
Citation: Sanabria, P.; Montoya, S.;

Neyem, A.; Toro Icarte, R.; Hirsch, M.;

Mateos, C. Connection-Aware

Heuristics for Scheduling and

Distributing Jobs under Dynamic Dew

Computing Environments. Appl. Sci.

2024, 14, 3206. https://doi.org/

10.3390/app14083206

Academic Editors: Yirui Wu and

Shaohua Wan

Received: 6 March 2024

Revised: 4 April 2024

Accepted: 5 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Connection-Aware Heuristics for Scheduling and Distributing
Jobs under Dynamic Dew Computing Environments
Pablo Sanabria 1,2,* , Sebastián Montoya 1,2 , Andrés Neyem 1,2,* , Rodrigo Toro Icarte 1,2 , Matías Hirsch 3

and Cristian Mateos 3

1 Computer Science Department, Pontificia Universidad Católica de Chile, Macul 7820436,
Región Metropolitana, Chile; simontoya@uc.cl (S.M.); rntoro@uc.cl (R.T.I.)

2 Centro Nacional de Inteligencia Artificial CENIA, Macul 7820436, Región Metropolitana, Chile
3 ISISTAN-UNCPBA-CONICET, Tandil CP 7000, Buenos Aires, Argentina;

matias.hirsch@isistan.unicen.edu.ar (M.H.); cristian.mateos@isistan.unicen.edu.ar (C.M.)
* Correspondence: psanabria@uc.cl (P.S.); aneyem@uc.cl (A.N.)

Abstract: Due to the widespread use of mobile and IoT devices, coupled with their continually
expanding processing capabilities, dew computing environments have become a significant focus for
researchers. These environments enable resource-constrained devices to contribute computing power
to a local network. One major challenge within these environments revolves around task scheduling,
specifically determining the optimal distribution of jobs across the available devices in the network.
This challenge becomes particularly pronounced in dynamic environments where network conditions
constantly change. This work proposes integrating the “reliability” concept into cutting-edge human-
design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic
and ever-changing network conditions caused by nodes’ mobility. Additionally, we introduce a
reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network
status into the RL agent. Our research rigorously contrasts our proposed algorithms’ throughput
and job completion rates with their predecessors. Simulated results reveal a marked improvement
in overall throughput, with our algorithms potentially boosting the environment’s performance.
They also show a significant enhancement in job completion within dynamic environments com-
pared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of
human-designed heuristics. Our study emphasizes the advantages of embedding inherent network
characteristics into job distribution algorithms for dew computing. Such incorporation gives them a
profound understanding of the network’s diverse resources. Consequently, this insight enables the
algorithms to manage resources more adeptly and effectively.

Keywords: dew computing; reinforcement learning; connection-aware scheduling; mobility models;
heuristics; transfer learning; simulation

1. Introduction

The significant surge in computation-intensive tasks within mobile applications has
placed substantial computational burdens on devices with limited resources in recent years.
Despite advancements in hardware for devices like smartphones and IoT devices, they
frequently struggle to meet the demands of these resource-intensive tasks. In response
to this issue, dew computing has emerged as a solution, aiming to alleviate the situa-
tion by offloading computation-intensive tasks to more potent devices, typically those
nearby. In this context, “nearby devices” are defined as devices connected to the same local
network [1–5]. The central premise is to transfer tasks, for example, from a smartphone to
a laptop, leveraging the increased processing power of the latter. This approach not only
results in faster task execution but also prevents excessive depletion of the smartphone’s
battery resources. While dew computing holds promising potential, its practical imple-

Appl. Sci. 2024, 14, 3206. https://doi.org/10.3390/app14083206 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083206
https://doi.org/10.3390/app14083206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6493-3895
https://orcid.org/0009-0005-8359-6341
https://orcid.org/0000-0002-5734-722X
https://orcid.org/0000-0002-7734-099X
https://orcid.org/0000-0001-7021-3501
https://orcid.org/0000-0001-5761-1898
https://doi.org/10.3390/app14083206
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083206?type=check_update&version=1

Appl. Sci. 2024, 14, 3206 2 of 22

mentation hinges on addressing a critical challenge: the efficient job distribution across
nearby devices.

This study focuses on resolving the job distribution challenge within dew environ-
ments. Dew environments comprise a collection of devices interconnected within a local
network. These devices exhibit variations in their attributes and capabilities, encompassing
factors such as power source, battery capacity, processor/CPU core count, storage capacity,
and sensory capabilities. Furthermore, users may interact with selected devices at diverse
points in time. To ensure the efficient distribution of tasks within a dew environment, it
becomes imperative to consider all these factors comprehensively.

Current methods for distributing jobs in dew environments follow human-designed
heuristics. These heuristics balance the workload among devices by following predefined
rules. Some of these rules combine devices’ features such as computing capability, the
remaining battery level, current queued jobs, and job requirement information to select the
most appropriate device to be assigned with a job. Some examples include the Enhanced
Simple Energy-Aware Scheduler (E-SEAS) [6] and the Batch Processing Algorithm (BPA) [7].
Round Robin (RR) [8] is also considered for distributing jobs, quite frequently as a baseline
method for new proposals. Unfortunately, the performance of these methods remains
unknown when the network topology dynamically changes over time due to network
conditions. Consequently, they lead to suboptimal decision making and the wastage of
valuable resources.

Exploring the benefits of considering network-related parameters as part of job distri-
bution algorithms, we propose a reliability score that accounts for the time a device—also
called a node—is connected to a dew environment. The score is integrated into previously
proposed human-designed heuristics and thoroughly evaluated. The results obtained
encourage us to incorporate the reliability score into the learning process of a reinforcement
learning (RL) agent.

Prior research [9] highlights that RL effectively accommodates dew computing envi-
ronments [10]. RL is a subfield of artificial intelligence that studies how to develop agents
that can learn optimal behavior by interacting with an environment. Every interaction
with the environment delivers a reward signal that the agent seeks to maximize. The
agent improves its current policy (mapping observations to actions) by learning from
past experiences to accomplish this. Powered by deep learning, RL agents have been
used to solve complex decision-making problems across different research areas, from
robotics [11] to conversational agents [12] to molecule discovery [13]. Here, we propose
letting an RL agent learn how to distribute jobs effectively in dew environments with nodes’
mobility presence.

The main contributions of our work are, then, as follows. First, we extend EdgeDewSim [7]
with all necessary features to support dynamic changes in the network conditions as a
consequence of nodes’ mobility. The new features include the capability to generate reusable
connection–disconnection traces per node. Trace reusability is the key to experiment
reproducibility. Second, we proposed an easy-to-implement “reliability” score that gives
E-SEAS and BPA network condition awareness and boosts the performance achieved in
dew environments with nodes’ mobility. Such integration derives into new heuristics
that we call ReleSEAS and RelBPA. Third, we propose an RL approach with awareness
of network conditions, and we demonstrate that using this approach can outperform
human-designed heuristics.

Finally, as a summary of our empirical findings, we discovered that giving awareness
of node connection activity to the scheduler gives better endurance and adaptability when
the network conditions are dynamic. Also, we show that providing awareness of the
policies improves the job completion rate by up to 95% without giving up performance.

This paper is organized as follows: In Section 2, we introduce the necessary concepts
of dew computing in the context of our work; in Section 3, we make a review of the state of
the art related to scheduling algorithms. In Section 4, we describe the necessary changes to
extend the simulation capabilities to represent dynamic network-related features as an effect

Appl. Sci. 2024, 14, 3206 3 of 22

of nodes’ mobility. Section 5 describes the mobility models used in this work. In Section 6,
we show the definitions of the proposed algorithms for this job. In Section 7, we describe
the experimentation methodology and the metrics used to compare the performance of our
defined algorithms, followed by our results with their respective discussion. Finally, in
Section 8, we show our findings and propose the next steps toward improving this field
of study.

2. Edge and Dew Computing

Mobile edge computing is a paradigm that seeks to solve latency and network traffic
problems found in mobile cloud computing environments [14]. Ref. [15] defines edge
computing as “a model that allows a cloud-based computing capacity providing services making
use of the infrastructure that is on the edge of the network”. In this way, mobile edge computing
allows servers or workstations within a computer network, thus ensuring low latency
while enabling the efficient processing of information, which permits the deployment of
more robust applications. Furthermore, this paradigm lets edge servers work with other
nodes in proximity or collaborate with cloud services, thus deploying much larger and
more efficient applications [16,17]. However, while edge computing helps to reduce the
network’s problems, it still depends on the network backbone that may not be available
or reachable in certain situations, like working with IoT devices in mines and on ships, in
deserts, or on moving vehicles.

Dew computing is a new paradigm where connected devices offload jobs to nearby
devices in the same network. This paradigm proposes an architecture that reduces network
latency, the energy cost of remote data communication, and the costs inherent to cloud
infrastructure usage [18]. Through this, dew computing optimizes the usage of mobile
and IoT devices in two manners. First, it treats mobile devices as clients in the network
infrastructure to offload their work to other devices in the same network [19]. Second,
dew computing considers mobile and IoT devices as resources to increase the available
computational power from an existing system. In this approach, one device can offload
its work onto another available device in the network (including other mobile and IoT
devices) [20,21].

We note that a network topology is needed to use mobile and IoT devices as resources
in a local network [3]. The Smart Cluster at the Edge (SCE) is a network topology commonly
used for that purpose in dew computing. Figure 1 shows how the devices are organized
in this type of network. This topology can be established wherever an access point and a
group of mobile and IoT devices coexist. The topology’s main feature is a central scheduler
coordinating the task assignment among the network’s available resources. This central
scheduler can be any capable device in the network [22]. In this work, we address the
problem of distributing jobs in a dew environment, assuming that the network topology is
an SCE.

Figure 1. Example of SCE architecture: In this example, six devices are connected to the local network.
The devices include two smartphones, two Raspberry Pis, two laptops, and one scheduler inside the
network. Outside of the network are two smartphones.

Appl. Sci. 2024, 14, 3206 4 of 22

3. Related Work

Distributing jobs in dew environments optimally is a challenging combinatorial prob-
lem [6,23]. Many factors must be taken into account to assign jobs to devices correctly.
Those factors range from a device’s CPU speed to a device’s availability within a time
window, from how often jobs arrive at the scheduler to how urgent jobs must be completed.
Many previous works have proposed heuristic methods to deal with this complex problem.
A heuristic method is a practical approach to obtaining approximated yet satisfactory
solutions to problems where finding the optimal solution is computationally intractable, in
this case, the job assignment problem. This paper seeks human-designed heuristics that
consider features from the SCE and are aware of network changes through time. Also, we
explore an alternative approach, which consists of learning a policy to distribute jobs using
RL. To provide a coherent view of the related work, we divided this discussion into two
parts: We first discuss existing heuristic methods to distribute jobs in an SCE and then
review previous works at the intersection of RL with cloud and edge computing.

In the context of SCEs, different algorithms have been proposed to optimize the
system’s utility and job execution time, using the mobile devices’ remaining battery
as a formal constraint of the resource allocation problem formulation [24–28]. These
algorithms, however, assume complete and accurate information regarding the energy
spent and the execution time for every candidate node, making it challenging to apply in
real-life scenarios.

In Refs. [29,30], they addressed the previous limitation by proposing algorithms that
do not rely on complete information. This approach seeks to exploit the nodes’ proximity
and cost-effectiveness of node transferring capabilities. However, their studies focused on
analyzing the effect of nodes’ mobility rather than balancing the load to efficiently utilize
the battery and processing power of the available resources.

Refs. [6,22] presented other types of heuristics, which distribute jobs by considering
the mobile device’s battery level and computing scores obtained from benchmarks. These
methods outperformed traditional scheduling algorithms (such as round robin) but have
the limitation of only considering battery-dependent devices. This problem was recently
addressed by Ref. [7]. In Ref. [7], the authors studied hybrid SCEs, which combine both
battery-dependent and non-battery-dependent devices, and proposed heuristic methods
that consider the device’s battery level, computing score, and current workload to distribute
jobs in dew environments.

In contrast to those works, where the primary assumption was that the network
topology remained static, meaning that the structure and connections within the network
did not change over time, this work takes a different approach. Our research recognizes
the limitations of static topologies, particularly in real-world scenarios where network
environments are often dynamic and subject to change. By “dynamic environments”, we
specifically refer to situations where mobile devices can enter or exit the boundary of an SCE
over time, leading to fluctuations in the network’s composition and connection throughput.
To address these challenges, we propose new heuristic algorithms specifically designed to
adapt to network dynamic conditions. To achieve this, we improved the simulation support
offered by EdgeDewSim [7], enhancing its capability to support the development of new
connection-aware job distribution as the topology evolves, configure nodes’ mobility in an
easy-to-reproduce manner, and represent network changes as an effect of nodes’ mobility.
By incorporating these advancements, our approach aims to provide a more robust and
flexible solution for job distribution in dynamic network environments.

RL Methods in Edge and Dew Computing

In cloud computing, task scheduling focuses on deciding which resources (servers)
should process an incoming task. In this problem setup, previous works have shown that
RL agents can reduce the execution time in distributed systems [31] and avoid overloading
(and deadlocking) cloud servers [32]. Furthermore, Ref. [33] showed that deep RL can help

Appl. Sci. 2024, 14, 3206 5 of 22

schedule tasks in large-scale cloud service providers, surpassing traditional methods in
terms of energy cost and reject rates.

As for edge computing, the task scheduling problem is similar. The edge server
receives tasks and has to decide whether to send those tasks to a nearby server or the cloud.
Several works have explored how to distribute jobs in edge computing using deep learning
techniques like convolutional neural networks or reinforcement learning according to
different performance metrics. These metrics include reducing computing times [34,35],
energy consumption [36], latency [37,38], task failure rate [39], or a combination of the
previous [40–42]. We note that in edge computing, the action space is usually limited. For
instance, sometimes the agent can only decide whether to send (or not) a job to the cloud [41].
In contrast, the action space in a dew environment typically ranges from tens to hundreds
(i.e., one action per device), making the decision-making problem considerably harder.

RL has been increasingly utilized for job scheduling in environments that are closely
related to one another, such as cloud computing [31–33] and edge computing [34,36–42].
With emerging studies in dew computing, RL has been applied in cloud and edge computing
for job scheduling. For instance, in Ref. [43], they propose a vehicular dew computing
architecture using RL for content delivery optimization. Similarly, in Ref. [44], they suggest
a dew computing-based vehicular edge caching architecture to enhance vehicle stability and
high-definition map acquisition. In Ref. [45], they introduce dew quantum machine learning
(DewQML) to improve decision making and reduce latency in dew computing environments.
In Ref. [46], they present a dew computing-based microservice execution (DoME) scheme
using RL to minimize service delay and optimize costs in mobile edge computing.

Additionally, research shows deep RL agents can effectively offload jobs in dew
computing environments. Finally, in the context of job offloading in dew computing envi-
ronments, prior research demonstrates that deep RL agents can offload jobs more effectively
than traditional state-of-the-art heuristic methods, even when faced with previously unseen
scenarios. The study conducted by [9] empirically proves that the agent learns to generalize
in network environments that lack dynamic components when continuously exposed to
new situations. This means that the agent can appropriately distribute sequences of jobs
that arrive in patterns and sizes not encountered during training. Furthermore, the agent
can learn to effectively distribute jobs in fixed dew environments, significantly outperform-
ing state-of-the-art heuristics regarding the number of instructions executed per second.
This highlights the potential of RL in enhancing the efficiency and adaptability of job
scheduling in dew computing environments, paving the way for more responsive and
robust computing systems [9].

In the same line of Ref. [9], there are three main differences between our work and
the existing work on RL with cloud and edge computing. We address a different problem.
Distributing jobs in a dew environment has challenges that do not typically arise in cloud
or edge computing. For instance, in dew computing, some devices might run out of battery,
or users might start interacting with them. When the network conditions are dynamic,
the availability of the devices cannot be assured. Taking these elements into account is a
nontrivial task. Second, we thoroughly examine the transfer learning capabilities exhibited
by the policies acquired by the reinforcement learning agent. This is a crucial step toward
applying RL methods in natural systems since, in practice, it is unlikely that the agent
would encounter scenarios that it had previously seen during the training. Finally, we use
an RL agent better suited for generalization than the agents used in previous works [47,48].

4. EdgeDewSim Extended Simulator

The EdgeDewSim Simulator [7] was built as an extended version of DewSim [49],
in which new features were added. It incorporates the notion of worker nodes that do
not depend on batteries to cooperate in job execution, i.e., edge nodes without energy
constraints. In the present work, we extended EdgeDewSim with the functionality to model
the effect of node mobility on connectivity status. We will refer to the latter extension, i.e.,
EdgeDewSim, which has mobility functionality, as the EdgeDewSim Extended Simulator.

Appl. Sci. 2024, 14, 3206 6 of 22

The previous version of the EdgeDewSim Simulator [7,9] did not have support for
allowing devices to connect and disconnect from the network; because of this, the first task
of this work was to extend the EdgeDewSim Simulator to include this new feature. The
extended simulator version allows researchers to provide a connection file, in the form of a
trace, for each device containing all the connection and disconnection events the device
will go through during the simulation. The connection file provided to the simulator uses
the following syntax:

Connection Event; Event Time (ms)
ENTER_NETWORK;1000
LEAVE_NETWORK;2000

where the field before the semicolon indicates the device status for the SCE, and the field
after the semicolon refers to the time (expressed in milliseconds) when the status change
event will occur. Such a time is always relative to the time zero of the simulation. More
explicitly, a device configured with the connection file given in the example will join the
SCE a second after the simulation starts and leave the SCE two seconds after the simulation
begins, providing a permanence time of one second within the SCE.

In the EdgeDewSim Simulator [7], devices were configured to connect to the network
as soon as the simulation started, and there were no events related to device disconnection
due to mobility. Instead, devices would only disconnect from the cluster when their battery
was depleted. This behavior was implemented through a series of events, including device
joining, device leaving, and state of battery updates, to which a scheduler entity would
subscribe to maintain an up-to-date list of candidate devices for executing jobs.

Two main features must be addressed to accommodate device connection and discon-
nection due to mobility. Firstly, devices should be able to discharge their battery even when
they are not part of the cluster or network. This adds a layer of realism to the simulation,
reflecting the natural battery consumption of mobile devices in real-world scenarios. Sec-
ondly, the schedulers require a memory mechanism to keep track of potential devices that
can execute a job every time they connect to the network. This memory should also be
updated to remove devices from the list whenever they disconnect from the network. This
feature is crucial for efficiently managing the dynamic nature of mobile device clusters, as it
ensures that the scheduler has an accurate pool of devices to choose from for job execution.

The EdgeDewSim Extended Simulator incorporates the above-mentioned features
and offers backward compatibility for conducting experiments before implementing these
features. This is achieved by using connection files in which devices are set to connect at
the start of the simulation and remain connected throughout without any disconnection
events caused by mobility. This simplifies the simulation environment and allows for
testing other aspects of the system without the added complexity of the device mobility
feature. However, incorporating the above-mentioned features is essential for a more
comprehensive and realistic simulation of mobile device clusters.

4.1. Device Connection Score

The scheduler must determine which device is more suitable for executing a job. To
start considering the connection and disconnection, it is necessary to add logic to the device
to report a connection score as a heartbeat. This concept will be explained in more detail
in Section 6; nevertheless, it is relevant to know that other authors [50] have used WiFi to
predict the length of a connection to an access point, geo-located tags [51] to indicate the
following location of the device, and other sources of data from the device such as battery
state, WiFi signal strength, and GPS traces, among others.

4.2. Device Connection Event

To address this issue, certain events were modified, and new ones were created. The
event type DEVICE_START was modified to solely initiate CPU usage and battery dis-
charge of the device upon joining an SCE. Before the modification, such an event causes the

Appl. Sci. 2024, 14, 3206 7 of 22

device to be added to the scheduler’s list, and the device’s state is reported to the scheduler.
With the modification, two new event types were introduced. The DEVICE_CONNECT
event now manages the actions previously performed with a DEVICE_START event and
updates the connection score from Section 4.1.

4.3. Device Disconnection Event

The event DEVICE_DISCONNECT removes the device from the scheduler’s list of
possible devices that can execute jobs. Also, the device stops sending the scheduler updates
of its battery state of charge. The DEVICE_DISCONNECT also needs to handle what
happens to the jobs being executed by the device at the moment of disconnection and the
ones that are queued for future execution; in this implementation, these jobs are canceled
when the device disconnects from the network. This could be improved or changed in
future work to simulate that jobs are executed in the background and results are cached
and sent once the connection is reestablished; it all depends on the scenario being tested.
Regarding the network model, this had to be modified to accept the disconnection of
devices and be able to cancel the transfer of messages related to the device disconnecting
from the network.

5. Human Mobility Modeling

Humans constantly move to our jobs, universities, schools, or any other destination
daily. However, this behavior is nothing new; throughout history, humans have migrated
between different territories countless times, as mentioned in Ref. [52]. A significant
change between a few decades ago and now is the high usage of smart devices within the
population; this growth in usage is mainly due to the high adoption of smartphones in our
lives [53,54].

This characteristic of the current state in the adoption of smartphones has attracted the
interest of scientists in researching human mobility, mainly because now we have the tools
to collect accurate data that can help to create models that can mimic our mobility patterns.
Nowadays, there are multiple ways to obtain data from human mobility. GPS traces are one
of these sources for mobility patterns. Also, CDRs (called detail records) have been used
to learn from human mobility, and, finally, from some datasets of connection to an access
point like a WiFi [55,56] point. In this field of research, although there has been significant
progress in terms of data sources, the use of synthetic data from mobility models continues
to be prevalent. This is because synthetic data remain a convenient method for studying
and proposing new mobility models.

As mentioned in Ref. [57], we can divide human mobility models into nonsocial,
social, and hybrid categories. Others [53] divide them into movement-based, linked-based,
and network-based. Individual or movement-based mobility models are generated from
individual traces of either GPS, CDR, or any other data source that can describe how a
human moves without the influence of other humans over his or her patterns. On the
other hand, social, network-based, or linked-based models try to model human mobility
patterns, considering the different interactions we, as humans, have and how these social
interactions can affect our mobility patterns [53]. In this work, we will focus on individual
or movement-based mobility models, notably random walk and random waypoint, to
generate the connection and disconnection events from an access point. We mainly chose
these two models to generate synthetic data because they represent the most dynamic
scenarios, since nodes tend to move randomly. This way, we could expose our proposed
human-designed heuristics (RelBPA, ReleSEAS) and the RL agent to hostile environments.
To develop these data, we used PyMobility [58] as a base for the mobility algorithms and
added a layer of code to check the connections and disconnections from the devices. Then,
these data were used as input for the EdgeDewSim Extended Simulator.

5.1. Random Walk

Random walk is the most simple mobility algorithm [57], where an individual’s
movements are simulated by a statistical model, which sets an individual in a particular

Appl. Sci. 2024, 14, 3206 8 of 22

scenario defined by its minimum and maximum displacement velocity and the rotation
angle. This algorithm randomly chooses the individual’s velocity at each step and the
direction, which can be in the range of (0, 2π); this process repeats at every simulation
step. This model is the most basic one because it is far from representing realistic human
movements that are not random at all.

5.2. Random Waypoint

Random waypoint is a variation of the previous model [57,59], with the difference that
now an individual moves to a waypoint where it waits a certain amount of time until it can
choose randomly its speed and direction.

6. Connection-Aware Scheduling Heuristics

This paper proposes two new scheduling heuristics, ReleSEAS and RelBPA, based on
previously developed heuristics, E-SEAS and BPA.

6.1. Reliability Score

To ensure that the stability of the devices in the network is considered, we suggest
introducing a new score that the heuristics should consider. This score, similar to the
battery level, aims to influence the decision-making process used by the heuristic. We refer
to this score as the “reliability score”, denoted by Reliability. It is calculated as follows:

Reliability =

{
curr_execution_time if not f irst_disconnection
avg_connection_time otherwise

(1)

where f irst_disconnection is a variable that each device has to express if it has disconnected
from the network for the first time; the variable curr_execution_time represents the amount
of time in milliseconds executed since the start of the execution to the time the Reliability
score is calculated; and finally, avg_connection_time corresponds to the average time that
the device has been connected to the network, taking into consideration these connection
events can happen multiple times over a simulation and that the metric is calculated only
for the devices connected to the network.

The following example demonstrates the calculation of the reliability score. In a hypothet-
ical case, we have two devices. The first one has the subsequent connection and disconnection
events: t = 1 (connect), t = 2 (disconnect), t = 5 (connect), t = 10 (disconnect). The second
device connects at t = 0 and disconnects at t = 10. Assuming the simulation clock is at
t = 11, the reliability score for the first device will be 3 = (1 + 5)/2 and 10 for the second
device. In this example, we can see what the reliability score aims to incorporate as new
information about how stable a device is for the time it plays the role of a worker node
within a cluster. The proxy calculates the reliability score when a job arrives and needs
to be distributed; in this way, it can obtain the ranking for each device. Also, every time
a device disconnects, its last connection duration is stored to be used for the following
calculation of the reliability score.

6.2. ReleSEAS

The main feature of E-SEAS [6] is that it is easy to implement in real-life environments
because it requires easy-to-obtain information, such as battery level, nodes’ computing
capability measured in FLOPs (float point operations per second), and remaining jobs as
nJobs to build a rank of devices joined to the cluster. Then, the E-SEAS ranking formula is
defined as follows:

E − SEAS =
f lops · SOC

nJobs
(2)

A scheduler applying E-SEAS criteria assigns jobs using this ranking. Every incoming
job triggers a recalculation of the ranking, which uses fresh information about jobs’ and
nodes’ statuses, such as job queue size and battery level at each node. Job counters and

Appl. Sci. 2024, 14, 3206 9 of 22

node status records are maintained by a centralized component called the proxy, from
where the scheduler operates. This component keeps track of all information necessary to
recalculate the ranking. In this paper, we propose incorporating a new score (reliability
score) into the E-SEAS ranking formula to boost the ranking of devices connected to the
network for extended periods. This modification derives into what we call ReleSEAS:

ReleSEAS =
f lops · SOC · Reliability

nJobs
(3)

where f lops is the device capabilities (processor speed) measured in float point operations
per second, SOC is the last report of the state of charge (battery level), and the reliability is
calculated using Equation (1).

6.3. RelBPA

BPA [7] is a scheduling algorithm that considers the jobs loaded onto devices and the
present hardware capabilities to select the best device to execute an incoming task. The
ranking formula for BPA is defined as follows:

BPA =
ΣOP_jobs

f lops · Battery
(4)

where OP_jobs is the current job load in a device’s queued jobs in terms of how many
operations are needed to finish those jobs; f lops is the device capability (processor speed)
measured in floating-point operations per second; and Battery is the remaining battery of
the device expressed in values between the range of 0 < Battery ≤ 1 [7].

The reliability batch processing algorithm (RelBPA) is an adaptation of BPA that
incorporates the reliability score introduced in Section 6.1. In the same way as ReleSEAS,
the purpose of adding the reliability score is to boost devices that have been connected to
the network for more extended periods; the reliability score is added to the denominator to
make the metric as small as possible. The ranking formula for RelBPA is defined as follows:

RelBPA =
ΣOP_jobs

f lops · Battery · Reliability
(5)

where the variables used in the formula have the same meaning as in BPA, and the reliability
score is calculated using Equation (1).

6.4. Connection-Aware Reinforcement Learning Agent

In this section, we discuss how we integrate dew computing with RL. First, we
formally define the problem of job scheduling in a dew environment. Then, we describe
how to solve such a problem using RL. Finally, we discuss the software architecture behind
our proposed solution, combining the EdgeDewSim Extended Simulator with the RL
framework OpenAI Gym v0.21.0 [60]. But first, we briefly discuss the notation that we use in
this section.

6.4.1. Notation

Below, we use the following notation. We use uppercase letters to refer to sets of
elements and lowercase letters to refer to individual elements in those sets. For instance,
we use J to denote the possible jobs that arrive in the dew environment and j ∈ J to indicate
one particular job in J. In addition, |J| denotes the number of elements in J. Elements in a
set have different features. To refer to the value of a feature, we use x. f eature. For instance,
j.ops refers to the number of giga-operations of job j ∈ J.

6.4.2. Problem Definition: Job Scheduling in Dew Computing

We tackle the problem of distributing jobs in a dew environment. The dew environ-
ment consists of devices connected to a local network. Some of these devices can be IoT

Appl. Sci. 2024, 14, 3206 10 of 22

devices that have an unlimited power supply (e.g., Raspberry Pis and personal computers),
and others are mobile devices with a limited battery (e.g., tablets and smartphones). In addi-
tion, one node in the local network is assigned as the scheduler. The scheduler’s purpose is
to receive and distribute jobs among the devices.

Once a job is assigned to a device, the time it takes to complete (and how much battery
it consumes) depends on the job’s features and the device’s current state. For instance,
since some devices have limited battery life, a job might not be completed if assigned to a
device with a low battery level. Users might also interact with the devices, and the local
network might have congestion issues. The scheduler must consider all these factors to
distribute jobs effectively.

In more detail, assigning a job to a device adds that job to the device’s job queue. Then,
the device will keep running the jobs in its queue, one by one, until they are completed or
running out of battery. Once a device runs out of battery, all the jobs in its current queue are
discarded. If a job is assigned to a device that has no battery, that job is also discarded. In
our experiments, a job is not reassigned to a different device when the job is discarded. This
forces the scheduler to be extra careful when assigning a job to a battery-dependent device.

To evaluate the effectiveness of a given job distribution, we use the giga-instructions
per second (GIPS) that are completed in the dew environment:

GIPS(t0, t) =
∑j∈Jc j.ops

t − t0
, (6)

where Jc ⊆ J is the subset of jobs that were completed within the time interval [t0, t] and
j.ops is the number of giga-operations of job j ∈ Jc. Intuitively, GIPS measures how many
operations are completed in a unit of time. The scheduler aims to distribute the jobs to
maximize the GIPS in the dew environment.

In this study, we postulate that the dew computing environment is subject to a limita-
tion regarding the maximum number of devices that can be integrated into the network at
various intervals. This constraint results from the restrictions imposed by the size of the
RL model, which is crucial for optimizing network performance and decision making and
cannot accommodate an undefined number of devices. Understanding the implications
of this restriction is essential for managing the network’s scalability and ensuring that the
dew environment can efficiently handle the dynamic addition of devices over time.

6.4.3. Environment Definition: States, Actions, and Rewards

The first step in applying RL in dew computing is to define the environment in which
the agent will interact adequately, that is, to define the states S of the environment, the
actions A that the agent can perform, and the reward signal r(s, a, s′) that the agent will
optimize for. We also have to define the transition probabilities p(s′|s, a) if the agent does
not interact with a real system (or with a predefined simulator). Whether the agent succeeds
or fails at distributing jobs in a dew environment partially depends on how we define those
four elements: S, A, r, and p.

To define a dew environment in terms of S, A, r, and p, our starting point was
EdgeDewSim Extended Simulator. As presented in Section 4, EdgeDewSim Extended Sim-
ulator inherits the simulation features of DewSim and EdgeDewSim, including the energy
consumption of each device, battery-dependent and non-battery-dependent devices as con-
tributors of an SCE, the job executions, and user behaviors, and, in this work, it incorporates
features to represents network status changes due to nodes’ mobility. Thus, the transition
probabilities p in the environment are modeled by EdgeDewSim Extended Simulator.

To define the state space S, we considered two critical features of RL. First, most RL
agents do not have memory. They learn a policy π(at|st) that makes decisions purely
based on the information available in the current state st ∈ S. Thus, st must include all the
relevant information the agent needs to assign a job to the correct device. Second, we note
that any information identical for all the states s ∈ S is useless for the agent. The reason is
that the agent has to discriminate whether action a is a good action in state s. If a subset of

Appl. Sci. 2024, 14, 3206 11 of 22

information x ⊂ s is identical for all states, then x provides no discriminatory information
to the agent.

We then define the state space as follows: S = D × J × C, where (d, j, c) ∈ S. Specif-
ically, d ∈ D contains information on the current state of each device. This information
includes, for each device, its CPU usage percentage, its remaining battery, the network
strength, the connection status, and its current job queue. Then, j ∈ J provides information
about the job the scheduler must assign next. This information includes the job’s ops,
input size, and output size. Finally, c ∈ C contains general statistics about the previously
completed jobs. These statistics include the number of jobs that have arrived, the number
of jobs that have been completed, the sum of the jobs’ ops that have been completed, and
the elapsed time since the beginning of the simulation (i.e., t − t0). We note that s ∈ S
comprises all the necessary information to correctly assign job j to a device in a fixed dew
environment. If the environment is not fixed, we might want to add some additional
features, such as the number of instructions per second a device can execute (or its battery
capacity). We discuss this further in Section 8.

Our definition of the action space A is as expected. We define one possible action per
device in the dew environment. Then, whenever the agent executes action ai ∈ A given the
current state (d, j, c) ∈ S, the job j is assigned to the device associated with action ai.

Finally, the reward function is equal to the number of successful jobs executed in the
dew environment, as defined in Equation (6). Formally,

r(s, a, s′) =

{ |Jc |
|J| if s′ is terminal

0 otherwise
(7)

Note that this reward function only rewards the agent in terminal states. After the
agent finishes distributing the whole sequence of jobs, the agent receives a reward equiv-
alent to the successfully executed jobs in the dew environment. As a result, any optimal
policy π∗(a|s) will optimally distribute jobs according to our problem definition from
Section 6.4.2.

As a summary of this section, Figure 2 illustrates the training loop and how a learning
agent interacts with our proposed environment. The agent assigns the current job to a
particular device using its actions. In response, the dew environment returns the next state
st and a reward rt. The state includes information about the current job to be assigned and
the state of the devices. The reward rt will be zero unless the agent has just distributed the
last job. If that is the case, rt will be equivalent to the successfully executed jobs. Since the
agent tries to maximize the reward received from the environment, it will learn to distribute
jobs to improve the performance of the dew environment.

Appl. Sci. 2024, 1, 0 12 of 23

RL Agent

(e.g., PPO or
A3C)

Environment

(EdgeDewSim)

Action ati assigns job t to device i

State st includes the state of devices, the
current job, and the job completion stats.

Reward rt depends on the GIPS

Figure 2. Training loop of the EdgeDewSim Extended Simulator environment.

6.4.4. Implementation Details

For the dew environment simulator, we used EdgeDewSim Extended Simulator. This
version can handle both battery-dependent and non-battery-dependent devices. To simplify
the process of training and testing deep RL methods, we also developed an OpenAI Gym
environment [60]. This allowed us to quickly and easily test different RL agents using
existing implementations made for the OpenAI Gym library.

Since EdgeDewSim Extended Simulator is written in java and OpenAI Gym is written
in python, we developed an interface that allowed us to control EdgeDewSim Extended
Simulator from OpenAI Gym. To do so, we added logic on top of EdgeDewSim Extended
Simulator to delegate the scheduling decision to an external agent so that every time a
job arrives, the simulator broadcasts the general state of the simulation and then listens
for which device has to be selected, as shown in Figure 3. Then, we developed a new
RL environment, following the guidelines from OpenAI Gym [60], that undertakes three
main things: (i) it establishes the connection with the simulator, (ii) it sends actions to the
simulator, and (iii) it resets the environment to restart from an initial state. Further details
about our implementation can be found in Section 4.

Simulation RemoteLoadBalancing External
EnvironmentDevice

runSimulation()

receiveEvent(Job)

sendData(Job, devices)

device

sendJob(job)

sendEvent(job, status)

Figure 3. Sequence diagram of one job scheduling with an external environment.

7. Methodology and Experimentation
7.1. Methodology

The experimental design utilized in this study can be categorized into two main groups.
The initial group focused solely on human-designed heuristics. It aimed to evaluate the
effectiveness of the proposed heuristics, specifically ReleSEAS and RelBPA, in comparison
to random device selection and previously examined heuristics, namely, eSEAS and BPA, as

Figure 2. Training loop of the EdgeDewSim Extended Simulator environment.

6.4.4. Implementation Details

For the dew environment simulator, we used EdgeDewSim Extended Simulator. This
version can handle both battery-dependent and non-battery-dependent devices. To simplify
the process of training and testing deep RL methods, we also developed an OpenAI Gym

Appl. Sci. 2024, 14, 3206 12 of 22

environment [60]. This allowed us to quickly and easily test different RL agents using
existing implementations made for the OpenAI Gym library.

Since EdgeDewSim Extended Simulator is written in java and OpenAI Gym is written
in python, we developed an interface that allowed us to control EdgeDewSim Extended
Simulator from OpenAI Gym. To do so, we added logic on top of EdgeDewSim Extended
Simulator to delegate the scheduling decision to an external agent so that every time a
job arrives, the simulator broadcasts the general state of the simulation and then listens
for which device has to be selected, as shown in Figure 3. Then, we developed a new
RL environment, following the guidelines from OpenAI Gym [60], that undertakes three
main things: (i) it establishes the connection with the simulator, (ii) it sends actions to the
simulator, and (iii) it resets the environment to restart from an initial state. Further details
about our implementation can be found in Section 4.

Simulation RemoteLoadBalancing External
EnvironmentDevice

runSimulation()

receiveEvent(Job)

sendData(Job, devices)

device

sendJob(job)

sendEvent(job, status)

Figure 3. Sequence diagram of one job scheduling with an external environment.

7. Methodology and Experimentation
7.1. Methodology

The experimental design utilized in this study can be categorized into two main groups.
The initial group focused solely on human-designed heuristics. It aimed to evaluate the
effectiveness of the proposed heuristics, specifically ReleSEAS and RelBPA, in comparison
to random device selection and previously examined heuristics, namely, eSEAS and BPA, as
elaborated in Section 7.2. The second group was devoted to substantiating the capacity of a
reinforcement learning agent to emulate the performance of human-designed heuristics.
Furthermore, it sought to demonstrate the agent’s adaptability to novel conditions by
utilizing transfer learning techniques; this will be explained in depth in Section 7.3.

7.2. Human-Designed Heuristics

The method employed for the assessment of human-designed heuristics comprised
two sequential stages. The initial step involved generating connection and disconnec-
tion events for individual devices, while the subsequent stage entailed the execution of
simulations utilizing the EdgeDewSim Extended Simulator.

As mentioned in Section 5, we employed random walk and random waypoint models
to generate synthetic data for our experimental work. For each distinct human mobility
scenario, we introduced variations generated randomly using a variation of generation of
some parameters of these models (like speed, initial position, connection, and disconnection
events). This approach yielded a range of scenarios representing diverse conditions for
device mobility within the network context.

We performed 20 simulation runs for each model with unique parameter settings that
affect human movement patterns. Despite the variations, certain fundamental elements

Appl. Sci. 2024, 14, 3206 13 of 22

remained unchanged in both models. These constants encompassed a 60 m by 60 m grid
defining device movement, a consistent use of 25 devices, and a centrally located Wi-Fi
access point covering a 30 m radius. Given the reliance of these models on random variables,
we conducted 10 sets of 20 simulations to obtain an average value for job completion and
performance. The objective behind using this number of sets is to have multiple cases using
the mobility models to generate data by adjusting the parameters so the heuristics and the
RL agent can interact with multiple different scenarios.

7.3. Reinforcement Learning Agent

The training method used for the RL agent was divided into two phases. The first was
to train an agent using a set randomly selected from 20 random walk environments. A
different selection was made for each iteration in the training phase. The environments
were the same used in Section 5, each composed of 25 devices, a 60 m by 60 m grid with
centrally located Wi-Fi access covering a 30 m radius. The Job J set contains jobs with
[15–25] Kb data input and [1–2] Kb data output and computing requirements in the range
of [80–125] mega float-point operations.

For the RL agent, we used a convolutional neural network (CNN) with five layers
of 512 neurons, based on previous experience [9] where this architecture demonstrated a
good balance between computational efficiency and learning capacity. The learning rate
was set to 1 × 10−5, chosen to ensure a stable and gradual learning progress. We utilized
32 Gym environments to parallel and speed up the training process. The lambda and
gamma functions were both set to 1.0 to give equal importance to all states in the value
function estimation. The model was trained for 5 × 107 steps with a batch size of 64, which
were determined through experimental tuning to optimize the trade-off between training
time and model performance.

The other phase was related to the transfer learning phase due to the high probability
of overfitting in RL [61,62]. We trained a new environment using the previous model as a
base, and with fewer steps, we achieved convergence in the new environment. We repeated
these steps with different environments and collected the data. The new random waypoint
environments with 25 devices and 1500 JOBs were new. We trained the latest models in
1 × 106 steps and a batch size of 64.

7.4. Experimentation

This section aims to summarize the results obtained from the experiments defined in
the previous section, which will be separated into two subsections. In conformity with [7],
the most relevant metrics to review are the job completion rate and the executed operations
at the SCE level, i.e., considering that an SCE, as a virtual processing node, renders execution
services to an external entity through the devices integrating it. As mentioned in Section 7.2,
we have 200 instances by model and set of jobs, with 800 experimentation scenarios. The
experiment results are presented in the following subsection, and in Section 7.6 they will be
further analyzed. Due to resource computing limitations, we could not fully simulate a
video stream on the RL agent. We made a sample of 1500 jobs to train the agent to have
representative results. On the other hand, the human-designed heuristics do not require
heavy computation resources, so we ran experiments with the 1500 jobs sample and the
complete set of 36,000 jobs.

7.4.1. Job Completion

This section is divided into two parts: the results regarding human-designed heuristics
and those obtained by the RL agent. In Figure 4, we present the average from 20 simulations
when using random walk along with the 1500 jobs set; analogously, the same results are
given when using random waypoint in Figure 5. In Figures 6 and 7, we present the same
20 simulations but using the entire dataset of jobs.

As mentioned previously, we performed experiments on two different sets of jobs. The
primary goal of the comprehensive dataset of jobs is to highlight that when the simulation

Appl. Sci. 2024, 14, 3206 14 of 22

runs longer and thus encompasses more events, the proposed human-designed heuristics
demonstrate improved performance compared to their original counterparts. The results
shown in Table 1 are proof of this since in the set with 1500 jobs, the original human-
designed heuristics do not deviate too much from the new variation we present in this
paper. For instance, the difference in job completion between BPA and RelBPA is 8.21%,
whereas between eSEAS and ReleSEAS it is 10.58%. On the other hand, when using
the complete set with 36,000 jobs, the difference between BPA and RelBPA increases to
16.49%, then again for eSEAS and ReleSEAS, the difference rises to 18.83%. In both cases,
the difference in job completion between the original human-crafted policy and the new
version almost doubles when using the complete set of jobs over the small set. This same
behavior can be seen in Table 2, in which the usage of Random Waypoint makes this
difference smaller than the results obtained using Random Walk. An additional Random
scheduler is added to these results to use as a baseline, which distributes the jobs randomly
every time the given event is received.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jo
b

Co
m

pl
et

io
n

(%
)

Simulation Number

Random

BPA
eSEAS

RelBPA

ReleSEAS

Figure 4. Average job completion for each simulation using random walk to generate connection
events and the 1500 jobs set.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jo
b

Co
m

pl
et

io
n

(%
)

Simulation Number

Random
BPA
eSEAS
RelBPA

ReleSEAS

Figure 5. Average job completion for each simulation using random waypoint to generate connection
events and the 1500 jobs set.

Appl. Sci. 2024, 14, 3206 15 of 22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jo
b

Co
m

pl
et

io
n

(%
)

Simulation Number

Random

BPA
eSEAS

RelBPA
ReleSEAS

Figure 6. Average job completion for each simulation using random walk to generate connection
events and the full set of jobs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jo
b

Co
m

pl
et

io
n

(%
)

Simulation Number

Random
BPA
eSEAS
RelBPA
ReleSEAS

Figure 7. Average job completion for each simulation using random waypoint to generate connection
events and the full set of jobs.

Table 1. Average job completion throughout all simulations using random walk.

Job Set Random BPA eSEAS RelBPA ReleSEAS

1500 38.69% 40.38% 40.40% 48.59% 50.98%
36,000 (full set) 5.75% 7.56% 7.63% 24.05% 26.39%

Table 2. Average job completion throughout all simulations using random waypoint.

Job Set Random BPA eSEAS RelBPA ReleSEAS

1500 45.97% 67.58% 69.17% 67.75% 69.51%
36,000 (full set) 22.74% 42.21% 42.60% 49.73% 51.52%

7.4.2. Performance

As in Section 7.4.1, the current section is also divided into two subsections, one regard-
ing human-designed heuristics results and the other for the RL agent. In Figures 8 and 9,
we present the performance measured in GIPS for each human-designed heuristic using
random walk as the model to generate connection events for 20 simulations. As seen in
Figure 8, the values obtained for each simulation across all heuristics are not spread out
but are instead close, which translates to small differences between the proposed heuristics
with the reliability score and those that do not have the score. On the other hand, Figure 9
shows a different scenario where ReleSEAS and RelBPA can separate from the competitors

Appl. Sci. 2024, 14, 3206 16 of 22

in a significant way in most cases. In Figures 10 and 11, which present the performance
when using random waypoint, we can see the same behavior but with less strength.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rfo

rm
an

ce
 (G

IP
S)

Simulation Number

Random

BPA

eSEAS

RelBPA

ReleSEAS

Figure 8. Average performance in GIPS for each simulation using random walk to generate connection
events and the 1500 jobs set.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rfo

rm
an

ce
 (G

IP
S)

Simulation Number

Random

BPA

eSEAS

RelBPA

ReleSEAS

Figure 9. Average performance in GIPS for each simulation using random walk to generate connection
events and the full set of jobs.

In this metric, we use the complete and small datasets to explore whether the same
relation is in job completion. Even though both metrics are highly related, having more
completed jobs does not necessarily mean that the performance in GIPS will be equally high.
This is because modeled jobs can—as in real life—be simple or complex; we might want
to process a simple math calculation or run an image through an object detection model.
Nevertheless, the exact relationship between the original human-designed heuristics and
the proposed versions remains for both metrics.

In Figure 8, the values obtained for each simulation across all heuristics are not
scattered but are instead close, which translates to slight differences between ReleSEAS
and RelBPA with regard to the original versions. On the other hand, Figure 9 shows a
different scenario where ReleSEAS and RelBPA can significantly separate from the rest of
the policies when using the complete set of jobs. In regard to the performance metric, we
can see in Table 3 a difference of 14.98 GIPS for BPA and RelBPA, whereas for eSEAS and
ReleSEAS, the difference is 19.07 GIPS. On the other hand, when using the complete set
of jobs, the difference between BPA and RelBPA rises up to 631.9 GIPS, and then again,
for eSEAS and ReleSEAS, the difference is 724.46. This also holds when using random
waypoint, as can be seen in Table 4 and in Figures 10 and 11. Still, on a smaller scale, since
this algorithm is more stable than the random walk, the new versions of human-designed
heuristics presented in this paper thus do not outperform the classic versions in the same
ways as in the random walk scenarios, which are more dynamic or unstable.

Appl. Sci. 2024, 14, 3206 17 of 22

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rfo

rm
an

ce
 (G

IP
S)

Simulation Number

Random

BPA

eSEAS

RelBPA

ReleSEAS

Figure 10. Average performance in GIPS for each simulation using random waypoint to generate
connection events and the 1500 jobs set.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rfo

rm
an

ce
 (G

IP
S)

Simulation Number

Random
BPA
eSEAS
RelBPA
ReleSEAS

Figure 11. Average performance in GIPS for each simulation using random waypoint to generate
connection events and the full set of jobs.

Table 3. Average performance in GIPS across all simulations using random walk.

Job Set Random BPA eSEAS RelBPA ReleSEAS

1500 64.36 67.05 67.18 82.03 86.25
36,000 (full set) 231.69 303.27 305.30 935.17 1029.76

Table 4. Average performance in GIPS across all simulations using random waypoint.

Job Set Random BPA eSEAS RelBPA ReleSEAS

1500 73.68 109.30 111.60 109.65 112.23
36,000 (full set) 860.52 1588.68 1604.73 1868.67 1934.31

7.5. Reinforcement Learning Agent Results

After the training process described in Section 7.3, we compared the job completion
rate with other algorithms using the same simulation environment. The results, as shown in
Figure 12, demonstrate that a trained model can quickly adapt to environmental variations
and surpass the performance of human-designed job completion heuristics. Notably,
around iteration 50, the model in the environment mentioned in Section 7.3 outperforms
the best human-designed heuristic regarding job completion, and it continues to improve
in this metric in subsequent iterations. One of the challenges in training a reinforcement
learning agent for this use case is that the model needs to learn from multiple scenarios
to generalize effectively, which is both time-consuming and resource-intensive. However,
our objective in this paper is to provide evidence that, despite being trained in different
environments, the model can quickly adapt to new ones and excel in the metrics mentioned.

Appl. Sci. 2024, 14, 3206 18 of 22

Using the obtained model, we trained new and specific environments using the
weights obtained in the first training phase, transferring the learned weights to the new
environment. The results show that this new RL agent converges on the job completion
rate for each new simulation. Figure 13 details how the agent converges to a solution in
each training iteration. The new environments, as said in Section 7.3, were new random
waypoint environments, with 1500 JOBS and 25 devices.

1 50 100 150 200
Iterations

600

700

800

900

co
m

pl
et

ed
_jo

bs
Completed JOBS

Random
RL
BPA
eSEAS
RelBPA
Rel-eSEAS

Figure 12. RL convergence for job completion for each simulation using random walk compared to
other algorithms in the 1500 jobs set.

Figure 13. RL Convergence for job completion for each simulation using transfer learning in a random
waypoint environment compared to other algorithms in the 1500 jobs set.

Appl. Sci. 2024, 14, 3206 19 of 22

7.6. Discussion

We could extract critical results and insights from the experiments for future work.
First, the proposed reliability score, which gives a scheduler awareness of node mobility,
improves the job completeness metric with regard to human-designed heuristics, not
considering such aspect in all run experiments. Moreover, in all experiments, it can be
observed that human-crafted policies performed better with random waypoint than with
random walk. This result agrees with what the authors in Ref. [53] state: random walk is
the simplest model, and humans rarely move randomly.

We also showed that RL is viable when the RL agent is adapted to connection and
disconnection events. With sufficient training time, RL can devise a solution and even
surpass human-crafted policies in terms of job completion rate. Regarding the overfitting
problem when the agent needs to be applied in different environments, we suggest training
the model with a set of varying environment events data to reduce the probability of
overfitting and using the base model as a starting point to specialize one agent version to a
specific environment.

8. Conclusions and Future Work

This work presents the EdgeDewSim Extended Simulator, which supports the connec-
tion and disconnection of devices into the cluster and its network. With this capability, we
were able to experiment with two simple mobility models that tend to simulate a human’s
movements and incorporate a new reliability score into two very well-studied algorithms,
BPA and E-SEAS [7,22]. The reliability score offers improvements in job completeness and
operations executed, which vary depending on the scenario. For future work, it is necessary
to extend the mobility models used to generate the connection and disconnection events
to reflect real-world human movements more accurately and explore the usage of human-
generated movement data to validate the heuristics’ effectiveness. Also, as mentioned in
Ref. [9], using RL techniques makes it possible to surpass the human-designed heuristics
used in this type of environment. However, it is necessary to explore new RL techniques to
handle a broader range of dynamic jobs and explore generalization techniques to improve
the RL model’s adaptability to diverse environments.

A significant branch of future work involves the practical implementation and testing
of the proposed scheduling algorithms in real use-case scenarios. This includes deploying
the algorithms in dew computing environments, such as smart city infrastructure or in-
dustrial IoT setups, to assess their performance and robustness in real-world conditions.
By evaluating the algorithms in diverse applications, we can identify potential challenges,
refine them based on real-world feedback, and ensure their readiness for deployment in
practical settings. These efforts will bridge the gap between theoretical advancements and
practical applicability, paving the way for more reliable and effective device management
solutions in dynamic dew computing environments.

Author Contributions: Conceptualization, P.S., S.M., A.N., R.T.I., M.H. and C.M.; methodology, P.S.,
S.M., A.N., R.T.I., M.H. and C.M.; software, P.S., S.M., A.N., R.T.I., M.H. and C.M.; validation, P.S.,
S.M., A.N., R.T.I., M.H. and C.M.; formal analysis, P.S., S.M., A.N., R.T.I., M.H. and C.M.; investigation,
P.S., S.M., A.N., R.T.I., M.H. and C.M.; resources, P.S., S.M., A.N., R.T.I., M.H. and C.M.; data curation,
P.S., S.M., A.N., R.T.I., M.H. and C.M.; writing—original draft preparation, P.S., S.M., A.N., R.T.I.,
M.H. and C.M.; writing—review and editing, P.S., S.M., A.N., R.T.I., M.H. and C.M.; visualization,
P.S., S.M., A.N., R.T.I., M.H. and C.M.; supervision, P.S., S.M., A.N., R.T.I., M.H. and C.M.; project
administration, P.S., S.M., A.N., R.T.I., M.H. and C.M.; funding acquisition, P.S., S.M., A.N., R.T.I.,
M.H. and C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Agency for Research and Development (ANID)/
Scholarship Program/DOCTORADO NACIONAL/2020-21200979. We also gratefully acknowledge
funding from the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Addi-
tionally, we thank the funding provided by CONICET grant number PIBAA-28720210101298CO and
grant number PIP-11220210100138CO.

Appl. Sci. 2024, 14, 3206 20 of 22

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Source code and datasets are available at: https://github.com/psanabr
iaUC/gym-EdgeDewSim, accessed on 27 November 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, Y. Definition and categorization of dew computing. Open J. Cloud Comput. (OJCC) 2016, 3, 1–7.
2. Ray, P.P. An introduction to dew computing: Definition, concept and implications. IEEE Access 2017, 6, 723–737. [CrossRef]
3. Hirsch, M.; Mateos, C.; Zunino, A. Augmenting computing capabilities at the edge by jointly exploiting mobile devices: A survey.

Future Gener. Comput. Syst. 2018, 88, 644–662. [CrossRef]
4. Khalid, M.N.B. Deep Learning-Based Dew Computing with Novel Offloading Strategy. In Proceedings of the International

Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, Nanjing, China, 18–20 December
2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 444–453.

5. Nanakkal, A. A Brief Survey of Future Computing Technologies in Cloud Environment. Ir. Interdiscip. J. Sci. Res. (IIJSR) 2021,
4, 63–70. [CrossRef]

6. Hirsch, M.; Rodriguez, J.M.; Zunino, A.; Mateos, C. Battery-aware centralized schedulers for CPU-bound jobs in mobile Grids.
Pervasive Mob. Comput. 2016, 29, 73–94. [CrossRef]

7. Sanabria, P.; Tapia, T.F.; Neyem, A.; Benedetto, J.I.; Hirsch, M.; Mateos, C.; Zunino, A. New Heuristics for Scheduling and
Distributing Jobs under Hybrid Dew Computing Environments. Wirel. Commun. Mob. Comput. 2021, 2021, 8899660. [CrossRef]

8. Samal, P.; Mishra, P. Analysis of variants in Round Robin Algorithms for load balancing in Cloud Computing. Int. J. Comput. Sci.
Inf. Technol. 2013, 4, 416–419.

9. Sanabria, P.; Tapia, T.F.; Toro Icarte, R.; Neyem, A. Solving Task Scheduling Problems in Dew Computing via Deep Reinforcement
Learning. Appl. Sci. 2022, 12, 7137. [CrossRef]

10. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
11. Akkaya, I.; Andrychowicz, M.; Chociej, M.; Litwin, M.; McGrew, B.; Petron, A.; Paino, A.; Plappert, M.; Powell, G.; Ribas, R.; et al.

Solving rubik’s cube with a robot hand. arXiv 2019, arXiv:1910.07113.
12. Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao, J.; Jurafsky, D. Deep reinforcement learning for dialogue generation. arXiv 2016,

arXiv:1606.01541.
13. Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018, 4, eaap7885. [CrossRef]

[PubMed]
14. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutorials 2017, 19, 2322–2358. [CrossRef]
15. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019,

97, 219–235. [CrossRef]
16. Drolia, U.; Martins, R.; Tan, J.; Chheda, A.; Sanghavi, M.; Gandhi, R.; Narasimhan, P. The case for mobile edge-clouds. In

Proceedings of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th
International Conference on Autonomic and Trusted Computing, Vietri sul Mare, Italy, 18–21 December 2013; IEEE: Vietri sul
Mare, Italy, 2013; pp. 209–215.

17. Benedetto, J.I.; González, L.A.; Sanabria, P.; Neyem, A.; Navón, J. Towards a practical framework for code offloading in the
Internet of Things. Future Gener. Comput. Syst. 2019, 92, 424–437. [CrossRef]

18. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

19. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE
Access 2017, 6, 6900–6919. [CrossRef]

20. Olaniyan, R.; Fadahunsi, O.; Maheswaran, M.; Zhani, M.F. Opportunistic edge computing: Concepts, opportunities and research
challenges. Future Gener. Comput. Syst. 2018, 89, 633–645. [CrossRef]

21. Aslam, S.; Michaelides, M.P.; Herodotou, H. Internet of ships: A survey on architectures, emerging applications, and challenges.
IEEE Internet Things J. 2020, 7, 9714–9727. [CrossRef]

22. Hirsch, M.; Rodriguez, J.M.; Mateos, C.; Alejandro, Z. A Two-Phase Energy-Aware Scheduling Approach for CPU-Intensive Jobs
in Mobile Grids. J. Grid Comput. 2017, 15, 55–80. [CrossRef]

23. Hirsch, M.; Mateos, C.; Rodriguez, J.M.; Zunino, A.; Garí, Y.; Monge, D.A. A performance comparison of data-aware heuristics
for scheduling jobs in mobile grids. In Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI), Córdoba,
Argentina, 4–8 September 2017; IEEE: Córdoba, Argentina, 2017; pp. 1–8.

24. Chen, X.; Pu, L.; Gao, L.; Wu, W.; Wu, D. Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing.
IEEE Wirel. Commun. 2017, 24, 64–71. [CrossRef]

https://github.com/psanabriaUC/gym-EdgeDewSim
https://github.com/psanabriaUC/gym-EdgeDewSim
http://doi.org/10.1109/ACCESS.2017.2775042
http://dx.doi.org/10.1016/j.future.2018.06.005
http://dx.doi.org/10.2139/ssrn.3814153
http://dx.doi.org/10.1016/j.pmcj.2015.08.003
http://dx.doi.org/10.1155/2021/8899660
http://dx.doi.org/10.3390/app12147137
http://dx.doi.org/10.1126/sciadv.aap7885
http://www.ncbi.nlm.nih.gov/pubmed/30050984
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1016/j.future.2018.09.056
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1016/j.future.2018.07.040
http://dx.doi.org/10.1109/JIOT.2020.2993411
http://dx.doi.org/10.1007/s10723-016-9387-6
http://dx.doi.org/10.1109/MWC.2017.1600321

Appl. Sci. 2024, 14, 3206 21 of 22

25. Mtibaa, A.; Fahim, A.; Harras, K.A.; Ammar, M.H. Towards resource sharing in mobile device clouds. ACM SIGCOMM Comput.
Commun. Rev. 2013, 43, 51–56. [CrossRef]

26. Li, B.; Pei, Y.; Wu, H.; Shen, B. Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc
clouds. J. Supercomput. 2015, 71, 3009–3036. [CrossRef]

27. Chunlin, L.; Layuan, L. Exploiting composition of mobile devices for maximizing user QoS under energy constraints in mobile
grid. Inf. Sci. 2014, 279, 654–670. [CrossRef]

28. Birje, M.N.; Manvi, S.S.; Das, S.K. Reliable resources brokering scheme in wireless grids based on non-cooperative bargaining
game. J. Netw. Comput. Appl. 2014, 39, 266–279. [CrossRef]

29. Loke, S.W.; Napier, K.; Alali, A.; Fernando, N.; Rahayu, W. Mobile Computations with Surrounding Devices. ACM Trans. Embed.
Comput. Syst. 2015, 14, 1–25. [CrossRef]

30. Shah, S.C. Energy efficient and robust allocation of interdependent tasks on mobile ad hoc computational grid. Concurr. Comput.
Pract. Exp. 2015, 27, 1226–1254. [CrossRef]

31. Orhean, A.I.; Pop, F.; Raicu, I. New scheduling approach using reinforcement learning for heterogeneous distributed systems.
J. Parallel Distrib. Comput. 2018, 117, 292–302. [CrossRef]

32. Kaur, P. DRLCOA: Deep Reinforcement Learning Computation Offloading Algorithm in Mobile Cloud Computing. SSRN
Electron. J. 2019, 12, 238–246. [CrossRef]

33. Cheng, M.; Li, J.; Nazarian, S. DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for
cloud service providers. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju,
Republic of Korea, 22–25 January 2018; IEEE: Jeju, Republic of Korea, 2018; pp. 129–134. [CrossRef]

34. Huang, L.; Bi, S.; Zhang, Y.J.A. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-
Edge Computing Networks. IEEE Trans. Mob. Comput. 2020, 19, 2581–2593. [CrossRef]

35. Ha, S.; Choi, E.; Ko, D.; Kang, S.; Lee, S. Efficient Resource Augmentation of Resource Constrained UAVs Through EdgeCPS. In
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 27–31 March 2023; pp. 679–682.

36. Ren, J.; Xu, S. DDPG Based Computation Offloading and Resource Allocation for MEC Systems with Energy Harvesting. In
Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Virtual, 25 April–19 May 2021; IEEE:
Helsinki, Finland, 2021; pp. 1–5.

37. Zhao, R.; Wang, X.; Xia, J.; Fan, L. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things.
Phys. Commun. 2020, 43, 101184. [CrossRef]

38. Tefera, G.; She, K.; Shelke, M.; Ahmed, A. Decentralized adaptive resource-aware computation offloading & caching for
multi-access edge computing networks. Sustain. Comput. Inform. Syst. 2021, 30, 100555. [CrossRef]

39. Baek, J.; Kaddoum, G. Heterogeneous Task Offloading and Resource Allocations via Deep Recurrent Reinforcement Learning in
Partial Observable Multi-Fog Networks. IEEE Internet Things J. 2020, 8, 1041–1056. [CrossRef]

40. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based
on deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [CrossRef]

41. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. In
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April
2018; IEEE: Barcelona, Spain, 2018; pp. 1–6. [CrossRef]

42. Alfakih, T.; Hassan, M.M.; Gumaei, A.; Savaglio, C.; Fortino, G. Task Offloading and Resource Allocation for Mobile Edge
Computing by Deep Reinforcement Learning Based on SARSA. IEEE Access 2020, 8, 54074–54084. [CrossRef]

43. Zhao, L.; Li, H.; Zhang, E.; Hawbani, A.; Lin, M.; Wan, S.; Guizani, M. Intelligent Caching for Vehicular Dew Computing in Poor
Network Connectivity Environments. ACM Trans. Embed. Comput. Syst. 2024, 23, 1–24. [CrossRef]

44. Khatua, S.; Manerba, D.; Maity, S.; De, D. Dew Computing-Based Sustainable Internet of Vehicular Things. In Dew Computing:
The Sustainable IoT Perspectives; Springer: Berlin/Heidelberg, Germany, 2023; pp. 181–205.

45. Pal, M.N.; Sengupta, D.; Tran, T.A.; De, D. Machine Learning-Based Sustainable Dew Computing: Classical to Quantum. In Dew
Computing: The Sustainable IoT Perspectives; Springer: Berlin/Heidelberg, Germany, 2023; pp. 149–177.

46. Chakraborty, S.; De, D.; Mazumdar, K. DoME: Dew computing based microservice execution in mobile edge using Q-learning.
Appl. Intell. 2023, 53, 10917–10936. [CrossRef]

47. Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; Schulman, J. Quantifying generalization in reinforcement learning. In Proceedings of
the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 1282–1289.

48. Cobbe, K.; Hesse, C.; Hilton, J.; Schulman, J. Leveraging procedural generation to benchmark reinforcement learning. In
Proceedings of the 37th International Conference on Machine Learning (ICML), Virtual Event, 13–18 July 2020; pp. 2048–2056.

49. Hirsch, M.; Mateos, C.; Rodriguez, J.M.; Zunino, A. DewSim: A trace-driven toolkit for simulating mobile device clusters in Dew
computing environments. Softw. Pract. Exp. 2020, 50, 688–718. [CrossRef]

50. Manweiler, J.; Santhapuri, N.; Choudhury, R.R.; Nelakuditi, S. Predicting length of stay at wifi hotspots. In Proceedings of the
2013 IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 3102–3110.

51. Blanford, J.I.; Huang, Z.; Savelyev, A.; MacEachren, A.M. Geo-located tweets. Enhancing mobility maps and capturing
cross-border movement. PLoS ONE 2015, 10, e0129202. [CrossRef]

52. Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini,
M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 1–74. [CrossRef]

http://dx.doi.org/10.1145/2534169.2491276
http://dx.doi.org/10.1007/s11227-015-1425-9
http://dx.doi.org/10.1016/j.ins.2014.04.018
http://dx.doi.org/10.1016/j.jnca.2013.07.007
http://dx.doi.org/10.1145/2656214
http://dx.doi.org/10.1002/cpe.3297
http://dx.doi.org/10.1016/j.jpdc.2017.05.001
http://dx.doi.org/10.2139/ssrn.3446601
http://dx.doi.org/10.1109/ASPDAC.2018.8297294
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1016/j.phycom.2020.101184
http://dx.doi.org/10.1016/j.suscom.2021.100555
http://dx.doi.org/10.1109/JIOT.2020.3009540
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1109/WCNC.2018.8377343
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1145/3643038
http://dx.doi.org/10.1007/s10489-022-04087-x
http://dx.doi.org/10.1002/spe.2696
http://dx.doi.org/10.1371/journal.pone.0129202
http://dx.doi.org/10.1016/j.physrep.2018.01.001

Appl. Sci. 2024, 14, 3206 22 of 22

53. Solmaz, G.; Turgut, D. A Survey of Human Mobility Models. IEEE Access 2019, 7, 125711–125731. [CrossRef]
54. Falaki, H.; Mahajan, R.; Kandula, S.; Lymberopoulos, D.; Govindan, R.; Estrin, D. Diversity in Smartphone Usage. In Proceedings

of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys’10), New York, NY, USA, 15–18 June
2010; pp. 179–194. [CrossRef]

55. Keramat Jahromi, K.; Zignani, M.; Gaito, S.; Rossi, G.P. Simulating human mobility patterns in urban areas. Simul. Model. Pract.
Theory 2016, 62, 137–156. [CrossRef]

56. Henderson, T.; Kotz, D.; Abyzov, I. The changing usage of a mature campus-wide wireless network. Comput. Netw. 2008,
52, 2690–2712. [CrossRef]

57. Gorawski, M.; Grochla, K. Review of mobility models for performance evaluation of wireless networks. In Man-Machine
Interactions 3; Springer: Berlin/Heidelberg, Germany, 2014; pp. 567–577.

58. Panisson, A. Pymobility v0.1—Python Implementation of Mobility Models. 2015. Available online: https://zenodo.org/records
/9873 (accessed on 27 November 2023).

59. Zhao, K.; Tarkoma, S.; Liu, S.; Vo, H. Urban human mobility data mining: An overview. In Proceedings of the 2016 IEEE
International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 1911–1920.

60. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,
arXiv:1606.01540.

61. Zhang, A.; Ballas, N.; Pineau, J. A dissection of overfitting and generalization in continuous reinforcement learning. arXiv 2018,
arXiv:1806.07937.

62. Zhang, C.; Vinyals, O.; Munos, R.; Bengio, S. A study on overfitting in deep reinforcement learning. arXiv 2018, arXiv:1804.06893.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2939203
http://dx.doi.org/10.1145/1814433.1814453
http://dx.doi.org/10.1016/j.simpat.2015.12.002
http://dx.doi.org/10.1016/j.comnet.2008.05.003
https://zenodo.org/records/9873
https://zenodo.org/records/9873

	Introduction
	Edge and Dew Computing
	Related Work
	EdgeDewSim Extended Simulator
	Device Connection Score
	Device Connection Event
	Device Disconnection Event

	Human Mobility Modeling
	Random Walk
	Random Waypoint

	Connection-Aware Scheduling Heuristics
	Reliability Score
	ReleSEAS
	RelBPA
	Connection-Aware Reinforcement Learning Agent
	Notation
	Problem Definition: Job Scheduling in Dew Computing
	Environment Definition: States, Actions, and Rewards
	Implementation Details

	Methodology and Experimentation
	Methodology
	 Human-Designed Heuristics
	Reinforcement Learning Agent
	Experimentation
	Job Completion
	Performance

	Reinforcement Learning Agent Results
	Discussion

	Conclusions and Future Work
	References

