched on the use of a fraction of the 478 facial landmarks with
a distinct relational geometry, there is an opportunity in this work to delve deeper into
capturing subtle changes in facial expressions. These subtle changes are often overlooked
in pursuit of broader emotional generalizations but may contain key elements to improve
the overall emotion recognition capability.

This study’s primary aim is to show that combining facial landmark points with a
graph convolution network provides better efficacy in identifying emotions. Section 2
describes the methods used for the network architecture, feature selection, and analysis
criteria. Section 3 provides the results, followed by their respective discussions in Section 4,
and concluding with a summary of the main findings in Section 5.

2. Materials and Methods
2.1. System Methodology

The proposed system workflow is displayed in Figure 1. The input to the system is an
image that is passed through the pre-processing stage, where the point landmark feature
extraction algorithm of Mediapipe [45] is implemented. The algorithm extracts the relevant
facial landmarks and projects the data in a 3D coordinate plane. This information is then
processed with the features for each node, and an adjacency matrix is created from the
generated mesh. The data then pass through a graph convolution network (GCN) used as
the emotion classification model.
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Figure 1. Proposed system workflow. Green dashed lines represent the pre-processing phase.

2.2. Pre-Processing Stage

To develop an efficient emotion recognition model that is robust to changes in light and
subject demographic, a point landmark detection algorithm was chosen for the estimation
of facial landmarks. The Mediapipe [45] framework of facial landmark detection was
selected, as it is robust and provides landmarks in a 3D space. The algorithm adjusts to
facial orientation and distance relative to the camera and provides an output of 478 facial
point landmarks encompassing the face and key features, including eyes, nose, mouth, and
eyebrows. The algorithm also accounts for dynamic obstructions, such as the placement of
a hand in front of the face.

After extracting the facial landmarks, a custom mesh was created to highlight the rela-
tion of each node with its corresponding neighbor as the linkages. The mesh is symmetrical
on the horizontal axis and depicted in Figure 2. The adjacency matrix is later obtained from
the given mesh.
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Figure 2. The generated mesh from the 478 facial point landmarks extracted: front view (left) and
side view (right). The image is shown in a 3D plane, and the color variations depict the depth of the
corresponding surface.

The overall impact of the facial mesh, with all 478 facial landmark features being
given equal significance, was set to achieve a holistic representation of facial dynamics,
emphasizing its collective influence on the proposed model’s performance.
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2.3. Feature Extraction

To achieve accurate classification of the point landmark collection into a specific
single class, it is crucial to identify distinguishing features. To maintain objectivity across
different demographics, four key points were selected as anchors within the landmark
points. Subsequently, the Euclidean distance function was employed to calculate the
distances between these anchors and corresponding points in the collection. The anchor
points chosen were the landmarks of 5, 11, 94, and 324, which represent the tip of the nose,
the top of the forehead, and the outermost left and right points of the face.

2.4. Classification Model
2.4.1. Network Architecture

The graphical convolution network (GCN) [31] was chosen as the classification model.
The GCN employs layer-wise propagation, enabling a first-order approximation of spectral
convolutions on graphs [31]. This approach facilitates encoding both the graph structure
and node features, leading to improved modeling of relational data. By effectively capturing
dependencies between nodes and linkages, GCNs extract robust, hierarchical features from
graph-structured data.

The proposed model takes two inputs, the adjacency matrix, and the feature vector.
The model was designed with four multiplication layers. These layers capture and refine
the information from both the graph structure and node features. The first layer (32-feature
output) aggregates the data from neighboring nodes while the second (32-feature out-
put) and third (478-feature output) layers update the node representation based on the
aggregated information, refining the features to capture high-level representations. The
last multiplication layer (8-feature output) is followed by the SoftMax activation function,
which provides the output of the architecture and is equal to the number of classes. Figure 3
represents the model architecture.
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2.4.2. Weighted Loss

To ensure a fair representation of all classes during the network training, a weighted
cross-entropy function was used. Weights were calculated by

Wc =
max(S)

Sc
(1)

where Wc is the weight of the corresponding class c, S is a vector representing each class’s
data count, and Sc is the amount of data for a certain class c.

2.4.3. Training Options

The model was trained on 1500 epochs with a fixed learning rate of 0.01 using the
adaptive moment estimation (Adam) optimization function. The model was run in a
MATLAB 2023b environment (The MathWorks, Natick, MA, USA) on a desktop with
512.00 GB memory (RAM) and an NVIDIA graphics card RTX A6000 (NVIDIA Corporation,
Santa Clara, CA, USA).

2.5. Performance Measures

To evaluate the performance of the proposed model, three techniques were imple-
mented. The assessment was based on both the mean true positive (TP) accuracy and
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mean F1-score across all classes, as well as Cohen’s Kappa coefficient. The F1-score was
calculated by

F1c =
2TPc

2TPc + FPc + FNc
(2)

where F1c is the F1-score of the corresponding class c. TPc, FPc, and FNc are the TP, false
positive (FP), and false negative (FN) for the given class c.

In order to further highlight the model’s abilities of robust emotion recognition, a
custom heat map was created using the visualization technique of class activation mapping
(CAM) for model explain-ability. Since CAM is most commonly associated with image-
based approaches and not graphical node representations, a custom visual was developed.
The explain-ability method used highlights the point landmarks that are showing a strong
impact on the decision-making process of the model with a sphere that varies in size and
color based on the intensity of the impact. A color scale was used, and the feature maps
were extracted from the last layer of the model architecture.

2.6. Database Description

To train and assess the proposed model in close to real-world situations, an in-the-
wild-collected database was selected. Aff-Wild2 is a relatively large dataset composed
of 564 videos with ~2.8 million image frames. The database is annotated for different
tasks of valence–arousal, expression, and AU classification. For this study, the expression
classification annotations of 8 unique classes were selected, where the six basic emotions
(anger, disgust, fear, happiness, sadness, and surprise) along with a neutral state and an
“other” state are conveyed. This subset is composed of 546 videos with 2.6 million frames
gathered from a total of 554 subjects (326 male and 228 female) of diverse demographics
and environments [34–44].

For this study, a total of 30 subjects were randomly selected from the database for the
training and evaluation. Of the 30, 12 were from the original database validation set. The
model training was conducted agnostically to individual subjects, with the data split into
80% training and 20% testing.

3. Results
3.1. Dataset Distribution

Table 1 represents the selected dataset’s class distribution. As observed, there is an
imbalanced distribution in the emotion classes with a particular bias towards the neutral
class and the weakest representation of the fear class. The selected dataset recorded a high
imbalance ratio of 37.61, calculated as the ratio between the sample numbers of the majority
class and the minority class [51]. This distribution presents a challenge, emphasizing the
proposed model’s capacity for generalization in prediction.

Table 1. Class distribution of the selected dataset.

Emotion Class Selected Training Validation

Anger 3239 2581 658
Disgust 1129 903 226

Fear 990 797 193
Happiness 12,022 9647 2375

Neutral 37,233 29,852 7381
Other 19,364 15,417 3947

Sadness 16,567 13,271 3296
Surprise 9267 7381 1886

Total 99,811 79,849 19,962

3.2. Model Performance

The TP performance of the proposed model is represented in Figure 4 for each class
for both the training and validation sets. The weakest performance was attributed to the
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happiness class with 49.92% and 49.98% for the training and validation sets, respectively.
The best results were for the fear class with 86.07% and anger with 83.59% for both the
training and validation sets, respectively. The mean TP accuracy yielded 58.76% on the
validation set.
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In Figure 5, the results from the F1-score are depicted for each class for both the
training and validation sets. The outcomes show weak performance on the fear class with
an F1-score of 28.39% and 27.00% for both the training and validation sets, respectively.
The strongest performance was observed for the surprise class with 71.75% and 71.13% for
both the training and validation sets, respectively. The mean F1-score was 53.07% ± 14.87%
on the validation set.
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The confusion matrices of both the training and validation sets are shown in
Figures 6 and 7. A strong misclassification and confusion can be observed between the
neutral and “other” classes with 14.42% and 13.87%, respectively, for the validation set.
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Another strong confusion is observed between the neutral and happiness classes with
14.25% and 15.20% for the validation and training sets, respectively.
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To evaluate the agreement between the observed and expected predictions, the Kappa
value was calculated. A Kappa of 0.49 was achieved for the proposed model.

4. Discussion

Table 1 shows a strong bias towards the four classes of neutral, other, happiness,
and sadness. To mitigate their impact on the model’s learning process and ensure a fair
representation of the classes, the weighted loss method described in Section 2.4.2 was
implemented. The efficacy of this strategy is evident in Figures 4 and 5, showcasing the
model’s ability to balance feature representation. It demonstrated good performance across
both the underrepresented and well-represented classes.
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Figure 4 shows that the proposed approach was able to achieve good performance
on the selected dataset. The results also demonstrated that the model was not overfitting
the training data, since the difference in the measures of the validation and training sets
had a margin of less than 5%. The model’s ability to achieve strong performance on the
underrepresented classes was expected, as there were limited data to learn from, coupled
with the adopted weighted loss strategy. The happiness class’s weak performance was due
to it being mistaken as neutral with an error of 14.32%, as revealed by the confusion matrix.
The other and neutral classes were also often confused, leading to their low performance
scores. This phenomenon can be attributed to the minute differences in the features and
linkages obtained from the facial mesh that make it difficult to distinguish between these
classes. These outcomes also suggest emotion recognition via image alone might combine
these emotions for simplicity and improved performance, or, in contrast, require extra
inputs for full classification, such as voice stress analysis, to better segregate these otherwise
less distinguishable emotions.

While the model’s overall performance did not reach a high standard, achieving a
mean TP accuracy of 58.76% is notable. This outcome is particularly significant given the
complexity of the dataset, which encompasses a wide range of facial expressions. The
dataset, collected “in-the-wild”, mirrors real-world scenarios as closely as possible. In such
settings, distinguishing between facial expressions becomes inherently challenging, as there
are no standardized poses or specific facial reactions to replicate. Instead, the expressions
captured reflect visceral reactions and perceptions, making accurate predictions more
complex. The difficulties encountered in distinguishing emotional classes also highlight
the intricate nature of both data annotation and facial expression decoding.

The results of the F1-score reveal that the proposed approach has some hurdles to
overcome. The approach’s limitations were noticed in the fear class, where the model’s
ability to correctly identify instances belonging to the positive class and to distinguish
TP predictions from FP was notably lacking. Such a score suggests significant challenges
in accurately classifying the fear class and highlights potential limitations in the model’s
ability to generalize to unseen data. This outcome was expected as the fear class was the
lowest representation, and although the weighted loss was adopted for performance boost
and imbalance stabilization, it was not able to improve on the generalizability of unseen
data due to the weak representation of this class.

Achieving a 53.07% F1-score, while not considered high, is still acceptable and rea-
sonable in this type of application [44,46–50]. The complexity and inherent ambiguity of
emotion recognition, coupled with the dataset’s representation, make it challenging to
achieve notable performance. However, the proposed approach was able to demonstrate
the ability to capture the key patterns from within the data and thereby make informed
predictions within the given constraints. This outcome is strengthened by the Kappa score
of 0.49, which falls within the moderate range and demonstrates the model’s predictive
capability that is not equivalent to chance but rather a moderate agreement between the
predicted and true outcome. This demonstrates the model’s ability to capture complex
facial expressions. Additionally, it provides insights into the model’s effectiveness and
potential areas for improvement.

Table 2 shows the comparison of the proposed approach’s results to other methods
used during the Aff-Wild2 competition as highlighted in [44]. The proposed approach
was able to achieve a higher F1-score compared to other works. This notable performance
improvement underscores the efficacy of the method implemented in effectively recogniz-
ing and interpreting facial expressions. The margin between the proposed approach and
existing methodologies highlights the robustness and potential of the model in using the
GCN in emotion recognition. Notably, the model successfully identifies relevant patterns
within the data, leading to improved efficacy in emotion recognition. While using a fraction
of the Aff-Wild2 dataset, the proposed approach was able to achieve better performance
compared to the other works mentioned.
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Table 2. Comparison of the F1-score results from different methods on the Aff-Wild2 dataset.

Method F1-Score

Yu et al. [46] 0.3075
Xue et al. [47] 0.3218
Savchenko [48] 0.3292
Zhang et al. [49] 0.3337
Zhou et al. [50] 0.3532
Proposed approach 0.5307

* Value in bold represents the best performance.

In Figure 8, the models explain-ability is displayed, which highlights the areas of strong
impact on the class prediction. As observed, the model concentrates on the forehead of the
face for the classification of the other class. The focus on the forehead in emotion recognition
holds significance for identifying emotions that deviate from the traditional emotional
classes. The forehead is a crucial area for detecting subtle and culturally specific emotional
cues. Unique expressions may manifest through slight movements or muscle contractions
in the forehead, particularly in instances where emotions are complex or socially influenced.
Moreover, cultural variations in facial expression lead to differing associations between
emotions and facial regions, with some cultures emphasizing forehead movements for
emotional expression. Therefore, by focusing on the forehead, the model was able to
achieve improved accuracy and comprehensiveness, enabling a better interpretation of
emotional cues beyond the constraints of traditional emotional categories.
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In Figure 9, the model’s focus on the forehead, complemented by its focus on the
lips, eyes, and cheeks, underscores its proficiency in distinguishing different emotional
expressions. By analyzing multiple facial features, including the lips, eyes, and cheeks, the
model achieves enhanced precision and depth in deciphering emotional cues. This refined
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approach overcomes the constraints of traditional emotional classifications, allowing for a
more detailed and comprehensive understanding of emotional expressions.
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The limitations of this approach include no optimization on the hidden layers, partial
use of the dataset, no hyperparameter tuning, and the absence of data normalization. The
hidden layers and hyperparameters were not fine-tuned in this study, potentially leaving
room for further performance enhancement. The absence of data normalization may have
had an impact on the model’s ability to generalize well to unseen data. The use of a
small portion of the database, which restricted the representation of some classes, had
a significant impact on the performance. Another limitation is that in this study equal
significance was given to all facial point landmarks.

To address these drawbacks, future work will focus on incorporating normalization
functions coupled with the fine-tuning of the hidden layers and hyperparameters. The
use of a larger portion of the dataset will also be considered by optimizing the model
training approach so that the system can effectively handle the associated computational
demands. A study that focuses on facial muscle movements, where certain features play a
more prominent role in capturing subtle expressions, will also be undertaken.

5. Conclusions

In this study, facial landmarks were used with a graph convolution network (GCN)
for facial emotion recognition. The proposed approach showcased the potential of using
GCNs for emotion recognition in real-world scenarios. By leveraging the graph-based
representation, the model was able to capture intricate relationships between facial ex-
pressions, leading to a mean TP classification accuracy of 58.76% and mean F1-score of
53.07% on the selected validation set. Given the inherent challenges of classifying non-
posed emotional expressions and the constraints of limited data, the proposed approach
yields compelling results, particularly when compared to previous research efforts. Further
enhancements are planned for future work, including cross-dataset evaluations for model
generalizability assessments.
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