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Abstract: This paper concentrates on the elevator passenger detection task, a pivotal element for
subsequent elevator passenger tracking and behavior recognition, crucial for ensuring passenger
safety. To enhance the accuracy of detecting passenger positions inside elevators, we improved
the YOLOv8 network and proposed the SC-YOLOv8 elevator passenger detection network with
soft-pooling and attention mechanisms. The main improvements in this paper encompass the
following aspects: Firstly, we transformed the convolution module (ConvModule) of the YOLOv8
backbone network by introducing spatial and channel reconstruction convolution (SCConv). This
improvement aims to reduce spatial and channel redundancy in the feature extraction process of
the backbone network, thereby improving the overall efficiency and performance of the detection
network. Secondly, we propose a dual-branch SPP-Fast module by incorporating a soft-pooling
branch into the YOLOv8 network’s SPP-Fast module. This dual-branch SPP-Fast module can preserve
essential information while reducing the impact of noise. Finally, we propose a soft-pooling and
multi-scale convolution CBAM module to further enhance the network’s performance. This module
enhances the network’s focus on key regions, allowing for more targeted feature extraction, thereby
further improving the accuracy of object detection. Additionally, the attention module enhances
the network’s robustness in handling complex backgrounds. We conducted experiments on an
elevator passenger dataset. The results show that the precision, recall, and mAP of our improved
YOLOv8 network are 94.32%, 91.17%, and 92.95%, respectively, all surpassing those of the original
YOLOv8 network.

Keywords: YOLOv8; elevator passengers; object detection; attention mechanism; soft-pooling

1. Introduction

With rapid urbanization and the continuous development of architectural structures,
elevators, as indispensable modes of transportation in modern society, play a crucial
role in connecting various floors. However, in the day-to-day functioning of elevator
systems, ensuring passenger safety and service quality has consistently been a crucial
concern necessitating attention and improvement. Object detection technology within
elevators, as an essential means to enhance elevator operational efficiency and ensure
passenger safety, has garnered widespread research and application attention [1,2]. Due
to the rapid advancement of computer vision and deep learning technologies, object
detection techniques have found widespread applications in diverse fields. However, object
detection within elevators still faces a series of challenges compared to other fields due to
the unique environment and complex scenes. Detecting objects in elevator scenes presents
several challenges. Firstly, elevators typically have complex backgrounds, including walls,
floors, and ceilings, which can interfere with accurate object detection. Secondly, lighting
conditions may vary from dim to bright, impacting algorithm performance. Moreover,
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during peak elevator usage, there can be a high density of objects, leading to overlapping
targets and increased difficulty in identification [3,4]. Therefore, addressing these challenges
requires comprehensive consideration and tailored algorithm design to enhance accuracy
and stability in object detection within elevator environments.

With the rise of deep learning, object detection algorithms based on deep learning
have become mainstream. These algorithms leverage neural networks for end-to-end
learning and processing. Object detection algorithms based on deep learning can be
broadly classified into two categories: two-stage detection algorithms and one-stage detec-
tion algorithms.

Two-stage algorithms, exemplified by the region-based convolutional neural network
(R-CNN) series [5], were among the earliest object detection algorithms based on deep
learning. R-CNN utilizes selective search to generate candidate regions, followed by
convolutional neural network feature extraction for each region and, finally, employs a
classifier for object detection. Fast R-CNN [6] optimized R-CNN by introducing a region of
interest pooling layer, thereby achieving higher computational efficiency. Faster R-CNN [7]
further introduced the region proposal network, enabling end-to-end learning in object
detection. While these methods exhibit high detection accuracy, their detection speed is
relatively slow, resulting in reduced efficiency.

One-stage algorithms, exemplified by the Single Shot Multibox Detector (SSD) and
the You Only Look Once (YOLO) network, adopt a different approach. SSD [8] predicts
target boxes and categories at different scales on feature maps of various levels. This
design enables SSD to achieve a faster detection speed at the potential expense of some
detection accuracy. YOLO [9] is another one-stage algorithm that divides the image into a
grid and performs object detection directly on each grid, outputting bounding boxes and
categories. The YOLO series also exhibits fast detection speed but with relatively lower
detection accuracy.

In summary, deep learning algorithms have made significant progress in the field of
object detection. Nevertheless, these algorithms are continuously evolving and improving
to strike a balance between detection accuracy, speed, and efficiency.

This paper utilizes the YOLOv8 network as the baseline model for implementing the
elevator passenger detection task and proposes improvements upon the YOLOv8 network.
The main contributions of this study are as follows:

(1) An SCConv improved ConvModule (SC-ConvModule) is proposed by incorporating
a spatial and channel reconstruction convolution (SCConv) onto the ConvModule
in the YOLOv8 backbone network. This modification aims to alleviate spatial and
channel redundancy among features in the convolutional neural network, resulting in
model compression and improved performance.

(2) A dual-branch SPP-Fast module is proposed based on the SPP-Fast module in the
YOLOv8 network by introducing a soft-pooling technique. The smoothness of the
soft-pooling branch enables the dual-branch SPP-Fast module to better preserve infor-
mation in the feature map, reducing information loss and contributing to improved
accuracy in object detection. Additionally, soft-pooling exhibits less sensitivity to the
specific position of the target, enhancing the model’s generalization ability to adapt
better to variations in target positions.

(3) The soft-pooling and multi-scale convolution CBAM (SPM-CBAM) module proposed
in this paper is embedded in the backbone network of YOLOv8, which further en-
hances the ability of the YOLOv8 network to perceive features at different scales.

2. Related Work

In 2016, Joseph Redmon et al. [9] proposed the YOLOv1 network. This network
significantly improved real-time performance and accuracy by unifying the object detection
task into a regression problem. Since then, the YOLO series of algorithms have undergone
multiple iterations and improvements, becoming a significant presence in the field of
object detection.
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The innovation of the YOLOv1 network lies in the integration of the object detection
task into a single feedforward neural network. In contrast to traditional two-stage detec-
tion methods, YOLOv1 adopts an end-to-end approach by simultaneously predicting the
bounding box coordinates and class probabilities of the targets within a single network.
This not only enhances the real-time performance of object detection but also simplifies
the entire detection process. However, YOLOv1 encountered challenges in detecting small
objects and background misclassifications, which became focal points for improvement in
subsequent versions. To address the issues present in YOLOv1, YOLOv2 [10] introduced
the concept of anchor boxes. These predefined bounding box sizes help to better adapt to
targets of varying sizes and proportions. Additionally, YOLOv2 adopted a deeper Darknet-
19 network architecture and supported multi-scale predictions, enabling the algorithm
to better accommodate targets of different sizes. YOLOv3 [11] further improved upon
YOLOv2. Firstly, it adopted the deeper Darknet-53 network, enhancing the capability of
feature extraction. Secondly, it introduced multi-scale predictions by performing object
detection at different levels, thereby improving the algorithm’s adaptability to targets of
varying sizes. Additionally, YOLOv3 utilized smaller-sized anchor boxes, significantly
enhancing the detection performance for small objects. YOLOv4 [12] represents another
significant advancement in the YOLO series, introducing a range of new modules to further
enhance performance. The introduction of the cross stage partial network [13] structure
optimized feature fusion, the spatial attention module [14] strengthened attention to spatial
information, and the path aggregation network contributed to better aggregation of features
from different levels. Ref. [15] proposed YOLOX in 2021, consisting of seven versions. Here,
we will primarily focus on the improvements made in YOLOX-Darknet53. In the input
section, data augmentation is achieved using mosaic and mixup techniques. The neck
section employs a feature pyramid network (FPN) for feature fusion. In the prediction
section, three decoupled heads are used to enhance accuracy and expedite convergence.
The model adopts anchor-free methods to reduce the parameter count. During label as-
signment, positive samples are initially filtered based on the center point and target box.
Subsequently, fine filtering is performed using SimOTA. The loss function is then utilized to
calculate the discrepancy between the target box and the predicted box for positive samples.

In addition to major updates in YOLO, many researchers have delved into the study
of each version of YOLO. Cao et al. [16] replaced the backbone network of the YOLOv5
network with the GhostConv network. This network successfully reduced the number of
network parameters by half without reducing the accuracy of target detection. Niu et al. [17]
merged YOLOv8 with context-guided network and residual network (ResNet) structures
with multiple branches to enhance the model’s ability to learn deep ResNet features.
Su et al. [18] replaced the original YOLOv5 backbone network with the lightweight Shuf-
fleNetv2 to reduce parameters and computational requirements. Additionally, they inte-
grated BiFPN as the feature fusion layer, enhancing the model’s detection capability across
various object scales. Furthermore, they employed a CARAFE lightweight upsampling
factor to improve the model’s perception of details and small-sized objects and the EIOU
loss function to expedite model convergence.

3. Method
3.1. SC-YOLOv8 Network with Soft-Pooling and Attention Mechanism

Building upon the strengths inherited from the previous YOLO series networks,
the YOLOv8 network significantly improves the overall detection performance through
further optimization of the network structure. It has gained widespread application in vari-
ous object detection tasks due to its efficient real-time processing and network architecture.
The overall structure of the YOLOv8 network can be divided into three parts: the backbone
network, the neck network, and the detection head.

The backbone network functions as the feature extraction component, aiming to
perform preliminary feature extraction on the input image and generate three different
scales of feature maps for subsequent use.
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The neck network is located between the backbone network and the detection head,
and its role is to combine the feature information of the three feature maps extracted by the
backbone network to realize the retention of features and extract more detailed information,
and the neck network will output three new feature maps.

The detection head employs the features extracted by the preceding networks to make
predictions, producing the final output of the YOLOv8 network.

This paper aims to optimize the feature extraction process of the YOLOv8 backbone
network, and consequently, the enhancements to the YOLOv8 network are primarily
focused on the backbone network. The modified YOLOv8 network structure proposed in
this paper is depicted in Figure 1.
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Figure 1. Structure of SC-YOLOv8 network with soft-pooling and attention.

First, we propose an SC-ConvModule, which reduces spatial and channel redundancy
between features during convolution operations by replacing the standard convolution
of the ConvModule in the YOLOv8 backbone network with SCConv. Simultaneously,
improvements are proposed for the SPP-Fast module in the YOLOv8 network. In the
original SPP-Fast module, the use of max-pooling operations may lead to partial loss of
local information. To solve this problem, we introduce soft-pooling branches to build a
dual-branch SPP-Fast module to fully extract feature information. To further enhance the
network performance, we embedded a newly designed SPM-CBAM module in the YOLOv8
backbone network. We improve the CBAM (convolutional block attention mechanism)
module by combining a multi-scale depth-separable convolutional kernel and soft-pooling
techniques to more effectively regulate channel attention and spatial attention. This in-
novation aims to enhance the model’s adaptability to different scales and features, thus
improving the accuracy and robustness of target detection. In summary, this paper is
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dedicated to optimizing the feature extraction and attention mechanism of the YOLOv8
network through several module and technique improvements, aiming to achieve a higher
level of performance.

3.2. Spatial and Channel Reconstruction Convolution

The background of elevator surveillance images is complex, and the standard con-
volutional kernel has limitations in processing elevator surveillance images because the
standard convolutional kernel operates on the entire input image and fails to focus on
specific regions and channels effectively. This convolutional operation suffers from re-
dundancy of spatial and channel information in complex scenes, which, in turn, leads
to degradation of model performance. Specifically, the standard convolutional kernel is
unable to differentiate between important and minor regions in the image, and is also
unable to effectively identify which channels are critical in the image. This results in
the model consuming a large amount of computational resources to process unnecessary
information when processing elevator surveillance images. Therefore, in this paper, we
propose SC-ConvModule by replacing the standard convolution of the ConvModule of the
YOLOv8 network using SCConv. As shown in Figure 2, SCConv [19] consists of a spatial
reconstruction unit (SRU) and a channel reconstruction unit (CRU). The SRU separates
features with rich information from those with less information, then reconstructs them
to enhance representative features and reduce spatial redundancy in the input features.
On the other hand, CRU employs a split–transform–fuse method to reduce channel re-
dundancy. The combination of SRU and CRU in the SCConv module aims to enhance
the adaptability and generalization performance of the YOLOv8 network, particularly
in dealing with the challenging background and various interference factors present in
elevator surveillance images.

SRU CRU

Input Feature 
Spatial-Refined 

Feature 

Channel-Refined 

Feature 

Spatial and Channel Reconstruction Convolution

X

wX

Y

Figure 2. The architecture of SCConv.

As shown in Figure 3, the SRU reduces spatial redundancy in the input features
through separation and reconstruction. The purpose of the separation operation is to
separate those feature maps that are rich in spatial information from those with less spatial
information. SRU begins by utilizing the scaling factor in the group normalization (GN)
layer to assess the information content of different feature maps. The specific calculation of
the GN layer is shown in Equation (1).

Xout = GN(X) = γ
X − µ√
σ2 + ε

+ β, (1)

where X represents the input feature map, and µ and σ represent the mean and standard
deviation of the feature map X, respectively. ε is a small positive constant added for the
stability of the division. γ and β are trainable affine transformations.
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Figure 3. The architecture of the spatial reconstruction unit.

The trainable parameter γ in the GN layer is used to measure the spatial pixel variance
for each batch and channel. The more spatially rich the information, reflecting larger spatial
pixel changes, the larger γ becomes. The normalized correlation weight Wγ of γ is used to
represent the importance of different feature maps, calculated in Equation (2).

Wγ = {ωi} =
γi

∑C
j=1 γj

, i, j = 1, 2, . . . C, (2)

where C is the number of channels in the input feature map.
Afterwards, the re-weighted feature map values by Wγ are mapped through the

sigmoid function to the range (0, 1) and filtered by a threshold. We set weights higher than
the threshold to 1 to obtain informative weights W1. Additionally, weights higher than the
threshold are set to 0 to obtain non-informative weights W2. The specific calculation of Wn
is as shown in Equation (3).

Wn = Gate(Sigmoid(Wγ(GN(X)))), n = 1, 2 (3)

Finally, the input feature map X is multiplied by both W1 and W2, respectively, result-
ing in the separation of the input feature map X into an information-rich feature map Xw

1
and a redundant feature map Xw

2 with almost no information. The computation of feature
maps Xw

1 and Xw
2 is as shown in Equation (4).

Xw
1 = W1 ⊗ X, Xw

2 = W2 ⊗ X, (4)

where, ⊗ represents element-wise multiplication.
The reconstruction operation involves using a cross-reconstruction method to obtain

features maps Xw1 and Xw2 by combining an information-rich feature map Xw
1 with an

information-poor feature map Xw
2 . Then, the feature maps Xw

1 and Xw
2 are concatenated to

obtain the spatially refined feature map Xw. The specific calculations for the reconstruction
operation are as shown in Equation (5).

Xw
1 = [Xw

11, Xw
12]

Xw
2 = [Xw

21, Xw
22]

Xw
11 ⊕ Xw

22 = Xw1

Xw
21 ⊕ Xw

12 = Xw2

Xw1 ∪ Xw2 = Xw

(5)

where, [., .] represents the split operation along the channel. ⊕ represents element-wise
summation. ∪ represents concatenation. Xw

11 and Xw
112 are the feature maps obtained
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by splitting Xw
1 along the channels, while Xw

21 and Xw
21 are the feature maps obtained by

splitting Xw
2 along the channels.

As shown in Figure 4, the CRU is implemented through three operations: split,
transform, and fuse. For the feature map Xw processed by SRU, the channels of Xw are first
divided into two parts, namely, the αC channel and the (1 − α)C channel, where 0 ≤ α ≤ 1.
Then, a 1 × 1 convolution is applied to compress the channels of the feature map. At this
point, the feature map Xw is divided into the feature map Xup and the feature map Xlow.

Spatial-Refined 

Feature

GWC

PWC

GWC

PWC

1×1Conv

1×1Conv C

C

(1 )C

Pooling

SoftMax

Pooling

Split

Transform
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1S

2S 2

1
upX

lowX

Channel 

reconstruction 

features

Element-wise summation C Concatenation Element-wise multiplication

wX

Y

1Y

2Y

Figure 4. The architecture of the channel reconstruction unit.

For Xup, group convolution and pointwise convolution are employed, and the outputs
are summed to obtain the feature map Y1. The specific calculations are as in Equation (6).

Y1 = GWC(Xup) + PWC(Xup), (6)

where GWC represents the group convolution, and PWC represents the pointwise convolution.
Group convolution can significantly reduce the number of model parameters and

the amount of computation [20], but it will cut off the flow of information between chan-
nel groups. The cutting off of channel groups causes the network to lose some context
information when learning features. To compensate for this loss of information, pointwise
convolution is introduced to promote the flow of information between feature channels [21].
Pointwise convolution performs convolution operations on feature channels at each loca-
tion, which is conducive to the global information transmission between features.

For the feature map Xlow, a 1× 1 pointwise convolution is applied to generate a feature
map with shallow hidden details. Subsequently, the generated feature map is concatenated
with the feature map Xlow to obtain the feature map Y2. The specific calculations are as
Equation (7).

Y2 = Xlow ∪ PWC(Xlow) (7)

Next, global average-pooling is used to process Y1 and Y2 to collect global spatial
information Sm with channel statistics. The calculation method is as Equation (8).

Sm = AvgPooling(Ym) =
1

H × W

H

∑
i=1

W

∑
j=1

Ym(i, j), m = 1, 2, (8)

where H represents the length of the feature maps Y1 and Y2, and W represents the width
of the feature maps Y1 and Y2.

Then, S1 is stacked with S2, and a channel-wise soft attention operation is applied to
generate the feature importance vectors β1 and β2. Finally, feature Y1 and Y2 features are
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combined to obtain the channel refinement feature Y, guided by the feature importance
vectors β1 and β2. The calculation method is as Equation (9).

Y = β1Y1 + β2Y2 (9)

3.3. SC-ConvModule

The SC-ConvModule consists of a sequential combination of SCConv, the batch nor-
malization layer, and the sigmoid linear unit (SiLU) activation function, as depicted in
Figure 5.

SCConv BatchNorm SiLU

SC-ConvModule

Figure 5. SC-ConvModule. In SC-ConvModule, the feature map first passes through an SCConv
layer for feature extraction and transformation. Immediately after that, the BatchNorm submodule
performs batch normalization on the output of the SCConv layer to adjust the distribution of the data,
making the model training more stable and efficient. Subsequently, the normalized data enter the
SiLU activation function to perform a nonlinear transformation to further increase the expressive
power of the model.

SCConv reduces the storage space and computational cost of the YOLOv8 network by
reducing the spatial and channel redundancy between features in the convolutional neural
network, while improving the accuracy and generalization of the YOLOv8 network for
object detection tasks.

SC-ConvModule further improves the stability and convergence speed of the network
through the batch normalization layer. Batch normalization improves the stability of model
training by performing a normalization operation on the inputs of each batch, i.e., each
input is subtracted from the mean of the inputs of that batch and divided by the standard
deviation, which keeps the distribution of inputs of each layer of the network small, helps
prevent excessive growth or reduction in the gradient, and improves the stability of model
training. In addition, batch normalization also reduces the sensitivity to the initialization
parameters, making it easier for the neural network to converge to a suitable solution.

SC-ConvModule introduces nonlinear factors through the SiLU activation function
layer to enhance the expressive power of the network.The unboundedness and smoothing
of the SiLU function prevents the problem of vanishing gradients in neural networks,
allowing the network to be more flexible in adapting to different features. In addition,
the non-monotonicity of the SiLU function enables it to handle more complex feature
mappings, thus helping the network to learn more complex feature representations [22].

The CSP_2Conv module is the result of an improvement to the C3 module of the
YOLOv5 network, and the key to this improvement is the introduction of extended efficient
layer aggregation networks (ELANs) to effectively avoid the problem of deterioration in
the network’s convergence during model scaling. As illustrated in Figure 6, the ELAN
structure is a layer-aggregation architecture with an effective gradient propagation path [23].
It optimizes the gradient length of the entire network by utilizing a stack structure within
the computation block. When the features are input into the CSP_2Conv module, they
first undergo a convolution operation for channel integration, and the integrated feature
map has a richer representation. The CSP_2Conv module incorporates parallel bottleneck
layer structures, which diverge different dimensional feature map information and then
merge them at the end of the module. Consequently, the CSP_2Conv module can obtain
richer gradient information, and the backpropagation gradients can be more effectively
transmitted to shallower feature maps. This enhances the feature extraction capability of
the convolutional neural network while reducing the time consumption of memory access.
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As the ConvModule is also present within the CSP_2Conv module, it is replaced with the
SC-ConvModule. The modified CSP_2Conv module is referred to as the SC-CSP_2Conv
module, and its specific structure is illustrated in Figure 7.
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Figure 6. Structure of ELAN.

SC-ConvModule

Split

SC-Bottleneck

SC-Bottleneck

SC-Bottleneck

SC-Bottleneck

Concat

SC-ConvModule

  

Figure 7. SC-CSP_2Conv module. The feature maps fed into the SC-CSP_2Conv module are first
processed by the SC-ConvModule for feature extraction. Subsequently, the feature map processed by
SC-ConvModule enters the Split layer, which is divided into multiple parallel channels. The data in
these channels are processed by four consecutive SC-Bottleneck layers, and all the output feature
maps from SC-Bottleneck are recombined in the Concat layer to form a feature map with multi-
channel information. Finally, this merged feature map passes through an SC-ConvModule again for
final feature extraction and transformation to obtain the output of the SC-CSP_2Conv module.

In YOLOv8, the bottleneck within the CSP_2Conv module consists of two ConvMod-
ules and is augmented with a skip connection, as illustrated in Figure 8a. The primary
function of the bottleneck is to propagate low-level feature information [24], enabling
effective learning and convergence during the training process, even in the case of a deep
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network model. It leverages the residual concept, conducting two convolutional operations
on the original input to extract features, followed by element-wise addition with the origi-
nal input. The advantage of the residual concept lies in its ability to preserve the essential
features of the original input and mitigate the vanishing gradient problem. The bottle-
neck employs multiple small convolutional kernels to replace a large convolutional kernel,
deepening the network and simultaneously reducing the number of parameters compared
to the original structure. This not only enhances the depth of the network but also de-
creases the overall parameter count. This paper replaces the ConvModule in the bottleneck
with the SC-ConvModule. The transformed bottleneck is referred to as the SC-Bottleneck,
as illustrated in Figure 8b.

ConvModule

ConvModule

(a) Bottleneck

SC-ConvModule

SC-ConvModule

(b) SC-Bottleneck
Figure 8. Bottleneck and SC-Bottleneck.

3.4. Dual-Branch SPP-Fast Module

The SPP-Fast module is an important feature extraction module in the YOLOv8 back-
bone network, and is called the SPP-Fast module because of its computational speed
advantage over the spatial pyramid pooling (SPP) module. The SPP-Fast module is opti-
mized from the SPP module and uses a serial approach to the max-pooling operation and
splices the outputs from each location when the last max-pooling is complete. The SPP-Fast
module extracts features using only the max-pooling operation, which can lead to the
loss of some local information. In the elevator scene, noise adversely affects the local
information in the image, while uneven illumination leads to changes in the global features.
To address this problem this paper proposes a dual-branch SPP-Fast module by introducing
soft-pooling branches in the SPP-Fast module. This modification aims to enhance feature
extraction by merging the soft-pooling operations, thus mitigating the potential loss of
local information.

In the dual-branch SPP-Fast module, the soft-pooling operation selectively preserves
pixels based on the pixel weights in the feature map [25]. Soft-pooling achieves this by
obtaining normalized results through the SoftMax function, and then retaining pixels
according to the weights of the features. This ensures that more crucial features contribute
more significantly, addressing the issue of information loss often associated with max-
pooling. Soft-pooling enables the thorough utilization of any activation factor within the
pooling kernel, while incurring only a lesser additional computational cost. It not only
enhances the network model’s ability to discriminate between similar feature information
but also preserves feature information across the entire receptive field during soft-pooling
operations. This helps minimize feature information loss during the pooling process,
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thereby improving the detection accuracy of the algorithm. During backpropagation,
soft-pooling accumulates activations in an exponentially weighted manner, facilitating
continuous updates to gradient values. The calculation method for soft-pooling is outlined
in Equations (10) and (11).

wi =
eai

∑
j∈R

eaj
(10)

ã = ∑
i∈R

wi × ai, (11)

where wi represents the weight of the candidate region, a represents the weight of the
activation mapping, and ã represents the feature map obtained by multiplying and adding
weight wi with activation mapping ai. The significance of weights lies in the fact that
a larger value indicates a more crucial pixel, increasing the likelihood of its retention.
The advantage of soft-pooling lies in its ability to effectively preserve image information
even when the number of features is reduced.

As shown in Figure 9, the dual-branch SPP-Fast module proposed in this paper can
be divided into two parts: one part comprises the max-pooling branch, while the other
part consists of the soft-pooling branch. The specific calculation process is detailed in
Equations (12)–(14).

Y1 = Conv(Concat(Conv(x), M1(x), M2(x), M3(x))) (12)

Y2 = Conv(Concat(Conv(x), S1(x), S2(x), S3(x))) (13)

Y = Concat(Y1, Y2) (14)

ConvModule

MaxPool

MaxPool

MaxPool

SoftPool

SoftPool

SoftPool

Concat Concat

ConvModule ConvModule

Concat

Figure 9. Structure of dual-branch SPP-Fast.

Here, Y1 and Y2 represent the outputs of the max-pooling branch and the soft-pooling
branch, respectively. Mi(i ∈ {1, 2, 3}) represents the output after max-pooling, and
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Sj(j ∈ {1, 2, 3}) represents the output after soft-pooling. Conv represents the standard
convolution operation.

3.5. Soft-Pooling and Multi-Scale Convolution CBAM

The visual attention mechanism has significant advantages in the elevator passenger
detection task, which can dynamically weight the features of the input image, and, therefore,
can help to localize and identify the objects in the image in the object detection task.
The CBAM attention mechanism is a typical hybrid attention mechanism that sequentially
applies channel attention mechanism (CAM) and spatial attention mechanism (SAM)
modules. Compared to using channel attention or spatial attention independently, CBAM
can achieve better results [26]. As illustrated in Figure 10, the CBAM attention mechanism
takes a given intermediate feature map F ∈ RC×H×W as input. First, the CAM module
aggregates the spatial information of the feature map through operations like average-
pooling and max-pooling. Subsequently, the spatial information is processed through a
shared multilayer perceptron (Share MLP) to generate a one-dimensional channel attention
map CA(F). CA(F) is then element-wise multiplied with the input feature map F, and the
channel attention values are broadcast along the spatial dimension to obtain refined features
FC ∈ RC×H×W with channel attention. The SAM module processes FC to generate a spatial
attention map SA(F). The final output feature F̂ ∈ RC×H×W is obtained by element-
wise multiplication of SA(F) and FC. The convolutional module receives the spatial
attention map for channel mixing. Finally, the refined features are obtained as output
by element-wise multiplication of the channel mixing result with channel priors, as detailed
in Equations (15) and (16).

FC = CA(F)⊗ F (15)

F̂ = SA(FC)⊗ FC (16)

Channel 

Attention 

echanism

Spatial 

Attention 

Mechanism

Input Feature
Refined 

Feature

Figure 10. CBAM attention.

In the CAM module, the processing of the feature map involves the use of average-
pooling and max-pooling operations to aggregate spatial information. However, the max-
pooling operation overlooks the influence of other elements in the pooling region on the
result and, thus, may result in the loss of useful information. On the other hand, the average-
pooling operation, while capable of preserving more information of the feature map, can
result in the loss of discriminative information due to mutual cancellation of positive
and negative activation values. To retain more useful information from the feature map,
as shown in Figure 11, this paper introduces soft-pooling operations into the CAM module.
This addition aims to preserve more useful information. Assuming the input feature map
to the CAM module proposed in this paper is denoted as F ∈ RC×H×W , the expression for
the channel attention feature vector C × 1 × 1 of dimension CA(F) generated by the CAM
module is as Equation (17).

CA(F) = σ(MLP(MaxPool(F)) + MLP(So f tPool(F)) + MLP(AvgPool(F))), (17)

where MaxPool represents the max-pooling operation, So f tPool represents the soft-pooling
operation, AvgPool stands for the average-pooling operation, σ stands for the sigmoid
activation function, and MLP stands for the Share MLP operation.
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MaxPool

SoftPool

AvgPool Share MLP

Channel 

Attention

Input Feature

Figure 11. Channel attention module with soft-pooling.

As depicted in Figure 12, in the SAM module, this paper also incorporates soft-pooling
operations. Considering that the SAM module employs a 7 × 7 convolutional kernel for
feature map processing, which may lead to a uniform spatial attention weight distribution
among channels, this paper addresses this by using multi-scale depth-wise separable
convolutions instead of the 7 × 7 convolutional kernel in the SAM module. The calculation
of spatial attention can be described as Equation (18).

SA(FC) = Conv1×1(DwConv5×5(FC) + DwConv7×7(FC) + DwConv9×9(FC)), (18)

where DwConv represents depthwise separable convolution, and Conv1×1 represents 1 × 1
standard convolution.

5×5

7×7

9×9

1×1

Channel-refined 

feature
[Maxpool

,SoftPool,

AvgPool]

Spatial 

Attention

Figure 12. Spatial attention module with soft-pooling and multi-scale depth-wise separable convolutions.

4. Experiments
4.1. Experiment Dataset

For the experiments on the elevator passenger detection network, the data samples
utilized in this paper primarily originate from a self-constructed elevator passenger dataset.
This dataset encompasses individuals of varying ages and genders, dressed in diverse attire.
In total, it comprises 6259 images. The dataset is randomly split into training and testing
sets in an 8:2 ratio. The training set consists of 5007 image samples, while the testing set
comprises 1252 image samples. Some examples of images from the dataset are illustrated
in Figure 13.

Before training the model, the target objects in the image need to be manually anno-
tated. The data annotation tool used in this article is Labellmg. “person” is used as the
annotation name for annotation, and the annotation results are exported as xml files. Xml
is a label file, containing label name and label box information. The labellmg annotation
interface is shown in Figure 14, and the xml label file style is shown in Figure 15.

In order to enhance the diversity of the dataset and improve the model’s generalization
capability, this paper employed data augmentation techniques. The goal was to generate
more varied training data, thereby improving the distribution of the data and making the
training data more representative. Data augmentation involves various transformations
applied to the original data, generating diverse samples that help deep learning models
better understand and generalize to different input scenarios, enhancing the model’s
adaptability to diverse scenes and complex transformations. This paper utilized various
data augmentation techniques, including flipping, brightness variation, contrast variation,
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adding noise, and image blur. Figure 16 illustrates example images after undergoing the
mentioned data augmentation operations, clearly demonstrating the impact of various
transformations on the appearance of the images.

Figure 13. Partial example of elevator passenger dataset.

Figure 14. LabelImg marking interface.
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Figure 15. Tag file format of xml.

(a) Original picture (b) Flipping (c) Random brightness

(d) Random contrast (e) Noise (f) Blur

Figure 16. Example of data augmentation.

Flipping is a simple and effective data augmentation method. By horizontally flipping
the image, samples with mirror-symmetry to the original image can be generated, allowing
the model to better adapt to objects appearing in different orientations. This is particularly
useful for handling scenarios such as lens inversion or backlight, enhancing the model’s
adaptability to various perspectives. Brightness and contrast variation are two commonly
used data augmentation methods. By introducing random brightness and contrast changes
to the image, simulations of different lighting conditions are created.The random brightness
gain range is 0.3∼2, and the random contrast gain range is −30∼30. This enhances the
model’s robustness, enabling accurate object detection under varying lighting environments.
This is crucial for addressing situations with significant lighting variations in practical
applications. To simulate noise present in real-world scenarios, a data augmentation
method involving the addition of noise was introduced. By adding Gaussian noise to the
image, the model becomes more robust, capable of handling common interference factors
in real-world scenes, improving the model’s generalization performance. The mean value
of Gaussian noise is randomly selected between −10 and 10, and the standard deviation is
randomly selected between 0 and 30. Image blur can simulate factors such as fast motion,
changes in lighting, or suboptimal shooting conditions, helping improve the model’s
tolerance to noise by alleviating the impact of noise on the image. We use Gaussian blur
technology to blur the dataset, where the blur kernel size is randomly selected among 3, 5,
7, and 9. A larger blur kernel will result in a stronger blur effect, while a smaller blur kernel
will produce a slight blur effect. By using blurred images alongside clear images, the data
augmentation strategy can significantly increase the quantity of training data, effectively
preventing overfitting. This approach is beneficial for enhancing the model’s robustness in
different lighting or capture devices, making it more adaptive and resilient.
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4.2. Experimental Environment and Parameter Settings

To overcome the massive parameter size and computational demands of deep learning
algorithms, we opted for the NVIDIA GeForce RTX 3060 graphics card with 12 GB of video
memory. GPU acceleration is achieved through the CUDA parallel computing architecture.
In this paper, PyTorch is employed as the deep learning framework, making full use of
its flexibility and robust support for GPU-accelerated computations. The experimental
environment is shown in Table 1.

Table 1. Experimental environment.

Environment Settings

GPU NVIDIA GeForce RTX 3060 12 GB
CPU Intel Core I7 12700KF

Memory 16 G, 2666 MHz
OS Ubuntu 20.04 LTS

CUDA 11.2
PyTorch 1.10.1
Python 3.6

Considering the limitation of GPU memory, this paper set the batch size for input
images to 16. In order to effectively explore the performance of the model, the study
selected 250 epochs as the training iteration count. The optimizer of choice was the
stochastic gradient descent (SGD) optimizer. The specific experimental parameters are
shown in the Table 2. Cosine annealing [27] was employed for learning rate adjustment,
starting with an initial learning rate of 0.01 and decaying to a minimum learning rate of
0.0001. Cosine annealing is a way of simulating a cosine function to adjust the learning rate.
It is based on the changing law of the cosine function and gradually reduces the learning
rate during the training process to achieve better training results. The core idea of this
method is to use a relatively large learning rate in the early stages of training in order to
converge to a relatively suitable area faster. In the later stages of training, the learning
rate is gradually reduced in order to adjust the model parameters more finely to achieve
higher accuracy.

Table 2. Experimental parameter settings.

Experimental Parameter Setting

Input image size 640 × 640
Batch size 16

Epochs 250
Initial learning rate 0.01

Minimum learning rate 0.0001
Optimizer SGD

Momentum 0.937

4.3. Experimental Evaluation Index

This paper evaluated the performance of the object detection model using precision (P),
recall (R), and the mean average precision (mAP) as standards. These evaluation metrics
provide a comprehensive understanding of the model’s capabilities, allowing for a more
thorough assessment of its effectiveness in the object detection task.

Precision refers to the ratio of correctly predicted positive samples to all samples
predicted as positive by the model. Its mathematical expression is as Equation (19).

P =
TP

TP + FP
(19)

TP represents true positive, indicating the number of samples correctly predicted as
positive by the model, and FP represents false positive, indicating the number of samples
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incorrectly predicted as positive by the model. By calculating precision, we can assess the
model’s precision in recognizing targets.

Recall is another key evaluation metric used to describe the ratio of correctly predicted
samples among all actual positive samples in the entire dataset. Its mathematical expression
is as Equation (20).

R =
TP

TP + FN
(20)

FN represents false negative, indicating the number of positive samples that the model
failed to predict correctly. Through the evaluation of recall, we gain insight into the model’s
coverage of true targets, i.e., its ability to discover all positive samples.

The mean average precision is a comprehensive metric that assesses the model’s
ability to predict and locate targets, considering performance differences between different
categories. Its calculation method is as Equation (21).

mAP =
1
C

C

∑
c=1

APc, (21)

where C represents the number of target categories, and APc is the average precision
for each category. The average precision (AP) is obtained by calculating the area under
the precision-recall (P-R) curve. Specifically, for each category, the P-R curve is plotted,
and the area under the curve is computed as the average precision for that category. Finally,
the mAP is the average of the average precisions for all categories. Introducing mAP
allows for a more comprehensive evaluation of the model’s performance in multi-class
object detection tasks, considering differences between different categories. This helps in
gaining a deeper understanding of the model’s real-world performance, guiding further
improvement and optimization.

4.4. Experiment Results

This paper trained the YOLOv8 network and the improved YOLOv8 network on
the elevator passenger dataset. The performance of these models was compared through
training curves. The red curve in Figure 17 represents the training process of the original
YOLOv8 network, while the blue curve represents the model after the proposed improve-
ments. After the initial 75 training epochs, the performance metrics of the improved model
were consistently superior to those of the original YOLOv8 model. This indicates that the
enhanced network structure can learn task features more quickly and effectively within the
same number of training epochs, achieving better performance.

As shown in Figure 18, the loss curve during the training process of the improved
YOLOv8 network indicates that, in the initial stages of model training, the improved
model demonstrates higher learning efficiency with a rapid decrease in the loss curve.
As training progresses, the slope of the loss curve gradually decreases, and around
200 training iterations, the model’s learning efficiency tends to saturate. At this point,
the loss curve fluctuate slightly around 0.001. Ultimately, the loss curves during training
and validation exhibit a stable and accompanying state, indicating that the improved
YOLOv8 network demonstrates relatively good performance in terms of parameter adjust-
ment and generalization capabilities. This is particularly beneficial for object detection tasks
in practical applications where robustness and precision are crucial. Overall, the proposed
improvement strategy effectively enhances the training and generalization performance of
the YOLOv8 model.
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Figure 17. Training results for YOLOv8 and our network.

Figure 18. Loss curve.

This paper conducted a comparative analysis of the detection performance of the
improved YOLOv8 network against advanced object detection networks, such as Faster-
RCNN, YOLOv3, YOLOv5, and YOLOv8. The results are presented in Table 3, and the
experimental findings indicate that the proposed improved YOLOv8 network achieves a
precision of 94.32%. This represents an improvement of 3.9%, 5.18%, 3.96%, and 2.55% over
Faster-RCNN, YOLOv3, YOLOv5, and YOLOv8, respectively. The recall and mAP values
are 92.17% and 92.95%.
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Table 3. Comparative experiments on the elevator passenger dataset.

Model P (%) R (%) mAP (%)

Faster-RCNN 90.42 91.06 91.11
YOLOv3 89.14 89.96 90.23
YOLOv5 90.36 90.01 90.31
YOLOv8 91.77 90.14 91.97

Ours 94.32 92.17 92.95

Figures 19 and 20 present visualizations of the partial detection results during the
testing process. In some selected samples, mutual occlusion among passengers is observed.
Both the original YOLOv8 network and the improved YOLOv8 network proposed in
this paper accurately regress the bounding boxes of passengers inside the elevator cabin
when there is no occlusion, with no instances of missed detections, as shown in the first
and second image of the first row. Upon closer inspection, it becomes apparent that the
proposed improved network demonstrates more accurate detection under conditions of
moderate occlusion, as illustrated in the third image in the first row. In scenarios of severe
occlusion and blur, as shown in the first and second image of the second row, the original
YOLOv8 network may fail to detect passengers, while the algorithm proposed in this paper
continues to perform well in detecting passengers even under heavy occlusion. In summary,
applying the proposed improved YOLOv8 network for accurate multi-object detection of
passengers in elevator scenarios is feasible. This lays a solid foundation for subsequent
tasks, such as passenger tracking and anomaly behavior recognition within elevator cabins.

Figure 19. YOLOv 8 network visualization results.
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Figure 20. Our network visualization results.

This paper conducted ablation experiments to investigate the contributions of different
improvement modules to the performance of the enhanced network model. The results are
presented in Table 4. From the experimental findings, it can be observed that introducing
the SCConv and the dual-branch SPP-Fast structures into the original YOLOv8 architecture
led to certain precision improvements, with increases of 1.09% and 0.32%. Notably, incor-
porating attention mechanisms resulted in a significant precision improvement, with a gain
of 1.14%. This substantiates the effectiveness of the proposed network in this paper.

Table 4. Comparison of evaluation of each module in the ablation experiment.

No SCConv Dual-Branch SPP-Fast SPM-CBMA P (%)

1 91.77
2 ✓ 92.86
3 ✓ ✓ 93.18
4 ✓ ✓ ✓ 94.32

To validate the generalization ability of the improved YOLOv8 network in differ-
ent scenarios, experiments were conducted using the publicly available CrowdHuman
dataset [28], which focuses on dense pedestrian scenes. The detailed experimental re-
sults are presented in Table 5. From the observations in Table 5, it is evident that the
improved YOLOv8 network maintains excellent performance in bounding box regression
for pedestrian detection in dense scenes. Compared to Faster-RCNN, YOLOv3, YOLOv5,
and YOLOv8, the improved YOLOv8 network exhibits superior performance, highlighting
its significant advantage in pedestrian detection within dense scenes.
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Table 5. Comparative experiments on the CrowdHuman dataset.

Model mAP (%)

Faster-RCNN 82.87
YOLOv3 77.26
YOLOv5 81.29
YOLOv8 83.83

Ours 85.12

“Params” and “FLOPs” are two important metrics used in deep learning to evaluate
the complexity and computational requirements of neural network models. “Params”
typically refers to the number of parameters in a neural network model. The number
of parameters is a measure of the complexity of the model and indicates how much
information the model can store. “FLOPs” stands for floating point operations, and it
measures the computational complexity of a neural network model. FLOPs represent the
number of floating-point arithmetic operations that the model performs when processing
input data. Params quantify the number of learnable parameters in the model, while FLOPs
quantify the computational workload of the model. As shown in Table 6, the proposed
improved YOLOv8 network exhibits an increase of 2.3 M parameters and 5.4 B FLOPs
relative to the YOLOv8 network. This is primarily attributed to the additional parameters
and computational load introduced by the attention mechanism and soft-pooling technique.

Table 6. Comparison experiment of Params and FLOPs.

Model Params (M) FLOPs (B)

YOLOv8 48.1 169.2
Ours 50.4 174.6

5. Conclusions

To achieve precise detection of passengers in elevator scenarios, this paper proposes
an SC-YOLOv8 object detection network incorporating soft-pooling and attention mech-
anisms. By replacing the ConvModule in the YOLOv8 backbone network with SCConv,
this network aims to reduce spatial and channel redundancy among features in the con-
volutional neural network, leading to model compression and enhancing its performance.
Additionally, addressing the potential loss of partial local information in the YOLOv8
network’s SPP-Fast module due to relying solely on max-pooling operations, this paper
introduces a soft-pooling branch to construct a dual-branch SPP-Fast module. Furthermore,
this research embeds the proposed soft-pooling and multi-scale convolution CBAM in the
YOLOv8 network, improving the CBAM module by using multi-scale depthwise separable
convolution kernels and soft-pooling technology.

Finally, this paper established an elevator passenger dataset and utilized data augmen-
tation techniques to preprocess the dataset. The experiments in this paper were conducted
on an elevator passenger dataset, and the results demonstrate that the proposed improved
YOLOv8 network achieved an accuracy of 94.32%. The recall rate and mAP (mean average
precision) values were 91.17% and 92.95%, respectively. In terms of the “Params” and
“FLOPs” metrics, the improved YOLOv8 network values proposed in this paper are 50.4 M
and 174.6 B, respectively. These metrics are not significantly increased compared to the
YOLOv8 network. In conclusion, the SC-YOLOv8 network based on soft-pooling and
attention shows excellent performance in the elevator scenario, providing an effective
solution for accurate detection of elevator passengers.
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Abbreviations
The following abbreviations are used in this manuscript:

ConvModule Convolution Module
SCConv Spatial and Channel Reconstruction Convolution
R-CNN Region-based Convolutional Neural Network
SSD Single-Shot Multibox Detector
YOLO network You Only Look Once Network
SC-ConvModule SCConv Improved ConvModule
SRU Spatial Reconstruction Unit
CRU Channel Reconstruction Unit
CSP_2Conv Cross Stage Partial Bottleneck With Two Convolutions Module
ResNet Residual Network
FPN Feature Pyramid Network
GN layer Group Normalization
SiLU Sigmoid Linear Unit
ELAN Extended Efficient Layer Aggregation Networks
SPP Spatial Pyramid Pooling
CBAM Convolutional Block Attention Module
CAM Channel Attention Mechanism
SAM Spatial Attention Mechanism
SGD Stochastic Gradient Descent
Share MLP Shared MultiLayer Perceptron
P Precision
R Recall
mAP Mean Average Precision
AP Average Precision
P-R curve Precision-Recall curve
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