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Abstract: This study aims to optimize the Weather Research and Forecasting (WRF) model regarding
the choice of the best planetary boundary layer (PBL) physical scheme and to evaluate the model’s
performance for wind energy assessment and mapping over the Iranian territory. In this initiative, five
PBL and surface layer parameterization schemes were tested, and their performance was evaluated
via comparison with observational wind data. The study used two-way nesting domains with spatial
resolutions of 15 km and 5 km to represent atmospheric circulation patterns affecting the study area.
Additionally, a seventeen-year simulation (2004–2020) was conducted, producing wind datasets for
the entire Iranian territory. The accuracy of the WRF model was assessed by comparing its results
with observations from multiple sites and with the high-resolution Global Wind Atlas. Statistical
parameters and wind power density were calculated from the simulated data and compared with
observations to evaluate wind energy potential at specific sites. The model’s performance was
sensitive to the horizontal resolution of the terrain data, with weaker simulations for wind speeds
below 3 m/s and above 10 m/s. The results confirm that the WRF model provides reliable wind
speed data for realistic wind energy assessment studies in Iran. The model-generated wind resource
map identifies areas with high wind (wind speed > 5.6 m/s) potential that are currently without
wind farms or Aeolic parks for exploitation of the wind energy potential. The Sistan Basin in eastern
Iran was identified as the area with the highest wind power density, while areas west of the Zagros
Mountains and in southwest Iran showed high aeolian potential during summer. A novelty of
this research is the application of the WRF model in an area characterized by high topographical
complexities and specific geographical features. The results provide practical solutions and valuable
insights for industry stakeholders, facilitating informed decision making, reducing uncertainties, and
promoting the effective utilization of wind energy resources in the region.

Keywords: WRF model; physical parameterization; planetary boundary layer; wind resource
assessment; Iran

1. Introduction

Environmental issues such as the changing climate and global warming are a major
concern, especially as energy demand continues to rise globally [1,2]. Consumer responses
to energy markets change with economic development, as energy is consumed to meet
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the increasing demands for energy services. This longer-term perspective offers insights
into the evolution of energy service use and energy markets, providing valuable empirical
evidence for developing climate policies over extended timescales [3]. Raising regional and
country-level ambitions will be crucial to meet interlinked energy and climate objectives,
especially in the urban environment [4,5]. New, clean and renewable energy resources are
vital to meet this demand and to tackle environmental issues [6]. Wind energy is one of
the cleanest and most accessible energy sources that can respond to the world’s energy
demands, and its contribution to the electricity supply is significantly increasing world-
wide [7]. Significant changes have occurred in the outlook for renewable energy sources
over the past decade. Renewable energy, once an emerging trend, has become a global
necessity, and it experienced an unprecedented growth in global electricity production in
2021, despite the major challenges posed by the COVID-19 pandemic and the unprece-
dented increase in the global price of energy and commodities. Therefore, for the first time
ever, solar and wind energy provided more than 10% of the world’s electricity [8]. In 2022,
the wind industry had its third-best year, and the dual challenge of secure energy supply
and climate goals will propel wind power into a new phase of extraordinary growth, with
the demand for wind energy continuing to expand in many countries [7,9]. The global
share of renewable electricity production must increase to 28% by 2030 and 66% by 2050
to limit the increase in global average temperature to less than 2 ◦C by the end of the cen-
tury [5]. To achieve this purpose, providing accurate wind data, especially in developing
countries, is one of the basic priorities, while the assessment of the wind energy potential is
highly important.

About 25 years ago, in Iran, the establishment of an organization dedicated to the
development of renewable energy signaled a commitment to strategic planning and con-
certed efforts to access relevant data and technologies. Presently, the Renewable Energy
and Energy Efficiency Organization (SATBA) is entrusted with the responsibilities of iden-
tifying renewable energy resources, undertaking strategic planning and facilitating their
development. Since around 2015, this organization has actively pursued private sector
engagement and market stimulation, employing mechanisms such as “Feed-in Tariffs (FIT)”
and implementing “Power Purchase Agreements (PPA)”. In Iran, a country rich in fossil
energy resources, the exploration of new energy methods and resources necessitates a prag-
matic approach. By the year 2018, approximately 12 wind farms with capacities ranging
from about 1.5 to 61.2 MW had been established [10].

High-quality wind data are essential for a comprehensive wind energy assessment
process [9]. To evaluate the wind energy potential over an area, accurate wind data at typical
turbine hub heights is necessary. In general, at least one year of collected data are required
to realistically estimate the wind energy production potential of a given area [11,12]. Such
data could be collected by installing wind masts to measure wind speed at different heights.
However, installing and operating wind masts are very expensive and time-consuming
practices [5]. An alternative approach involves utilizing wind measurements obtained
from meteorological stations within a dense network, which are typically taken at a height
of 10 m above ground level (a.g.l.). Subsequently, these near-surface wind data can be
extrapolated to standard hub heights by applying power or logarithmic laws [13–15].
However, such methods are based on assumptions about the boundary layer height and
dynamics, as well as the atmospheric stability and clouds, which are not always true and
can lead to considerable biases in the wind energy potential estimation [16,17]. The WRF
model is one of the most commonly widely used meteorological models for simulating
the wind regime and for wind resource assessment studies [18–21]. Minimizing errors
in wind simulation involves testing and selecting an appropriate numerical and physical
configuration tailored to the specific region of interest, along with the utilization of high-
resolution terrain data, when accessible [22]. WRF was used to simulate the planetary
boundary layer over the period 2011 to 2015, aiming to assess the wind resources in
eastern Iran [23]. Wind simulations via the WRF model have been used in many studies
to investigate dust rising, transportation and propagation in the Middle East [24–27].
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Furthermore, several studies have employed numerical models in the evaluation of the
wind energy resources in various areas around the world [28–31].

Nonetheless, there are several sources of errors and uncertainty in numerical model
simulations, such as the representation of sub-grid physical processes (like the ones related
to the surface layer, SL, and the planetary boundary layer, PBL) that cannot be explicitly
resolved by the models [17,32]. To consider these processes in numerical weather prediction
(NWP) models, some assumptions and approximations are included in the models that
allow them to implicitly represent these unresolved processes, called physical parametriza-
tions. WRF is a complex model containing some numerical, dynamical and physical options
that can be individually chosen by the user [33–35]. The choice of a given set of physical
parameterizations can have a significant impact in wind simulation and wind energy esti-
mation over a given area. Several studies have dealt with the evaluation of the sensitivity of
the WRF model to make the choice of PBL parameterizations in wind simulations [36–47].
These studies revealed that the simulation of the wind field is sensitive to the physical
parameterization’s selection, and that the performance of these parameterizations vary
significantly according to the studied geographical region, highlighting the need to carry
out sensitivity studies to determine the optimal model configuration for the simulation of
the wind regime in a specific area.

Iran is currently very dependent on fossil fuels in terms of its energy demand and
economic exports [48–50]. So, under a climate change scenario in the Middle East [51,52],
in the future, Iran will have to implement renewable energy systems for the purposes of
covering increased energy demands. The need for wind energy resource assessment in
various parts of Iran has gained growing importance, aiming to expand the country’s energy
resources and to reduce fossil fuel consumption [48,53,54]. For this issue, sources of accurate
wind data are very crucial. Initial studies using wind measurements revealed that Iran has
an attractive wind energy potential [55,56]. However, because of the country’s vastness
and the lack of consistent wind measurement campaigns, and/or a dense meteorological
network for wind measurements in remote areas of the country, it is presently very difficult
to map the areas of the country with exploitable wind energy potential. Therefore, the
use of NWP simulated data is an inevitable necessity, and the most significant gap in
this issue is the lack of evaluation of the performance of different model schemes, as well
as the absence of long-term simulations of wind fields in this vast and highly complex
topographic region. This subject has received little attention so far, and only a limited
number of studies have been conducted using NWP models to evaluate the wind energy
potential in Iran [45], while all studies focused on the eastern part of the country [57,58].
So, the current results shed light to the important role of evaluating the best WRF model
configuration for wind energy resource assessment and mapping in Iran.

The main goals of this study are to generate wind climate data at different levels in
the lower troposphere over Iran and to prepare a mesoscale wind energy map via the WRF
model over a long period, in a region with a very complex topography. In addition, this
study aims to identify areas with high wind energy production potential, and to provide
an initial assessment of the amount of wind energy that can be extracted, as well as the
necessary data for the study and development of small-scale wind farms in the identified
areas. Under a warmer world scenario and with the temperature increase in the Middle
East in the coming decades to be much higher than the global average [52], the transition
from fossil fuels to renewable energy sources is more than imperative.

In an area with a great lack of observational data, the most important step to achieve
this goal is to optimize the WRF model for wind energy assessment and spatial mapping,
and mainly to evaluate the choice of the SL and PBL parameterizations in the model that
better represent the wind regime over the country. This is one of the first studies that used
NWP models to evaluate the wind energy potential throughout the Iranian territory. For
this purpose, different physical configurations of the WRF model were evaluated and the
best configuration was obtained for wind simulations over Iran. Then, a 17-year climate
wind dataset was generated, enabling the identification of high-potential wind energy areas
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throughout the country and providing the basis for further studies to prepare micro-scale
data for the establishment of wind farms.

2. Materials and Methods
2.1. Study Area, Data and Wind Measuring Stations

The study domain covers the whole Iranian territory, with an area of approximately
1,648,195 km², while over the half is mountainous terrain (Figure 1). Iran is known for its
rugged topography, featuring high mountains, deep valleys, extensive arid basins, vast
desert areas, and topographic low drainage basins [59]. The arid and semi-arid terrain is
particularly vulnerable to land degradation and wind erosion, especially during spring
and summer, when vegetation coverage is low and the winds are stronger [60–63]. The
topography of the study area can be broadly characterized as a great plateau (Central
Iranian Plateau, Kavir and Lut Deserts) surrounded by two high mountainous ranges
(see Figure 1). The Alborz Mountains in the north have a long east–west axis with peaks
exceeding 3000 m in height, and some reaching over 5000 m. In the west and southwest,
the Zagros Mountains extend over a vast distance, with most areas being over 1800 m in
elevation, and many summits exceeding 3600 m. The great central plateau, rising to about
1000 m above sea level (asl), dominates most of the country, while some parts, such as the
Lut valley and the Sistan Basin, are only around 500 m asl.
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Figure 1. The study area and the location of the wind farms, weather stations, meteorological towers
(Met. Tower) and upper air stations (UAS) in the Iranian territory.

Figure 1 also displays the locations of the stations used in this study, including weather
stations, upper air stations, meteorological towers, and operational wind farms. This study
utilized four available datasets to verify and compare the model results with observational
data. These datasets included:

(i) Ten-meter wind data in meteorological stations: In order to comprehensively assess the
model results, we selected 140 weather stations distributed across the country. After
conducting quality control on the synoptic data, we narrowed down our selection to
110 stations (as shown in Figure 1) that had complete data available from 2004 to 2020,
which were then compared with the wind simulations generated by the model.

(ii) Data from upper air stations (UAS): The studied area comprises approximately
10 UAS. However, these stations are not operational on a continuous basis and often
have gaps in their data records. Most of these stations conduct observations at specific
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times, either at 00 UTC or 1200 UTC. Additionally, the available data from these
stations had a time step of 10 s, and the stations did not provide wind data at heights
near the ground surface for model verification purposes. Fortunately, data with a
time step of 2 s were successfully extracted from four UAS (as shown in Figure 1)
for the months of January and July 2013, which were then utilized for verifying the
model results.

(iii) Meteorological mast data: Data from five meteorological masts (Figure 1) were utilized
to verify the model results.

(iv) Available data from the Global Wind Atlas: To compare the simulated wind results
with those from The Technical University of Denmark (DTU) Wind Atlas, data from
2008 to 2017 were used.

2.2. Model Description

This study made use of the Advanced Research WRF model (ARW) version 3.9.1,
which is a limited area model (LAM) featuring a state-of-the-art atmospheric modelling
system designed for both meteorological research and numerical weather prediction [64,65].
LAMs are widely used for providing weather forecasts beyond three days, with a forecast
skill ranging between 80% and 90% [66]. For this study, wind data were obtained by
analyzing the WRF mesoscale model simulations for wind energy resource assessment in
Iran over a 17-year period (2004–2020).

2.3. Model Setup

This study utilized two-way nesting domains with spatial resolutions of 15 km (D1)
and 5 km (D2), as shown in Figure 2. D1 was wide enough to cover the atmospheric
circulation synoptic systems that affect the study area. The model defined thirty-nine
vertical levels from the surface up to the 100 hPa pressure level. The ECMWF (European
Centre for Medium-Range Weather Forecasts) Era-Interim data with 0.75◦ spatial horizontal
resolution every 6 h were used to derive the initial and boundary conditions. Terrestrial
data required for the model, including land use, land mask, albedo, and topography, were
obtained from the USGS (United States Geological Service) database.
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Figure 2. The two defined domains in the WRF model simulations over Iran. The colored scale
corresponds to altitude (m). M, Mo and Val stand for the words Mountain, Mourian and Valley,
respectively. The designations D1 and D2 refer to the WRF Model Domains. D1 represents the parent
domain, covering the Middle East and surrounding areas, while D2 represents the smaller domain
specifically focusing on Iran. The data from D2 was utilized in creating the wind atlas.

The nudging coefficients in WRF were set to a default value of 3.0 × 10−4 s−1 for
each variable. These values were derived from observation-driven studies that used
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analysis nudging in WRF’s predecessors, MM4 and MM5 [67,68]. In essence, the nudging
coefficients represent the reciprocal time scales of the physical processes in the data that the
model is nudged towards.

The nudging technique can reduce the error of dynamic downscaling simulations and
improve the consistency with the driving data [69]. Since dynamical downscaling results
usually drift away from large-scale synoptic driving fields, the nudging in domain 1 can
be used to balance the performance of dynamical downscaling at large and small scales.
Therefore, analysis nudging was used for domain 1 and above the boundary layer for the
wind, temperature and specific humidity. Nudging was used to relax the model solution
toward the analysis data, and it was proven to be effective in reducing the wind speed
error [70,71].

To ensure that the initial conditions were applied every 48 h, the WRF model was
restarted at 00 UTC every 48 h. The first 12 h of each simulation were excluded from the
analysis since they account for the model spin-up.

To estimate the WRF performance in the simulation of the wind field, a preliminary
evaluation was carried out with a model-to-data comparison using five SL and PBL parame-
terization schemes during cold (January) and warm (July) months in 2013. For this purpose,
the simulated wind speed by the model was compared with the wind data obtained by
the upper air sounding. Comparisons were performed at 4 heights of 10, 40, 80 and 100 m,
considering the sensitivity of each of the parameterizations to the environmental conditions
and the stability of the atmosphere. Among the 13 active upper air stations throughout the
country, 4 stations (Tehran, Kerman, Kermanshah and Tabriz) had suitable data (wind data
below 100 m) for comparison with the model output. Table 1 shows the characteristics of
these 4 upper air observation stations.

Table 1. The coordinates of the 4 upper air observation stations, the height of the model grids and
their height differences within the stations. Hs and Hm represent the heights (above sea level) of the
observation stations and model grids, respectively, and D is their difference.

Synoptic Station Longitude Latitude Hs (m) Hm (m) D = Hs-Hm (m)

Tehran 35.68 51.32 1191 1144.43 46.63

Kerman 30.25 56.97 1754 1732.34 21.1

Kermanshah 34.35 47.15 1318.5 1393.34 −74.84

Tabriz 38.08 46.28 1361 1442.42 −81.42

The wind resource maps were developed by simulating weather conditions from a
large number of days and for a long-term period [72]. Therefore, after obtaining the best
configuration, a long-term simulation over a seventeen-year period (2004–2020) was carried
out and a wind dataset with one-hour time steps was prepared for 1,584,840 grid points
covering the whole Iranian territory. Then, the calculated average wind speeds for all the
grid points were summarized to develop the annually, seasonally and monthly wind maps
at different heights. Table 2 shows the details of WRF configuration, including the model
parameterization schemes that were used in the simulations.

Table 2. Summary of WRF model setup used for the simulations in this study.

Model Setup

WRF Version 3.9.1

Domain 1: 274 × 256 grid points and 15 km grid spacing;

Domain 2: 391 × 343 and 5 km grid spacing.
Two-way nesting domains.
39 vertical levels up to the top of 100 hPa.
6 lowest level heights: approximately at 12, 35, 65, 100, 140 and 200 m.



Appl. Sci. 2024, 14, 3304 7 of 28

Table 2. Cont.

Simulation setup

Initial and boundary conditions and fields for grid nudging were taken from ERA-Interim reanalysis with
0.75° × 0.75° horizontal resolution.
Simulation length: 60 h including 12 h spin-up (runs were started at 00:00 UTC every 60 h, with an hourly
time step and the first 12 h of each simulation were disregarded as the spin-up).
Nudging: Grid nudging was implemented in D1 only; above PBL, the nudging coefficient was 0.0003 s−1 for
wind, temperature and specific humidity.

Spin-up: 12 h

Physical parameterizations

Microphysics: Lin et al. scheme [73]. A sophisticated scheme that has snow, ice and graupel processes,
suitable for real-data high-resolution simulations

Longwave Radiation: RRTM scheme. An accurate scheme using look-up tables for efficiency. Accounts for
trace gases, multiple bands and microphysical species.

Shortwave Radiation: Dudhia scheme [74]. Simple downward integration allowed the efficient estimation of
clouds, scattering and clear-sky absorption.

The five planetary boundary layers and surface layer used in this study are analytically discussed in the text.

Land Surface: Noah Land Surface Model [75]. Unified NCEP/NCAR/AFWA scheme with moisture and soil
temperature in four layers, including fractional frozen soil and snow cover physics.

2.4. Sensitivity Analysis

The PBL schemes implemented in the WRF model are divided into two categories, local
and non-local schemes. Since their performance depends on the geographical area under
study and the prevailing atmospheric conditions, it cannot be identified with certainty
that a given PBL scheme fits better than others for every geographical region in a general
sense [76].

In this study, five different PBL schemes were tested to assess which one allows the
best simulation of the wind field over the whole of Iran. The five PBL schemes tested
here were: (i) Yonsei University (YSU) [77,78], (ii) Mellor, Yamada and Janjić (MYJ) [79,80],
(iii) Mellor–Yamada–Nakanishi–Niino (MYNN2.5) [81], (iv) Quasi-Normal Scale Elimi-
nation (QNSE) [82], and (v) Asymmetric Convective Model Version 2 (ACM2) [83].The
PBL schemes aim to capture the exchange of heat, moisture, and momentum between the
surface and the atmosphere. Below, a brief overview of the five PBL schemes and their
differences is given:

(i) The YSU scheme is widely utilized for its ability to handle a diverse range of atmo-
spheric conditions. It employs a non-local closure approach and incorporates both
local and non-local mixing processes within the boundary layer. The YSU scheme’s
notable feature is its use of a prognostic equation for turbulent kinetic energy.

(ii) The MYJ scheme combines elements of local and non-local closures and adopts an
eddy diffusivity approach to represent turbulent mixing. This scheme also includes a
counter-gradient term to account for buoyancy effects.

(iii) The MYNN2.5 scheme is an advanced extension of the MYJ scheme, aiming to en-
hance the representation of the vertical structure of the boundary layer. It introduces
additional prognostic equations for turbulent kinetic energy and incorporates a higher-
order closure for sub-grid-scale turbulence.

(iv) QNSE Scheme: In contrast to the previous schemes, the QNSE scheme adopts a differ-
ent approach based on quasi-normal scale elimination. It explicitly solves equations
for turbulent kinetic energy and its dissipation rate, allowing for a more precise rep-
resentation of boundary layer processes. The QNSE scheme effectively captures the
effects of both local and non-local turbulent mixing.

(v) ACM2 Scheme: Designed specifically for weather and climate prediction models, the
ACM2 scheme focuses on representing convective processes within the boundary layer.
It employs a multi-plume approach to simulate convective updrafts and downdrafts,
enabling a more realistic representation of convective phenomena.
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In summary, these PBL schemes differ in their approaches, equations, complexity, and
focus. The YSU, MYJ, and MYNN2.5 schemes employ a combination of local and non-local
closures, whereas the QNSE scheme utilizes quasi-normal scale elimination. The ACM2
scheme emphasizes the representation of convective processes. The schemes also vary in
the number of equations that they solve, with the MYNN2.5 and QNSE schemes being
more advanced and computationally demanding. Ultimately, the choice of PBL scheme
depends on the specific modeling requirements and the atmospheric conditions being
simulated. Each scheme has its own strengths and limitations, and the selection should be
made based on the intended application and the desired balance between accuracy and
computational efficiency.

In numerical models, the representation of turbulent motions in the atmosphere
depends on two processes in PBL schemes: (i) considering a local or non-local mixing
approach and (ii) the order of turbulence closure. Among the five schemes that were
investigated, the YSU scheme is a first order non-local scheme adapted from the Medium
Range Forecast (MRF) boundary layer scheme. The YSU scheme uses the K-profile approach
to parameterize turbulent mixing. The MYJ scheme is a local 1.5-order scheme and a
modified version of the original Mellor and Yamada [79] level 2.5 and level 2 models
developed by Janjić [80] that uses a revised master length scale. The MYNN is a local
1.5-order scheme and is the modification of the MY scheme, similar to MYJ. The MYNN
scheme uses large eddy simulation (LES) for the purposes of solving pressure-temperature-
gradient covariance and pressure strain that are neglected by the MY scheme. QNSE is
also a local 1.5-order scheme, although there are some differences compared to the other
schemes. ACM2 is a first-order scheme and asymmetrical convection model, version
2. The ACM2 treats both non-local large-scale transportations, as well as local sub-grid
scale diffusion.

In this study, the simulation contained two two-way nested domains with horizontal
resolutions of 15 km and 5 km, for D1 and D2, respectively (Figure 2). The following
analysis to evaluate the model performance and wind energy resource assessment was
carried out for the inner domain (D2).

2.5. Verification of the Model Results

In this study, we evaluated the accuracy of the WRF model by comparing its results
with observations from multiple sites and the high-resolution Global Wind Atlas (GWA).
To ensure that the model results were consistent with the real wind conditions across Iran,
we gathered wind observations from three sources: (i) synoptic weather stations, (ii) upper
air stations, and (iii) meteorological masts installed by the SATBA at five locations across
the country (as listed in Table 3). The wind masts recorded wind data every ten minutes
at three different heights, while the weather stations recorded wind data every three
hours at a height of 10 m a.g.l. Common statistical parameters were used to evaluate the
model’s performance.

Table 3. Summary of the wind masts in Iran used for evaluation of the WRF model performance.

Synoptic Station Longitude Latitude Source Measurement Height (m)

Koohin 36.34 49.71 SATBA 40, 60 and 80

Khalkhal 37.54 48.57 SATBA 10, 30 and 40

Sheikh-Tapeh 37.52 45.08 SATBA 10, 30 and 40

Songhor 34.83 47.47 SATBA 40, 60 and 80

Hajia-bad-Kermanshah 34.34 47.34 SATBA 10, 30 and 40
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(1) Information regarding temporal co-variability is provided here through the root mean
square error (RMSE), which estimates systematic biases in the model skill, as

RMSE =

√
1
n

n

∑
i=1

(yi − oi)
2, (1)

where “y” is the simulated wind speed, “o” is the wind speed observation at the same
place and time, and “n” is the total number of the values’ pairs.

(2) “Bias” is a common statistical error for comparing the wind speed distribution between
observations and model simulations.

Bias =
1
n

n

∑
i=1

(yi − oi), (2)

If the mean Bias is positive, the simulated values tend to overestimate the real values
and vice versa.

(3) The Standard Deviation Error (STDE),

STDE =
(

RMSE2 − Bias2
)1/2

, (3)

The STDE is very useful to evaluate the error dispersion. The low STDE value indicates
that the error can be related to a source other than the simulation physics [17]. Therefore,
priority is given to this quantity.

2.6. Wind Energy Production Estimation

In this study, the wind regime over Iran was simulated via the WRF model for a long
period (2004–2020), while the year 2013 was used for the evaluation of the PBL results due
to the greater availability of upper air sounding data. To evaluate the wind energy potential
at a specific site, statistical parameters (mean and median) and wind power density (WPD)
were calculated from the simulated data and compared with the observations. Among
various methods for the investigation and statistical distribution of wind speed data,
the Weibull distribution function is widely known as the most suitable function due to
its simplicity and high accuracy [84]. The WPD in terms of Weibull probability density
function was calculated as

WPD =
1
2

ρC3Γ
(

1 +
3
K

)
(4)

where C is the Weibull scale parameter (m/s), ρ is the air density (1.225 Kg m−3), K is the
Weibull shape parameter (dimensionless), and Γ is the gamma function.

The wind energy potential at a specific site can be estimated through the analysis of
the Weibull distribution, and the model performance in simulating the wind can also be
evaluated by comparing observed and simulated Weibull distributions [54,85–87].

3. Results and Discussion
3.1. Sensitivity Analysis

In numerical modelling studies, evaluating the simulations with the available data
supports the performance of the selected model configuration [32]. Therefore, based on
this principle, this section presents the results of the WRF sensitivity analysis due to the use
of five different PBL schemes. The first step is to determine which set of physical options
(parameterizations) leads to the best results (lower error and uncertainty) for a winter and
a summer month. Here, only the weighted mean values (i.e., the mean for all mast stations
weighted by the number of data records) of each statistical parameter were presented at
each height.

The RMSE, Bias and STDE values between measured and simulated wind data at
the heights of 10, 40 and 80 m for January 2013 are presented in Table 4. These statistical
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indicators were calculated for pairs of simultaneous and valid records of simulations and
observations. According to this table, the QNSE PBL scheme is that with the lowest errors
for January 2013, with Bias, RMSE and STDE values equal to 0.78, 4.14 and 4.05 (m/s),
respectively. Given the higher-ranking criterion of the STDE over the RMSE and Bias, it is
concluded that after the QNSE, the ACM2 configuration presented the best performance
(STDE = 4.07 m/s). Overall, a positive bias was determined, indicating that the WRF model
consistently overestimates the wind speed regardless of the PBL scheme. This observation
highlights the presence of systematic biases in model simulations over complex terrain
regions such as deep valleys and mountain tops. However, the simulation biases may vary
highly between the stations and some of them may also indicate a model underestimation,
as was seen for the case of Fadeshk meteorological tower (Supplementary Material).

Table 4. Statistical parameters calculated from the comparison between the model outputs and wind
observations at mast stations for different PBL schemes in January 2013.

January 2013 10 m 40 m 80 m Average of Three Levels

Bias

MYJ 1 0.97 0.75 0.9

MYNN 1.87 0.77 0.74 1.12

ACM2 1.25 0.7 0.83 0.93

YSU 1.25 0.91 1.04 1.06

QNSE 1.03 0.69 0.63 0.78

RMSE

MYJ 4.28 4.17 4.2 4.21

MYNN 4.41 4.13 4.2 4.25

ACM2 4.39 4.08 4.24 4.24

YSU 4.44 4.18 4.3 4.31

QNSE 4.28 4.07 4.08 4.14

STDE

MYJ 4.12 4.04 4.11 4.09

MYNN 4.18 4.05 4.12 4.12

ACM2 4.16 4.01 4.06 4.07

YSU 4.22 4.06 4.17 4.15

QNSE 4.12 3.99 4.03 4.05

According to Table 5, the statistical results of the comparison obtained for July 2013
were relatively different from those of January 2013. The best performance was presented
for the ACM2 configuration with Bias, RMSE and STDE equal to 0.6, 3.4 and 3.22, respec-
tively. The QNSE PBL scheme, which showed the best performance in the cold season,
revealed the highest errors in the warm season (with STDE = 3.65). Similar to what was seen
in the cold season, all simulations showed a tendency to overestimate the wind speed in
summer as well. In general, the error values were lower in July than in January, indicating
a better model performance in summer. However, all PBL schemes indicate rather small
differences in the statistical indicator values (Bias, RMSE, STDE) in both cold and warm
months, resulting in a challenge in detecting the best scheme for model simulations of wind
climatology in Iran. It should be noted that in these tables, we present the general picture
about biases from the use of different PBL schemes, while the results are site-specific. In
general, smaller domains in WRF simulations tend to have smaller wind speed biases and
a higher RMSE when compared to tall mast observations. However, it is unclear whether
this is truly a result of domain size or rather the location of domain boundaries with respect
to larger-scale flow [32].
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Table 5. Statistical parameters calculated from the comparison between the model outputs and wind
observations at mast stations for different PBL schemes in July 2013.

July 2013 10 m 40 m 80 m Average of Three Levels

Bias

MYJ 0.76 0.87 1.04 0.89

MYNN 0.26 0.87 0.99 0.7

ACM2 0.68 0.5 0.62 0.6

YSU 0.32 1.01 1.21 0.84

QNSE 0.31 0.88 1.08 0.76

RMSE

MYJ 3.32 3.88 4.03 3.74

MYNN 3.21 3.82 3.96 3.66

ACM2 3.15 3.46 3.61 3.4

YSU 3.25 3.75 3.97 3.66

QNSE 3.47 4 4.2 3.89

STDE

MYJ 3.12 3.65 3.75 3.51

MYNN 3.06 3.61 3.72 3.46

ACM2 2.96 3.29 3.41 3.22

YSU 3.01 3.41 3.56 3.33

QNSE 3.24 3.8 3.92 3.65

As mentioned by Carvalho et al. [88], these differences in model simulations using
several PBL schemes are mostly related to localized and non-localized closure schemes
of the PBL parameterizations. Local PBL schemes (such as MYJ, MYNN, and QNSE)
calculate the turbulent kinetic energy (TKE) considering the local variance and covariance
of potential temperature and water vapor mixing ratio [11] and apply the predicted TKE
to estimate the PBL height [89]. Non-local closure schemes, such as YSU and ACM2, use
several vertical levels in a single column for estimating turbulent fluxes and unknown
atmospheric variables in every grid cell and they try to simulate the effects of larger eddies
on the converging boundary layer [89]. Non-local closure schemes usually do not calculate
the TKE and the height of the PBL is estimated using experimental formulas based on
the wind speed [89]. As can be detected from the current results, non-local PBL schemes
exhibit slightly better performance during the warm months of the year. Although ACM2
is often considered as a non-local scheme, this parameterization is actually a combination
of local and non-local closure formulations, since it uses a local closure scheme when the
atmospheric regime is stable or neutral.

The local PBL schemes are more suitable for a stable atmospheric regime [90], since
gradients of these types of schemes in unstable atmospheric conditions maybe lead to some
errors, in which turbulent motions are affected by large eddies and are able to transmit
variables over longer distances [91,92]. In contrast, non-local schemes are more appropriate
for simulating unstable boundary-layer conditions [93,94]. On the other hand, non-local
schemes often tend to demonstrate a deeper boundary layer under windy conditions [95],
which tampers with the boundary layer turbulence simulation. It should also be noted that
the performance of the boundary layer parameterizations is influenced by other physical
parameters such as cloud microphysics, aerosol-induced forcing, and surface reflectivity,
which play an important role in simulation of inversion conditions [4,96,97].

One of the main sources of error in NWP models when simulating near-surface
winds is the limited representation of the local terrain characteristics such as topography,
vegetation coverage and roughness [98–100]. In addition, WRF physical parameterizations
related to boundary-layer processes have mainly been developed through the observation
data obtained from smooth surfaces [101], thus further contributing to WRF’s limitations in
accurately representing the wind regime over complex terrain.
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To further analyze this issue, the mean bias error of the wind speed simulation at
SATBA stations and the difference between the actual stations’ elevation and the elevation
used in the model simulation grid are shown in Table 6. A link seems to be established
between the elevation difference and an increased simulated wind speed bias, with minor
exceptions as in the case of Songhor. Overall, the results show that the accurate representa-
tions of the local topography and the elevation in the grid simulations are important factors
affecting the accuracy of the wind speed simulations.

Table 6. The elevation difference between the model grid cell elevation and actual elevation at SATBA
sites and the mean bias in the wind speed simulation.

Synoptic Station Mean Bias Diff Elevation

Khalkhal 0.718 20

Songhor 0.242 26

Koohin 1.068 69

Sheikh Tape 1.392 114

Haji-Abad 2.526 496

In addition, this study compared the monthly and annual average 10 m wind speeds
between the simulated and observed data at 110 meteorological stations. The results show
that in 95.45% of the cases, the model overestimated the measured winds. However, an
examination of the error values at each station justified the consistency of the model results.
The range of the bias error (BE) was from −0.69 to 3.71 m/s, which was categorized into
five groups (Table 7). Table 7 presents the percentage of stations according to the BE for
each classification group. In more than 77% of the stations, the BE was less than 2 m/s,
which is considered satisfactory for wind modelling studies [102].

Table 7. The classification of the range of bias errors and the percentage of stations belonging in each class.

BE (m/s) −0.69 ≤ BE < 0 0 ≤ BE < 1 1 ≤ BE < 2 2 ≤ BE < 3 3 ≤ BE ≤ 3.71

percentage of stations (%) 4.55 35.45 37.27 18.18 4.55

We also calculated the correlation coefficient (r) values between monthly and annual
average simulation and observation data of 10 m wind speed. Initially, this analysis was
performed for 110 stations, but then, nine stations with maximum errors (outliers) were
removed, leaving 101 stations for analysis. Table 8 provides a summary of the monthly
and annual correlation coefficients for the stations, categorized into three levels of BE
(BE ≥ 2 m/s, 1 m/s ≤ BE < 2 m/s, and BE < 1 m/s).

The highest r values occur during the warm season (June to September), when thermal
low-pressure systems associated with upper-level anticyclones dominate over the coun-
try [103]. On the other hand, the minimum r values are observed during spring (April
and May) and the cold season. In winter, unstable conditions arise due to the passing of
transition eddies, frontal dust events and convection conditions [103]. As expected, as the
BE decreases, the r values increase significantly.

Figure 3 displays the topography of Iran and the location of the stations categorized
based on their BE (−0.69 m/s ≤ BE < −0.01 m/s, 0 m/s ≤ BE < 1 m/s, 1 m/s ≤ BE < 2 m/s,
and BE ≥ 2 m/s). The highest errors typically occurred in stations located in mountainous
regions and along the coastlines of the Persian Gulf and Oman Sea. The primary sources of
error are due to (i) systematic errors inherent in the modeling process of meteorological
quantities, (ii) time step differences between model data (one hour) and synoptic data (three
hours), (iii) a spatial step of about 5 km between the model and station data in complex
topographical areas, and (iv) the effects of urban development in some stations, which may
modify the local wind regime.
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Table 8. Correlation coefficient values between measured and WRF-simulated monthly and annual
average 10 m wind speed for three groups of BE and for two groups of data (110 and 101).

Month

Number of Stations

110 101 27 40 43

BE ≥ 2 m/s 1 m/s ≤ BE < 2 m/s BE < 1 m/s

January 0.44 0.61 0.73 0.84 0.74

February 0.43 0.59 0.72 0.87 0.80

March 0.39 0.56 0.64 0.85 0.80

April 0.39 0.55 0.46 0.89 0.83

May 0.43 0.58 0.52 0.90 0.86

June 0.67 0.75 0.78 0.93 0.92

July 0.72 0.78 0.81 0.91 0.93

August 0.73 0.79 0.68 0.89 0.94

September 0.62 0.72 0.70 0.91 0.92

October 0.45 0.59 0.69 0.84 0.87

November 0.44 0.60 0.78 0.85 0.86

December 0.44 0.59 0.80 0.83 0.82

Annual 0.49 0.64 0.71 0.93 0.90

The spatial distribution of the annual mean wind speed at 10 m shows that the highest
wind intensities occur in the eastern part of Iran, through the Sistan Basin and in regions
north of it, where the strong and persistent Levar wind blows during the warm season.
This finding is consistent with the results obtained by several previous works [104–107]. All
other parts of Iran present much lower wind speeds, which are generally increased along
the Zagros and Alborz mountain ranges, since stronger winds occur at higher altitudes.
The Iranian Plateau and coastal areas are characterized by rather weak winds, as well as
the southwest part of Iran (Khuzestan Province), which is highly affected by Shamal dust
storms mostly during the warm period of the year [108–110]. On an annual mean basis, the
effect of “Qibla wind” [103] over the central Iranian Plateau seems to have a rather limited
impact on the wind regime over the region.

The Global Wind Atlas (GWA) version 3 provides wind climatological data estimated
on a 250 m grid at five heights (10 m, 50 m, 100 m, 150 m, and 200 m) for the period between
2008 and 2017. While the latest and most accurate available observations have been used to
produce this wind dataset, in many developing countries, the lack of ground measurements
from high-precision meteorological towers and LiDARs means that the data cannot be fully
confirmed (https://globalwindatlas.info, accessed on 12 January 2024).

To compare the results of the WRF wind simulations with the DTU microscale wind
data of the GWA, the differences between their 50 m and 100 m winds were calculated and
are presented in Figure 4. The results indicate that the difference between the WRF model
and the wind atlas data is small in areas with high wind speeds, showing a good agreement
between the two datasets. However, in mountainous and high-altitude areas, particularly
along the Zagros Mountains, the WRF model tends to overestimate the wind speeds
(Figure 4e,f). Overall, it is expected that there will be differences between mesoscale wind
data (grid spacing 5 km) and high-resolution wind data (grid spacing 250 m). Therefore,
this comparison demonstrates that the generalized wind climate technique applied in the
GWA reduced the error of DTU data in mountainous areas. However, the assessment of
wind climate using the Global Wind Atlas (such as the data available in GWA website) is
not as suitable because it represents the average of a long climatic period (2008–2017) and
does not include measurements of wind speed throughout that entire period. Additionally,
it does not provide the capability to examine the temporal distribution of wind speeds.

https://globalwindatlas.info
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Figure 3. (a) Topographic map of Iran and locations of the stations classified according to the
various categories of BE (as in the legend) of annual 10 m wind speed; (b) various categories of
BE (as in the legend) and annual mean distribution of the 10 m wind speed (shaded as in the
legend) during the period 2004–2020. UE and OE stand for model underestimation and model
overestimation, respectively.

The overestimation of wind speed in WRF simulations can be influenced by various
factors, including the location and number of vertical levels, grid spacing, and the size and
location of the simulation domain. According to Hahmann et al. [32], smaller domains
tend to have lower wind speeds and less bias, while RMSE increases with domain size
and integration time. However, analysis of these topics is beyond the scope of this study.
Nonetheless, it is concluded that a suitable configuration was chosen for the simulations,
and the resulting data demonstrates reasonable accuracy. This dataset can be utilized in
other studies and subsequent processes to develop micro-scale wind atlases for targeted
areas in the country, thus helping in wind farm development.
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Figure 4. Mean wind speeds (m/s) at heights of 50 m and 100 m, as generated by the WRF simulations
(a,c) and the DTU wind Atlas (b,d) over Iran, along with their differences at 50 m (e) and 100 m (f).
The topographic map of Iran is shown in (g).

3.2. Mapping of the Wind Energy Potential

Overall, the total runs of the WRF model generated approximately 280 billion wind
records (spatial resolution of 5 km × 5 km) over the Iranian territory, collected at levels
near the Earth’s surface, specifically up to a height of 200 m above ground level. To assess
the wind energy potential, monthly and seasonal averages of wind speed were analyzed
at different heights, particularly at 50 m a.g.l, which is the mean height for wind turbines.
The spatial distribution of wind speed over Iran at this height is shown in Figures 5–7, on a
monthly, seasonal and annual basis, respectively, covering the period 2004–2020.

Based on the classification proposed by Elliott et al. [72], the wind energy potential
of an area can be categorized into seven groups according to the average wind speed
(AWS) at 50 m. These categories include Poor (AWS less than 5.6 m/s), Marginal (AWS
of 5.6–6.4 m/s), Fair (AWS of 6.4 to 7 m/s), Good (WS of 7–7.5 m/s), Excellent (WS of
7.5–8 m/s), Outstanding (WS of 8–8.8 m/s), and Very Outstanding (above 8.8 m/s) wind
energy potential. Monthly, seasonal, and annual AWS at 50 m were assessed according to
this classification, as shown in Figures 5–7. Figure 5 illustrates the spatial distribution of the
monthly average wind speed at 50 m, starting with November, which had the lowest spatial
mean wind speed. The results show that wind speeds were generally low in November,
December and January, but increased from February to April in certain parts along the
eastern Iranian borders, the Zagros and Alborz Mountains, and areas near the Caspian Sea
and Persian Gulf. The highest wind speeds were observed from June to August, particularly
in the eastern (Levar wind) and southwestern (Shamal wind) regions of the country. The
strong northerly Levar flow creates an exceptional source of renewable energy and wind
energy potential over the Sistan Basin and eastern regions of Iran (Figure 5g–k). By the end
of the warm season, and due to changes in atmospheric circulation in central and south
Asia, the wind speed gradually decreases as Levar dissipates [106].
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Figure 6. Spatial distribution of the simulated seasonal mean wind speed at 50 m a.g.l. during the
period 2004–2020 for (a) winter (JFM), (b) spring (AMJ), (c) summer (JJA) and (d) Autumn (OND).

These findings align with previous studies conducted in the eastern part of Iran,
specifically in the Sistan Basin [106,111–113]. Consequently, the highest wind energy
potential in Iran is identified along the eastern borders with Afghanistan, primarily due to
the strong Levar wind that blows during the warm period of the year from May to October.

Figure 6 presents the simulations of seasonal mean 50 m wind speeds. During the
winter season, only some narrow bands of high wind speeds are observed along the
mountainous areas, mainly in the Zagros Mountains, while weaker winds are observed
over the Persian Gulf and the central Iranian Plateau (Figure 6a). In spring, wind speeds
in the mountainous areas decrease compared to winter, but they significantly increase in
the eastern part of Iran with less intensity in the western and southwestern regions of the
country (Figure 6b). During the summer season, the wind intensity as well as the area
covered by strong winds in the eastern part of the country increase, while areas with high
wind speeds in the west and southwest decrease (Figure 6c). In autumn, wind speeds are
generally low throughout the country, except for some small areas with stronger winds in
the eastern part (Figure 6d).
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Figure 7. Simulated mean wind speed at 50 m a.g.l. during the period 2004–2020 over Iran. The black
triangles show the locations of installed wind farms: (A) Agh Kand, (B) Binaloud, (K) Kahak, (Kh)
Khaf, (L) Lutak, (M) Manjil, (Ma) Mahshahr, (N) Neyshabur, (S) Sahand, (Sa) Sarab, (Se) Seyahpush,
(Sr) Sareyn. The rectangles correspond to 10 areas (A1–A10), with sufficient wind potential, where
long-term wind speed trends were calculated.

The map of the annual mean wind speed over Iran (Figure 7) reveals that the areas
with the highest wind energy potential are located on top of high mountain ridges and in
wind corridors, such as mountain passes. These areas, classified into class 3 (6.4–7 m/s)
and above, are found in the high mountain ranges and in the Sistan Basin. However, for
the mountain ranges, the wind speed and direction may be highly sensitive to atmospheric
circulation and thermodynamics [114]. The wind–climatology map demonstrates that Iran
has numerous regions with good or excellent wind energy potential. However, the Kavir
and Lut Deserts in the interior of Iran generally have low Aeolian potential on an annual
basis, with a notable seasonality. The Aeolian regime in these desert regions, along with
annual and intra-seasonal variability, play a significant role in land degradation and wind
erosion from the deserts and arid rangelands in central Iran [115–117]. Certain valleys and
wind corridors along the eastern borders of Iran exhibit wind speeds of up to class 6 in
terms of the annual average wind speed categorization. The channeling effect in these
valleys intensifies wind intensity and modifies wind shear compared to the regional wind
regime influenced by pressure gradients [105–108]. Prevailing strong winds in eastern Iran
are mainly northwesterlies, aligning with the orientation of the valley corridors [111]. The
Lut Valley Gap area frequently experiences strong northerly winds due to the channeling
of wind flow between the topographic low belt and tall snowy mountains. These wind
corridors exhibit pronounced seasonal variations in wind power density, with a peak
during summer. However, other valleys and basins in the Iranian interior that lack suitable
orientation in relation to the main wind flow display significantly reduced wind resources.

In Figure 7, the sites marked with black triangles represent regions where wind farms
have been already established. Characteristically, the annual mean simulated wind speed
in the Manjil region is approximately 7.82 m/s, in Kahak it is 6.71 m/s, and in Binaloud
it is 7.11 m/s, corresponding to wind classes 5, 3 and 4, respectively. It is observed that
possible wind farms in the Sistan Basin in eastern Iran would fall into the upper class 7, as
the annual mean wind speed has been measured at above 8–10 m/s at the Zabol station
over the long term [106,117,118]. However, despite this very outstanding wind energy
potential in the Sistan Basin and surrounding areas, no wind farms or Aeolian Parks have
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been developed there so far. Therefore, this wind atlas for Iran highlights areas where a
high level of wind resources may exist but have not been fully exploited.

In addition, ten areas with sufficient wind energy potential were detected in Figure 7
(10 rectangles), distributed over the Iranian territory except for the central Iranian Plateau.
For these areas, the monthly mean wind speeds, averaged over the 17-year period (2004–2020)
according to WRF simulations, are shown in Figure 8, which highlights the significantly
higher wind potential in the summer months over areas like A1 and A2. In addition, the
annual variability underscores the existence of two discernible wind patterns, each char-
acterized by distinct seasonal variations. The first pattern aligns with the warm months,
spanning from May to October, while the second is associated with the colder months,
spanning from November to April. Throughout the colder season, minimal disparities
in wind speeds are observed, with monthly mean wind speeds ranging from approxi-
mately 5.5 m/s to 7 m/s. Conversely, during the warm season, notable variations emerge,
particularly in the eastern sectors of the country, where there is a markedly higher wind
potential in A1 and A2. The maximum monthly averages of the wind speed in the A1 and
A2 regions (12.5–14.5 m/s) in July–August (Figure 8) are similar to the measured wind
speeds in Zabol, Sistan during the summer season [106,117]. The western border regions
(A6 and A8), influenced by the northwesterly Shamal winds, also experience increased
wind potential compared to the colder season.
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simulations for the designated regions (A1 to A10).

Furthermore, the outputs from the WRF model can be used to assess the economic
feasibility of constructing wind turbine farms in appropriate areas in Iran. This evaluation
involves considering the energy production capacity of wind turbines based on the simu-
lated wind data, as well as estimating the associated costs and potential revenue from the
generated electricity. Factors such as the capital investment required for constructing and
maintaining wind turbines, transmission infrastructure, land availability, and government
policies and incentives also need to be considered.

By combining the meteorological data from the WRF model with atmospheric pol-
lution, financial and economic analyses [119–121], decision-makers can make judgments
about the viability and profitability of wind energy projects in specific regions of Iran. This
information can guide the selection of suitable locations for wind turbine farms, optimize
the design and layout of the turbines, and support the development of policies to promote
renewable energy sources. It is worth noting that while the WRF model provides valuable
insights, it is essential to validate its results with ground-based measurements and con-



Appl. Sci. 2024, 14, 3304 20 of 28

sider other factors such as environmental impact assessments, social acceptance, and grid
integration capabilities when making decisions regarding wind energy projects.

3.3. Trend Analysis of the Wind Energy Potential

To further investigate the trends in wind speed across the examined areas, the area’s
averaged monthly and annual mean wind speeds at 50 m a.g.l were analyzed from 2004 to
2020 and the trend values are summarized in Table 9. Note that the numbers of grid points
are different in each rectangle, with the biggest one being A7, with 1936 grid points, and
the smallest being A9, with 572 grid points. In general, no significant trends in the wind
speed were observed during the study period, indicating a rather unchanged wind energy
potential across Iran. Statistically significant trends usually exceeded the slope value of
±0.06 and are highlighted with an asterisk in the table. Positive trends were detected in
areas A1, A2, A4 and A5 in the eastern half of Iran during November, while some areas in
eastern Iran (e.g., A1, A2, A4) showed slope values greater than 0.6 m/s in a few summer
months. Furthermore, the annual trends in wind speed were insignificant in all regions
except for A3 (in Lut desert), which exhibited lower wind speeds than the other regions.

Table 9. Trend values from the linear regression of the monthly and annual wind speeds (m/s),
spatially averaged over the 10 examined regions across Iran. This table also includes the number of
grid points (NG) for each area. Trends equal to or greater than 0.06 (m/s) are statistically significant
at the 95% confidence level and are indicated by an asterisk.

Area NG January February March April May June July August September October November December ANN

A1 682 0.02 0.01 0.01 0.01 −0.06 * −0.1 * 0.01 0.06 * −0.03 0.06 * 0.09 * −0.06 * 0.00

A2 968 0.03 0.01 0.02 −0.03 −0.05 −0.1 * −0.04 0.06 * 0.01 0.03 0.06 * −0.03 −0.00

A3 1287 0.02 0.01 0.01 0.00 −0.02 0.01 0.01 0.04 −0.01 0.03 0.02 −0.02 0.09 *

A4 1122 0.01 0.03 0.01 −0.01 −0.02 0.03 −0.04 0.1 * 0.05 0.05 0.07 * 0.02 0.02

A5 864 0.02 0.00 0.01 −0.03 −0.00 0.01 −0.01 0.01 0.05 0.05 0.08 * 0.04 0.03

A6 484 0.03 0.01 0.02 0.03 −0.05 0.04 −0.02 0.04 −0.02 0.02 −0.01 −0.01 0.01

A7 1936 0.05 −0.02 −0.00 −0.02 −0.01 0.03 −0.00 0.02 0.01 −0.01 −0.04 −0.02 −0.00

A8 1452 0.01 −0.01 −0.01 −0.05 −0.00 −0.05 0.01 −0.01 −0.02 −0.06 * 0.05 −0.05 −0.02

A9 572 −0.01 −0.04 0.01 −0.02 0.02 0.01 −0.01 0.03 0.03 −0.02 0.04 −0.04 −0.00

A10 729 0.01 −0.05 −0.03 −0.01 0.01 0.02 −0.02 0.02 −0.01 −0.03 −0.02 0.01 −0.01

3.4. Evaluation of the WRF Simulations

To assess the accuracy of the WRF model outputs, the simulated wind speed and
wind power were compared with wind observations. However, wind observations at
meteorological stations were collected at a low height of 10 m a.g.l., which is not coincident
with WRF simulations or suitable for wind energy assessment. Therefore, only SATBA
stations that measure wind at a height of 40 m a.g.l. were used to evaluate the simulated
wind-energy potential. Table 10 presents the mean, median, and wind power density
(WPD) values calculated using both measured wind data and WRF simulations.

The results show that the mean, median, and WPD values were overestimated at
Hajiabad and Sheikh-Tape stations and underestimated at the other stations. The maximum
errors in mean and median values were shown at Hajiabad station, with an error of
0.61 m/s and 0.94 m/s, respectively. The maximum WPD error of 158 Wm−2 was obtained
at Khalkhal station. These findings suggest that while the simulated mesoscale mean wind
speed provides a preliminary indication of a site’s wind energy potential, it cannot be
assumed as the best estimator for wind energy production potential. Hajiabad station is an
excellent example of this fact, since it presents the highest mean wind speed error but the
lowest WPD error. Therefore, the mesoscale climatic wind data provide a general overview
of areas with wind energy potential. However, for wind farm development, it is necessary
to conduct further studies and extensive evaluations in several areas.
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Table 10. Comparison of the mean/median wind speed (m/s) and WPD (Wm−2) between WRF
simulations and observations from SATBA wind masts at the height of 40 m.

Station
Mean Wind Speed (m/s) Median Wind Speed (m/s) WPD (Wm−2)

Model Observation Model Observation Model Observation

Hajiabad 5.068 4.458 4.358 3.420 198 169

Sheikh-Tape 3.940 3.339 3.489 2.700 112 78

Koohin 6.544 6.963 6.131 6.500 339 432

Songhor 4.328 4.691 3.467 4.000 151 183

Khalkhal 6.152 6.664 6.155 6.200 258 416

To further investigate this matter, Figure 9 displays the wind speed distribution for
both simulated and observed data at the SATBA stations. The model slightly overestimated
wind speeds above 4 m/s in Hajiabad and Sheikh-Tape stations, leading to a general
overestimation of WPD in these two stations. Therefore, the model’s ability to simulate
higher wind speeds has a more significant impact on WPD estimation than its overall
performance. Conversely, wind speeds above 10 m/s at Koohin and Khalkhal stations and
above 5 m/s at Songhor stations were underestimated by the model. On the other hand,
this comparison revealed r values in the order of 0.75–0.92, indicating great consistency
between the WRF-simulated and the measured wind.

The findings of this study demonstrate that the WRF model represents the wind speed
distributions at SATBA stations in Iran with high accuracy, with some minor discrepancies
observed. These results indicate that the model is reliable in assessing wind power density
at selected locations in Iran and in the Middle East. However, to enhance our understanding
of the Aeolian regime and wind energy potential across Iran, it is recommended to establish
more SATBA stations in the future, particularly in areas affected by strong winds like the
Sistan Basin. Further evaluation of the model outputs with more measured data will allow
for a more comprehensive assessment of wind resources.

The current wind simulations were previously evaluated against measured wind
data at ten stations around the Urmia (NW Iran) and Bakhtegan (south Iran) desiccated
lakes in order to assess the influence of WRF simulations on the wind erosion and dust
outbreaks from these dried lake basins [27]. The results of the simulations showed that
the model overestimated 10 m wind data in all the stations around Bakhtegan Lake and
it performed better at stations around Urmia Lake. The height difference (10 m vs. 50 m)
may be a regulatory factor for this overestimation. The analysis also revealed RMSE values
in the order of 0.5–2.4 ms−1 at the ten examined stations, with r values of 0.43 to 0.87 [27].
Furthermore, the WRF model represented the wind direction at 5 stations around the Urmia
Lake fairly weel, despite some biases in the frequency and wind intensity at each direction.

The optimization and evaluation of the WRF model for wind energy resource assess-
ment and mapping in Iran hold significant industrial relevance within the renewable energy
sector [121]. The region possesses vast untapped potential for wind energy development,
but accurate assessment of wind resources is a crucial step for successful project planning,
financing, and operation [122–124]. Through the optimization of the WRF model specifi-
cally for the Iranian territory, we can improve the accuracy of wind resource assessment
and provide valuable insights into the spatial distribution and variability of wind energy
resources. This information is of paramount importance for scientists, developers, investors
and policymakers involved in wind energy projects, enabling informed decision-making
and resource optimization.

Furthermore, the current approach for mapping wind energy resources in Iran takes
into account the region’s unique geographical and climatic characteristics, including com-
plex terrain, coastal effects, and desert environments. By considering all of these factors, we
empower industry stakeholders to identify optimal locations for wind farm development,
considering aspects such as land availability, proximity to transmission infrastructure,
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and potential environmental impacts. Our research contributes to overcoming the specific
challenges associated with wind energy assessment and mapping in the region, supporting
the growth and sustainability of the renewable energy industry.
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4. Conclusions

This study focused on simulating wind speed using the WRF model and estimated
the wind energy potential in Iran covering the period 2004–2020. Through the evaluation
of different PBL parameterization schemes against several ground measurements, it was
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found that the ACM2 scheme exhibited the best overall performance on an annual basis,
while the QNSE PBL scheme performed better during the cold season. Additionally, local-
closure PBL schemes during the cold season and non-local-closure PBL schemes during the
warm season showed better performance, attributed to their ability to consider small/large
scale eddies within the PBL.

The WRF model exhibited some biases under intense wind speed conditions, particu-
larly in overestimating wind speeds in mountainous regions. These biases, influenced by
the elevation difference between the model grid cell and the actual elevation of the station,
may contribute to systematic errors in the model. However, despite these challenges, the
comparison between the model’s wind simulations and observational data revealed that
for over 77% of the stations, the model’s bias error was less than 2 m/s, demonstrating
the WRF’s accuracy for realistic wind energy assessment studies in Iran. Furthermore,
the study identified areas with high wind energy potential for the installation of wind
farms and Aeolian parks, including regions along the eastern Iranian border, such as the
Sistan Basin and its surroundings. The highest wind energy potential exhibited a distinct
seasonality, with the maximum in summer and the minimum in late autumn, while on an
annual basis, regions in eastern Iran were classified into the highest classification groups
according to the average wind speeds (>7 m/s).

These results may provide practical solutions and valuable insights for industry stake-
holders, facilitating informed decision making, and promoting the effective utilization
of wind energy resources in the Middle East region. Furthermore, this research con-
tributes to the transition towards renewable energy sources, aiding in the reduction in fossil
fuel consumption for power and electricity generation and supporting efforts to mitigate
climate change.
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