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Abstract: Numerical simulations play a vital role in the modern engineering industry, especially
when faced with interconnected challenges such as particle interactions and the structural integrity of
conveyor systems. This article focuses on the handling of materials and emphasizes the importance
of using parametric numerical analysis to improve efficiency, reduce wear, and enhance the structural
integrity of horizontal screw conveyors. Through the utilization of the Design of Experiments, we
systematically investigated critical parameters such as screw pitch, clearance, wear, rotational velocity,
and additional structural factors. This examination was carried out within a well-defined parametric
framework, utilizing a combination of software tools provided by the Ansys suite and Minitab. The
findings demonstrate the effectiveness of the Design of Experiments analysis in achieving improved
performance and provide valuable insights for engineers and researchers involved in the design of
conveyor systems. Furthermore, this comprehensive approach clarifies how conveyor systems re-
spond to changes in parameters and highlights the complex interaction between transported particles
and the conveyor system. We present a detailed analysis that clarifies the complex relationships and
dependencies among different parameters, providing engineers and researchers with valuable in-
sights. By understanding the interactions of these factors, the methodology provides not only results
but also a strategic framework for advancing conveyor system design and engineering practices.

Keywords: discrete element method; design optimization; horizontal screw conveyors; parametric
study; conveying equipment; bulk handling; bulk solids; abrasive wear; screw conveyor; FEA;
performance analysis

1. Introduction

In the era of Industry 4.0 and highly developed economies, ensuring the efficient
and reliable transportation of bulk solids is crucial for the smooth operation of various
industrial sectors. Transport systems play a central role in production infrastructure,
serving as the driving force that facilitates the smooth supply of essential raw materials for
manufacturing processes and other logistical operations [1]. The transportation of diverse
materials constitutes a considerable aspect of industrial production. An underexplored
realm within this domain refers to the processes associated with materials in solid aggregate
states, specifically in the form of bulk solids, along with their transportation—a substantial
component across diverse industrial sectors [2]. The composition and condition of bulk
solids in the input or output stages, along with the associated costs during the manipulation
and transportation of raw materials or final products, play a vital role in most of the listed
industries [3]. Therefore, investigations into the behaviour of bulk solids are crucial to
ensure precision and optimize production efficiency, particularly in the context of the bulk
material handling industry.

Despite extensive theoretical research and conventional experiments conducted in the
past to increase the performance of different conveyors, we still face limitations in providing
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detailed particle-level data. This information is vital for comprehending the fundamental
mechanisms governing the material flow of granular materials and powders, which are key
aspects in understanding the phenomena and overall performance of conveyors. In some
cases, due to demanding boundary conditions and complex mathematical models, both
analytical and empirical approaches may fall short of providing an accurate description
of the system. As a result, modern methodologies for numerical simulation of material
handling systems rely on sophisticated numerical techniques. Numerical modelling of
particle systems is nowadays crucial for designing modern material handling systems and
understanding interactions among discrete particles, ranging from fine powders to larger
granular materials. Discrete Element Methods (DEM) have been in use for decades, with
their origins found in B. Alder’s work on Molecular Dynamics (MD) over fifty years ago [4].
Nevertheless, the significant adoption of DEM began in 1979 when Cundall and Strack
introduced an efficient tool for tackling diverse challenges in particle mechanics [5]. The
development of DEM over the years has positioned DEM as a powerful tool for designing
and understanding the challenges of material handling systems [6].

Among basic material handling systems, screw conveyors have become a fundamental
material handling device in various industries, including ports, agriculture, and industrial
processes [7]. The screw conveyor is a widely used material handling device for trans-
porting granular material and powder in various industries such as food, pharmaceutical,
chemical, and agricultural. It is favoured for its efficiency, cost-effectiveness, compact
structure, and ability to provide accurate and uniform feeding [8]. Screw conveyors are
primarily employed for mixing [9,10], short-distance transportation, and lifting of bulk
materials and powders [11]. In the past, researchers in the design of screw conveyors relied
on theoretical descriptions based on partially derived analytical solutions [12–15]. This
approach is suitable for addressing idealized geometries and simplified systems. These
analyses cannot provide insights into phenomena such as particle-particle interaction,
particle-wall interaction, and inter-particle forces [16]. In practice, the design phase relies
on standards [17,18], empirical estimates, experiential results, and results from partial
experiments. Experiments with technical devices are usually cost-intensive and time-
consuming. They cannot be avoided entirely, as they are often necessary for determining
basic contact parameters and calibrating the numerical model [19]. More suitable and
increasingly used are discrete numerical methods, which enable the description and even
optimization of highly complex geometries and conveyors. Although their mechanical
design appears simple, the behaviour of granular solids and powders during transport is
highly complex [16]. Screw conveyors have previously been examined and analyzed in the
existing literature, with DEM analysis presented in reference [20]. This analysis specifically
investigated screw and shaftless screw conveyors for various free-flowing bulk solids,
which are typically easy to handle. As demonstrated in reference [21], multiple existing
studies have already addressed the impact of geometric design, operating parameters, and
mixing characteristics on various types of screw conveyors and feeders. Owen et al. [22]
investigated how varying inclination angles, rotational speeds, and filling rates impact con-
veyor performance including conveying velocity, mass flow rate and power consumption.
Hu et al. [23] utilize the Discrete Element Method (DEM) to assess the efficiency of a screw
conveyor. The analysis involves visualizing particle motion, determining angular and axial
particle velocities, calculating overall torque and total force, and evaluating kinetic energy
and total energy dissipation within the system. Wang et al. [24] simulated particle flow
in a screw conveyor, observing increased mass flow rates with higher speeds and filling
levels. Fernandez et al. [25] studied screw feeders with different blade designs. It reveals
critical factors impacting flow uniformity, power consumption, and wear, emphasizing the
importance of screw design in optimizing feeder performance. Provided studies are limited.
They examined the screw conveying characteristics, omitted significant material properties,
including particle shape and size, and neglected to properly calibrate material properties.
Govender et al. [26] take a step further when they address the impact of particle shape,
particularly faceted polyhedral particles, on the behaviour of materials in screw conveyors.
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It finds that while spheres hold similar bulk discharge rates to certain polyhedra at lower
speeds, polyhedra generally exhibit a larger fraction of normal impacts between particles
and increased abrasion, while spheres dissipate more energy as shear between particles.
Sun et al. [27] also studied significance of particle shape on conveying performance and
wear, with particles’ shape index affecting collision frequency and energy consumption,
particularly in particle-wall collisions.

In summary, existing research on screw conveyors has provided insights into conveyor
performance under varying operational conditions such as rotational velocities, filling rates,
and screw designs, influencing mass flow rates. However, these studies often overlook
particle properties like shape, size and calibration overall, limiting the accuracy of conveyor
descriptions and study applicability across different operating regimes and states of con-
veying materials. Additionally, despite a partial understanding of how input parameters
impact specific conveyor configurations, there remains a notable absence of studies where
optimization is conducted to determine optimum parameters. This was also recently high-
lighted by Chen et al. [14], who first proposed a method based on the combination of DEM
and NSGA-II algorithms to analyze and improve the conveying efficiency while reducing
blade wear in vertical screw conveyors transporting cohesive particles. Moreover, there are
multiple research papers focusing on the combined analysis of observing different outputs
of the system. For example, conveying efficiency and blade wear or conveying efficiency
and power consumption, highlighting a significant gap in the literature. Moreover, there’s
an additional gap in addressing structural integrity concerns during conveyor design. To
further bridge this gap during this study we adopted an approach integrating the Discrete
Element Method (DEM) with Finite Element Analysis (FEA) and Design of Experiments
(DOE) to thoroughly investigate the geometry properties and dynamics of screw conveyors.
This approach considers both geometric and kinematic parameters for analysis, calibration,
and optimization. A methodological approach is adopted using numerical simulations to
optimize equipment design for transporting abrasive powder materials. By calibrating ma-
terial models and integrating various simulation methods, we identify critical parameters
and optimize system performance, focusing on mass flow and wear reduction of screw
blades. The outcomes of our study contribute to understanding screw conveyor systems
and provide valuable insights for enhancing efficiency and reducing wear in handling
abrasive powders. Additionally, it highlights the importance and significance of specific
variables across different response metrics. Based on the described main research questions
where the following:

• Can the abrasive powder material model be effectively calibrated through a com-
bination of literature review, angle of repose, and shear tests to ensure an accurate
representation of material behaviour within DEM simulations?

• Can Design of Experiments (DOE) be applied to systematically analyze the impact of
various factors, such as screw pitch, clearance, wear, and rotational velocity, on critical
screw conveyor performance metrics including mass flow, power consumption, wear,
stresses, deformations, and their dependencies?

• Can response surface optimization be applied to identify optimum parameters for
maximizing mass flow while minimizing wear?

• Can insights from parametric numerical analysis and utilization of DOE and response
surface optimization be translated into practical guidelines for engineers designing
efficient conveyor systems?

2. Materials and Methods

Given that the modelling methodology relies on the DEM, it is appropriate to give
a short overview in the subsequent sections. This includes a discussion of the associated
models and contemporary approaches incorporated into the numerical model.
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2.1. Discrete Element Method

The DEM is a Lagrangian numerical method where each particle is treated as a distinct
entity possessing individual characteristics. Thus, mi is the mass of the specified particle, Ii
is the corresponding moment of inertia, which, for spherical objects, is not tensorial but is
expressed as a simple scalar. Ri is the associated radius, and νi represents the Poisson’s
ratio. The temporal evolution of these attributes follows the integration of Newton’s second
law of motion.

In our study, we employ spherical elements, and for a spherical particle, this results in
a system of three vector equations (nine equations in total in three dimensions) [28].

mi ai = mi
d
dt

vi =
nc

∑
j=1

Fc
ij +

nw

∑
k=1

Fw
ik + Fg

i + Fext
i (1)

Ii ϑi = Ii
d
dt

ωi =
nc

∑
j=1

Tc
ij + Trol

ij +
nw

∑
j=1

Tc
ik + Trol

ik (2)

where Fc
ij is the force at the contact point between particles i and j. Fw

ik analogously follows
as the force at the contact point between particle i and a wall section k within the bounding
box. Fg

i is a body force on the particles (e.g., gravity) while Fext
i represents non-contact

forces such as electrostatic, van der Waals, cohesive forces or particle-fluid interaction
forces. Finally, Tc

ij and Trol
ij are the contact torque and rolling friction torque applied to

particle i due to contact i-j, and Tc
ik and Trol

ik are the corresponding torque components for
particle wall collisions.

Contact Model

Introducing the variables δn and δt to signify normal and tangential overlap, re-
spectively, the “soft sphere” modelling approach involves rigid particles that simulate
deformation through superposition. The computation of normal and tangential contact
forces involves determining fabricated overlaps between “non-deformable” particles in
their respective directions. This is shown schematically in Figure 1a. There are many force
models within DEM where the normal and tangential contact forces typically consist of
elastic (spring) and dissipative (dashpot) forces, giving rise to the depicted generalized
spring and dashpot model [28].

Fc
ij = Fn

ij + Ft
ij =

(
−(knδn)nij − (ηn vn

rel)
)
+

(
−
(
kt δt )− (

ηt vt
rel
))

(3)
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Figure 1. (a) Contact model based on Hertzian mechanics and Mindlin’s theory, used to simulate
particle interactions within the Discrete Element Method (DEM); (b) Soft sphere contact forces
decomposition process illustrating the breakdown of contact forces into their constituent components.
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In the Equation (3) we introduced spring stiffness coefficients kn and kt in the normal
nij and tangential directions tij, while similarly denoting the damping coefficient with
the symbol η for both mentioned directions. To compute arbitrary contact models, it is
necessary to calculate the velocities in the normal vn

rel and tangential vt
rel directions.

In this study, we utilized the Hertzian model in the normal direction and the Mindlin-
Deresiewicz model in the tangential direction, as illustrated in Figure 1b. The rolling friction
model C was utilized which allows the rolling resistance torque to vary within the defined
limits, addressing the discontinuity observed in Model A at zero angular velocity, which is
present when using Rolling friction type A [29].

In particulate systems, the interactions between particles and boundaries induce shear
forces, denoted by the tangential component of contact. Previous research [30,31] has
explored the relationship between the energy resulting from shear-normal impacts and
the wear rate in mechanical contacts. These studies emphasize the significant impact
of shear component-related energy on surface material removal rates. The analysis of
wear within this model delves into the concept of shear intensity, a fundamental measure
representing the power transferred per unit area. The application of shear intensity in this
model provided a method for qualitatively assessing wear phenomena. By quantifying
the power transferred per unit area during collisions, the model can offer insights into
the extent of wear on geometric surfaces. This energy metric finds application in abrasive
wear models, particularly in assessing shear wear on geometric surfaces. The model can be
directly correlated with wear phenomena, facilitating the determination of abrasive wear
on geometric surfaces. All forms of intensity derived from boundary collision statistics are
calculated per individual boundary triangle [32].

IShear
b,T =

∑
Nκ,T
κ=1

(
WShear

κ

)
b

AT∆tout
(4)

where AT is the boundary area, ∆tout data collection time interval and WShear
κ is the shear

work of a particle-boundary collision. For additional information, please refer to [32].
Additionally, an extra wear model, namely the Archard model, was incorporated. This
model, based on the research of John F. Archard, ref. [33] suggests that the amount of
material removed from the surface correlates directly with the frictional work executed
by particles in motion on the surface. Despite qualitative analysis, we have the ability to
visually depict surface wear more elegantly and streamline the summation of surface wear,
exclusively within the final idealized model. Refer to literature sources [32] for a detailed
discussion on the exact computations of coefficients. Due to conciseness, a comprehensive
explanation is omitted here.

The coupling between DEM and FEA enables the prediction of stress and strain
responses in structures under bulk material loading conditions. An essential objective
involves determining the node forces according to the applied load for every element. M.
Dratt et al. [34] showed while this process is straightforward for basic meshes, it necessi-
tates further consideration when accommodating modern high-order shell and volume
elements. In this study, coupling DEM-FEA was conducted through a well-established
workflow within the Ansys Workbench environment, specifically between Ansys Rocky
and Ansys Transient. By running Boundary Collision Statistics, we can capture the average
collision forces exerted on boundaries. These forces can be exported to external software for
structural analysis. Typically, boundary conditions for such analyses require nodal forces,
which are the forces acting on the vertices of the triangles forming the boundaries. Thus,
to streamline the data transfer to finite element software, Rocky offers these nodal force
values, derived from the collected forces per boundary triangle. The determination of these
forces is achieved using the following expression [32].

Fγ
b,T =

∑
Nκ,T
κ=1 Jγκ
∆tout

(5)
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The impulse associated with the total force exerted over a boundary triangle during a
collision is denoted as Jγκ where γ is a component for any of the Cartesian components. the
summation in this equation encompasses all collisions recorded against boundary triangle
T during the data collection interval ∆tout. To derive the nodal force values, it is assumed
that collisions over a boundary triangle are uniformly distributed, allowing the resulting
force on the boundary triangle to be evenly divided among its three vertices.

2.2. Used Particle Properties

Alumina also referred to as aluminium oxide (Al2O3), has exceptional qualities such
as hardness, wear resistance, and chemical inertness, making it a premier choice for various
industrial applications involving abrasion. In the field of grinding tools, alumina is a
standout choice, serving as either an abrasive grain or a crucial component in abrasive
formulations. Alongside alumina, a diverse range of abrasive materials, including silicon
carbide, diamond, cubic boron nitride, and corundum, plays a significant role in this sector.
The applications of aluminium oxide are extensive, spanning from wear protection coatings
in machines and plants to corrosion protection in the chemical industry. Additionally,
it finds use as insulation material in electronics and high-temperature applications. The
suitability of aluminium oxide, corundum, and other materials depends on factors such
as their content, grain size, and porosity, all of which are decisive for their specific areas
of application in diverse industrial scenarios involving abrasion, wear protection, and
corrosion resistance [35,36].

Particle Shape and Size Distribution

The potential for modelling at the particle level is a key advantage of the Discrete Ele-
ment Method (DEM). However, real-world applications encounter a significant challenge
due to the uncontrollable increase in number of particles. These systems, often compris-
ing millions or even billions of individual particles, result in computationally expensive
simulations that are frequently impractical. As computational capabilities have advanced,
more complex non-spherical shapes have been incorporated using various techniques [32].
It’s essential to note that the particle shape and size significantly impact all other model
parameters requiring calibration and should be the initial consideration when conducting
numerical simulations. In the case of conducting numerical simulations of abrasive pow-
ders (Figure 2), physical particles exhibit non-spherical shapes. Accurately characterizing
these shapes remains exceedingly difficult due to their irregular nature. Due to a lack of
computing resources, we implemented
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Figure 2. A representative sample of abrasive alumina particles, with an average size of 150 µm, as
viewed under the microscope.

Coarse graining (CGM) is the process of simplifying a system by representing groups
of fine-scale particles or degrees of freedom with fewer, coarser-scale entities, necessitating
adjustments to the contact model while maintaining similarity to the original system [37].
The particle group has a unique scale factor fCGM that determines the parcel size and the
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number of original particles represented. The aim is to maintain the same energy density
and the evolution of energy density as per the real base model with real particle size
distribution. The CGM approach utilized by Rocky is founded on the research conducted
by Bierwisch et al. [38]. The scale factor utilizes multiplication to increase the original
particle size from Figure 3, defining the new parcel size and, consequently, determining the
number of original particles the parcel represents. The gravitational potential energy density
remains constant regardless of the particle diameter as long as the solid density and the
volume fraction of the particles remain unchanged. In order to maintain the conservation of
kinetic energy variation ∆Ekin, the velocity variation of a scaled-up system for the relative
velocities of the particles before ( va) and after the contact ( vb

)
with a constant effective

contact mass m∗ must remain equal to that of the original system during contact.

∆Ekin =
m∗

2
·
(

v2
b − v2

a

)
(6)
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Figure 3. Particle Size Distribution (blue line) of Abrasive Powder Analyzed Using Anton Paar
Litesizer 500. Dashed lines delineate the proportional distribution and magnitudes of selected
particle sizes. Supplementary visual aids include a smaller graph and a table illustrating the particle
distribution function utilized in simulation before coarse-graining.

Continuing, dimension analysis and adjustments to all contact parameters, including
but not limited to contact stiffness and damping coefficients, are necessary to ensure
compatibility with the coarse-grained model. These modifications are extensively discussed
in the work by [38], and interested readers are advised to refer to it.

In Rocky [32] the resultant Particle Size Distribution (PSD) following the DEM simula-
tion will maintain the original distribution shape, yet each particle within the simulation
will be scaled by a factor of fCGM compared to its original size. In our case, the simulation
model utilized coarse-grained particles with a scale factor of 18. A practical solution had
to be implemented by approximating particles through spherical representations. This
involved grouping spheres into three distinct size classes, as illustrated in Figure 3, where
dashed lines delineate the proportional distribution and magnitudes of selected particle
sizes. Supplementary visual aids include a smaller graph and a table illustrating the par-
ticle distribution function utilized in simulation before coarse-graining. The simulated
particle sizes can be derived by multiplying the representative particle sizes from the table
in Figure 3 by a scale factor fCGM. The parcel is a representation of fCGM

3 original particles
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due to the relationship between the scale-factor and volume. Due to all aproximations made
calibration plays an essential role in ensuring the production of robust and dependable
simulation results.

Due to simplicity, an assumption was made that calibrated spherical particles would
sufficiently describe material flow. Following this, a thorough material calibration, detailed
in subsequent sections, was conducted. This calibration process integrated the coarse-
grain methodology and categorization based on particle size distribution. In the context
of analyzing abrasive powders, precise material calibration becomes crucial, particularly
when faced with computational limitations for handling extensive simulations.

The highly irregular and random shape of sand particles represents significant chal-
lenges, making it inconvenient to account for particle shape. Additionally, substantial
computing power is required for accurate shape analysis. In our study, we utilized a
technique described by C.M. Wensrich and A. Katterfeld [29] to adjust rolling friction,
aiming to compensate for the effects of shape. Recognizing the computational challenges
associated with accurately modelling shape in discrete element method (DEM) simulations,
we turned to friction parameters to approximate its influence. This approach, although
not the most precise method available, provided a pragmatic solution given our resource
constraints, as accurately capturing the intricate geometries involved in granular materials
can be computationally expensive. Despite employing coarse-graining and adopting an
idealized particle shape, the accurate modelling of bulk density is achieved through the
calibration of particle (solid) density simulation parameters. In our research, we took over a
commonly used technique for experimentally measuring the material’s bulk density, angle
of repose, and shear cell properties.

2.3. Numerical Calibration

Calibration, or parameter identification as mentioned in many sources, involves deter-
mining a suitable set of parameters that yields a simulated bulk material behaviour closely
resembling that observed in real-world experiments. Industrially significant powders often
comprise various components, each exhibiting a particle size distribution (PSD) ranging
from microns to millimetres. Simulating these powder processing systems using the Dis-
crete Element Method (DEM) and contemporary computing technology is obstructed by
the small particle sizes. Establishing a direct and precise correspondence between a DEM
particle and an actual particle is very rarely achievable within the scope of numerous indus-
trial applications. In the framework of our research, we implemented a well-established
material calibration process. It was observed that the particles did not exhibit significant co-
hesive behaviour. Hence, we implemented a calibration procedure specifically designed for
free-flowing, non-cohesive materials. The procedural details are explained in the flowchart
presented in Figure 4, as outlined in the work of Coetzee and Katterfeld [39]. This flowchart
functions as a comprehensive guide, providing references to sections explaining the impact
of specific parameters on bulk behaviour, along with suggested experiments for calibrating
each parameter. Our study follows this established procedure, ensuring a comprehensive
and informed approach to material calibration within the field of non-cohesive materials.
Lommen et al. [40] explored the impact of stiffness reduction on bulk behaviour through
an analysis of multiple case studies. Their findings indicated that maintaining the particle
shear modulus above 1 × 108 Pa, resulting in overlaps of 0.3% or less did not significantly
change resistance. Conversely, lower stiffness values, leading to overlaps exceeding 0.3%,
resulted in smoother interaction and resistance. Due to computational limitations, the
modulus was reduced, a decision supported by findings in articles [41,42], where a similar
analysis was conducted with erosive sand of comparable sizes. Calibration based on these
considerations provided a satisfactory approximation for entry data. Moreover, through-
out all simulations, contact overlap was consistently monitored during simulations. We
investigated sliding friction between powder and steel by employing an inclined plate
(Figure 4), where particles were adhered to the contact surface of a suitably large object.
In our examination of rolling and sliding friction between powder particles and steel, we
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adopted a method involving a steel ball. By compacting the powder and observing the
ball’s rolling behaviour, we addressed the complexities associated with fine powders. While
this method didn’t yield superior results, it provided results fine-tuned enough for our
numerical simulations. The material properties utilized in the simulation are presented
in Table 1. Calibration also involved conducting a direct shear test using a 60 × 60 mm
shear box. Previous findings indicated that differences in shear results are unclear when
the shear velocity is below 0.1 m/s. This velocity significantly differs from the experimental
test, where particle contacts might dissipate kinetic energy due to damping.

Figure 4. Visual representation of the main calibration scheme for obtaining numerical simulation
data using modified partial solutions from the Rocky Calibration Suite.

Consequently, the lower part of the shear box was moving at a constant speed of
0.001 m/s, while the upper part remained stationary. All other procedures were adhered to
as outlined in [43–45].
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Table 1. Basic obtained material properties and simulation parameters.

Property Unit Value Note/Reference

Geometry:

Geometry density ρg [kg/m3] 7800 Structural steel [46]
Young’s modulus Eg [Pa] 1·1010 Reduced modulus [46]

Poisson ratio ν g [–] 0.3 Structural steel [46]

Particle:

Young’s modulus Ep [Pa] 2.8·108 Reduced modulus [40,41]
Poisson ratio ν p [–] 0.4 Abrasive sand [41]

Mean Particle
Diameter dp

[µm] 150 Measured

Coarse graining cgr [–] 18 Coarse ratio
Bulk density ρbulk [kg/m3] 1780 Measured
Particle density ρp [kg/m3] 3490 Calibrated Figure 3

Contact:

Hertz Mindlin No Slip
Sliding friction p-p

µ p
[–] 0.55 Calibrated Figure 3

Sliding friction p-g
µ g

[–] 0.6 Determined—Inclined plate

Rolling friction p-p
µ r

p
[–] 0.1 Calibrated Figure 3

Rolling friction p-g
µ r

g
[–] 0.1 Determined—Inclined plate

Coeficient of
Restitution

p-p crp

[–] 0.44 Assumption based on [41]

Coeficient of
Restitution

p-g crg

[–] 0.50 Assumption based on [41]

Simulation:

DEM Particle count [–] 308,609 -
FEM elements count [–] 2,138,521 4-noded quadratic

tetrahedral elementsFEM element size [mm] 1.5

Design of Experiments

Developed in the 1920s, Design of Experiments (DOE) is a statistical theory that gained
prominence in engineering and psychology since the 1950s. It efficiently examines the
impact of factors on outcomes [47]. In this study, we applied the DOE approach to system-
atically investigate the performance of a screw conveyor. Our objective extended beyond
wear minimization, encompassing a holistic examination that included the assessment of
structural integrity and mass flow properties. By methodically varying key parameters
shown in Figure 5, such as rotational velocity (A, in rpm), clearance (B in mm), screw
diameter (C, in mm), shaft diameter (D, in mm), and Pitch (E in mm), we studied the effects
on structural integrity, power consumption, wear and mass flow. Furthermore, to assess
the performance of the screw conveyor, control regions delineated in Figure 5. are used to
monitor mass flow during stable material flow. Additionally, a specific geometry region
is allocated for the calculation of average shear intensity also during stable material flow.
Power consumption is quantified as a consequence of particle interaction along the entire
length of the screw conveyor, considering that the material fills the entire length of the
housing. Stresses and deformations are analyzed on the screw with the shaft, with total
deformation evaluated alongside selected stress points. The DOE framework allowed for a
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thorough exploration of the design space, providing insights into the complex relationships
between these parameters and their collective influence on the conveyor system.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 24 
 

allowed for a thorough exploration of the design space, providing insights into the com-
plex relationships between these parameters and their collective influence on the conveyor 
system. 

 
Figure 5. Key Parameters and Control Regions for the Screw Conveyor System. The figure illus-
trates essential study parameters including rotational velocity (A, in rpm), clearance (B, in mm), 
screw diameter (C, in mm), shaft diameter (D, in mm), and Pitch (E, in mm), alongside delineated 
control regions. 

Statistical analyses of the data lead to the identification of optimal design configura-
tions that not only minimize wear but also offer insight into structural integrity and effi-
cient mass flow properties. Throughout this study, the investigation of wear and struc-
tural integrity was centred on the screw blade of the screw conveyor, while the other com-
ponents were neglected based on insights from previous studies [48]. As shown in the 
process flow in Figure 6, the proposed approach initiates with parametric modelling of a 
screw conveyor, considering already mentioned key parameters. Geometry can be mod-
elled using parametric modelling software (Solidworks 2022). Once the geometry is para-
metrically modelled, it is essential to ensure seamless integration with Ansys Workbench 
geometry modellers by accurately importing the defined parameters. The primary work-
flow is subsequently transferred to Ansys Workbench, where seamless integration facili-
tates automatic instances between Ansys Rocky (DEM) and Ansys Transient Structural 
(FEM) modules. Within the Workbench environment, the simulation procedure is auto-
mated, streamlining the analysis process and ensuring efficient execution of the coupled 
DEM/FEM simulations. 

Within the framework of discrete element analysis, angular velocity is systematically 
varied, leading to the extraction of crucial data such as shear intensity and wear displace-
ment from the simulation results. The process begins with an empty screw conveyor. With 
free-flowing material from the hopper typically horizontal screw conveyors operate with 
a recommended filling rate of around 40% of the screw channel cross-section which refers 
to the shape or profile of the internal cavity within the screw conveyor through which 
material is transported. However, due to the short length (1000 mm) and the absence of 
additional barriers like bearing holders, the filling rate was not controlled in this study. 
Sufficient material was present to fill the screw conveyor, and the simulation proceeded 
until the material exited the bounding box. The analysis extends to the ANSYS Transient 
module, where, for each timestep defined by the DEM outputs frequency, stresses and 
deformations are calculated. This iterative procedure is fully automated and continues 

Figure 5. Key Parameters and Control Regions for the Screw Conveyor System. The figure illus-
trates essential study parameters including rotational velocity (A, in rpm), clearance (B, in mm),
screw diameter (C, in mm), shaft diameter (D, in mm), and Pitch (E, in mm), alongside delineated
control regions.

Statistical analyses of the data lead to the identification of optimal design configura-
tions that not only minimize wear but also offer insight into structural integrity and efficient
mass flow properties. Throughout this study, the investigation of wear and structural in-
tegrity was centred on the screw blade of the screw conveyor, while the other components
were neglected based on insights from previous studies [48]. As shown in the process flow
in Figure 6, the proposed approach initiates with parametric modelling of a screw conveyor,
considering already mentioned key parameters. Geometry can be modelled using paramet-
ric modelling software (Solidworks 2022). Once the geometry is parametrically modelled,
it is essential to ensure seamless integration with Ansys Workbench geometry modellers
by accurately importing the defined parameters. The primary workflow is subsequently
transferred to Ansys Workbench, where seamless integration facilitates automatic instances
between Ansys Rocky (DEM) and Ansys Transient Structural (FEM) modules. Within the
Workbench environment, the simulation procedure is automated, streamlining the analysis
process and ensuring efficient execution of the coupled DEM/FEM simulations.

Within the framework of discrete element analysis, angular velocity is systematically
varied, leading to the extraction of crucial data such as shear intensity and wear displace-
ment from the simulation results. The process begins with an empty screw conveyor. With
free-flowing material from the hopper typically horizontal screw conveyors operate with a
recommended filling rate of around 40% of the screw channel cross-section which refers
to the shape or profile of the internal cavity within the screw conveyor through which
material is transported. However, due to the short length (1000 mm) and the absence of
additional barriers like bearing holders, the filling rate was not controlled in this study.
Sufficient material was present to fill the screw conveyor, and the simulation proceeded
until the material exited the bounding box. The analysis extends to the ANSYS Transient
module, where, for each timestep defined by the DEM outputs frequency, stresses and
deformations are calculated. This iterative procedure is fully automated and continues
until all designated design points have undergone evaluation. In DEM, material calibration
via real experiments refined model accuracy, with validated mass flow calculations from
standard [17] aligning well with simulations.
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FEM simulations underwent validation, including Ansys coupling and convergence
analyses, supported by custom simulations. The final step involves creating a response
surface chart, which visualizes how various variables interact with each other. This step is
crucial for optimization. Before this, response surface results are collected and exported
to Minitab for regression analysis, complemented by a thorough optimization run aimed
at refining and improving the overall performance of the screw conveyor design. When
applying the Discrete Element Method (DEM) for numerical simulations, particularly in
the optimization of conveying processes, the utilization of the Response Surface Method
(RSM) offers various advantages. First, RSM enables the design of a minimal number of
simulation runs, thereby enhancing the efficiency of computational time and resources.
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Additionally, DEM simulations provide a profound understanding of intricate particle
interactions during powder conveying, and RSM analysis further enhances comprehension
by clarifying how variations in input parameters impact output responses, thereby assisting
in the optimization of simulation parameters and maximizing efficiency while minimizing
wear. Moreover, RSM enables the iterative refinement of DEM models based on predictions,
leading to continuous improvement of predictive capabilities. Central Composite Design
(CCD) proves to be a powerful experimental approach to strategically situating points
within a design space, enabling researchers to effectively investigate complex systems.
CCD’s distinctive configuration of the centre, axis, and factorial points allows for the in-
depth study of main effects, interaction effects, and curvature. Its adaptability benefits
through design variations such as Face-Centered and Rotatable, adjusting experiments
to specific objectives. Especially beneficial in multi-parameter studies, CCD efficiently
manages to optimize precision while maintaining practicality, resulting in a reduction in
the number of experimental runs without sacrificing the integrity of robust findings [32].

In our study, we implemented DOE based on a set of parameters, as outlined in Table 2.
The DOE systematically explored variations in screw conveyor design, including clearance,
screw diameter, shaft diameter, pitch, and angular velocity. Each entry in Table 2 represents
a unique design point, thoroughly analyzed for shear intensity, wear displacement, stresses,
and deformations. The iterative process, encompassing both DEM and FEA, resulted in
a response surface chart, guiding subsequent optimization efforts for an enhanced screw
conveyor design [49]. An integral step in designing a statistical experiment involves
carefully selecting input variables, determining their associated levels, and examining their
interactions. The deterministic method’s design points (Table 2), which utilize a central
composite design, are exactly chosen in a systematic manner. This systematic approach
includes the incorporation of a single centre point, axis points placed at (-α) and (+α)
along each input parameter axis, and factorial points distributed at (−1) and (+1) along
the diagonals of the parameter space. The quantity of factorial points is determined by the
fraction of the factorial design [25].

Table 2. The provided table encapsulates the design points generated through a central composite
design approach, serving as simulation input parameters.

Run
Order

Coded Value
A B C D E

N [rpm]
{150–250}

Clearance
[mm]
{2–10}

Dscrew [mm]
{70–85}

Dshaft [mm]
{20–35}

Pitch [mm]
{75–90}

1 0 0 0 0 −2 200.0 6.0 77.5 27.5 75.0
2 1 −1 −1 −1 −1 214.2 4.9 75.4 25.4 80.4
3 −1 1 −1 −1 −1 185.8 7.1 75.4 25.4 80.4

4 −1 −1 1 −1 −1 185.8 4.9 79.6 25.4 80.4
5 1 1 1 −1 −1 214.2 7.1 79.6 25.4 80.4
6 −1 −1 −1 1 −1 185.8 4.9 75.4 29.6 80.4

7 1 1 −1 1 −1 214.2 7.1 75.4 29.6 80.4
8 1 −1 1 1 −1 214.2 4.9 79.6 29.6 80.4
9 −1 1 1 1 −1 185.8 7.1 79.6 29.6 80.4

10 0 0 0 −2 0 200.0 6.0 77.5 20.0 82.5
11 0 0 −2 0 0 200.0 6.0 70.0 27.5 82.5
12 0 −2 0 0 0 200.0 2.0 77.5 27.5 82.5

13 −2 0 0 0 0 150.0 6.0 77.5 27.5 82.5
14 0 0 0 0 0 200.0 6.0 77.5 27.5 82.5
15 2 0 0 0 0 250.0 6.0 77.5 27.5 82.5

16 0 2 0 0 0 200.0 10.0 77.5 27.5 82.5
17 0 0 2 0 0 200.0 6.0 85.0 27.5 82.5
18 0 0 0 2 0 200.0 6.0 77.5 35.0 82.5
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Table 2. Cont.

Run
Order

Coded Value
A B C D E

N [rpm]
{150–250}

Clearance
[mm]
{2–10}

Dscrew [mm]
{70–85}

Dshaft [mm]
{20–35}

Pitch [mm]
{75–90}

19 −1 −1 −1 −1 1 185.8 4.9 75.4 25.4 84.6
20 1 1 −1 −1 1 214.2 7.1 75.4 25.4 84.6
21 1 −1 1 −1 1 214.2 4.9 79.6 25.4 84.6

22 −1 1 1 −1 1 185.8 7.1 79.6 25.4 84.6
23 1 −1 −1 1 1 214.2 4.9 75.4 29.6 84.6
24 −1 1 −1 1 1 185.8 7.1 75.4 29.6 84.6

25 −1 −1 1 1 1 185.8 4.9 79.6 29.6 84.6
26 1 1 1 1 1 214.2 7.1 79.6 29.6 84.6
27 0 0 0 0 2 200.0 6.0 77.5 27.5 90.0

3. Results and Discussion

The MINITAB 21.4.2 software tool was used to evaluate the simulation results [49]. The
main objective was to optimize the wear depth at a specific target mass flow of the screw
conveyor. The significance of the parameters was evaluated at a 95% confidence level. The
method called ANOVA was used to analyze the trial runs and construct a regression model
that establishes a connection between the responses and the parameters. The evaluation of
the model’s p-value and R-squared values enables the assessment of the model’s predictive
accuracy. The variance analysis results for mass are presented in Table 3. The ANOVA table
is exclusively provided for the mass flow parameter of the screw conveyor. For all other
responses such as shear intensity, power, stress, and deformation, ANOVA was similarly
used to analyze the trial runs and construct regression models establishing connections
between these responses and the parameters. Nevertheless, all examples encompass
Pareto charts, regression equations, normal distribution plots and findings concerning the
association between the input parameters and the response variable. Overall, the model
demonstrates significance, as indicated by a low p-value of 0.001, suggesting that at least
one input parameter has a significant impact on the response variable. All terms, including
rotational velocity (N), Clearance ( Clearance), Screw diameter (Dscrew), shaft diameter
(Dsha f t), and Pitch (Pitch) display distinguished effects on the response variable, supported
by their low p-values (<0.05). However, the square terms and 2-way Interactions do not
exhibit significant effects. This implies that the majority of the variation in the response
variable can be explained by the linear effects of the input parameters.

The regression equations were subsequently derived based on the experimental output
responses to establish the relationship between the input and output variables. The relation-
ship representing the mass flow, shear intensity/wear, power consumption, stresses, and
deformations on the screw conveyor can be described by the regression equation/model
presented in relations (7–11). Next to each association, there is a corresponding parameter
(R2) which serves as an indicator of the accuracy of the desired function and its consistency
with the observed behaviour of the analyzed parameter. The proximity of this parameter to
the value of 100% directly correlates with the accuracy of the function.

The standardized Pareto chart can also effectively demonstrate (Figure 7) the impor-
tance of various factors that influence the mass flow response. Notably, the screw blade
diameter emerged as the primary factor, applying a substantial impact, and categorizing
it as the critical factor. At the same time, the remaining factors were considered as fine
adjustment factors. Additionally, the regression model, when presented in uncoded units,
enables the prediction of values, as depicted in relation 7. As anticipated, our observations
in Figure 7. indicate a direct correlation between the screw blade diameter and shaft angular
velocity with variation in mass flow. However, an interesting deviation from expectations
occurred in the context of clearance. Upon closer examination, we identified that the
material behaved as a moving nut traversing along a thread, and the reduction in clearance
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translated to a decrease in space and an increase in geometry volume inside the housing.
Mass flow increases with a larger clearance due to the expanded volume between the blade
and housing which results in higher Mass flow.

Table 3. Analysis of Variance for Mass Flow.

Source DF Adj SS Adj MS F-Value p-Value

Model 20 2.49783 0.12489 19.94 0.001

Linear 5 2.42307 0.48461 77.39 0

N 1 0.04015 0.04015 6.41 0.045

Clearance 1 1.02763 1.02763 164.1 0

Dscrew 1 1.12376 1.12376 179.45 0

Dsha f t 1 0.16574 0.16574 26.47 0.002

Pitch 1 0.06578 0.06578 10.5 0.018

Square 5 0.0197 0.00394 0.63 0.686

N2 1 0.00012 0.00012 0.02 0.893

Clearance2 1 0.00003 0.00003 0 0.947

Dscrew
2 1 0.00012 0.00012 0.02 0.893

Dsha f t
2 1 0.00052 0.00052 0.08 0.784

Pitch2 1 0.01398 0.01398 2.23 0.186

2-Way Interaction 10 0.05507 0.00551 0.88 0.592

N·Clearance 1 0.00766 0.00766 1.22 0.311

N·Dscrew 1 0.00601 0.00601 0.96 0.365

N·Dsha f t 1 0.00526 0.00526 0.84 0.395

N·Pitch 1 0.00331 0.00331 0.53 0.495

Clearance·Dscrew 1 0.00526 0.00526 0.84 0.395

Clearance·Dsha f t 1 0.01156 0.01156 1.85 0.223

Clearance·Pitch 1 0.00275 0.00275 0.44 0.532

Dscrew·Dsha f t 1 0.00766 0.00766 1.22 0.311

Dscrew·Pitch 1 0.00106 0.00106 0.17 0.696

Dsha f t·Pitch 1 0.00456 0.00456 0.73 0.426

Error 6 0.03757 0.00626

Total 26 2.5354

PMass Flow (A, B, C, D, E) = 24.4 − 0.0346 A + 0.305 B − 0.048 C + 0.003 D − 0.468 E + 4·10−6 A2+
3·10−4B2 + 1.8·10−4C2 − 3.6·10−4D2 + 0.00186 E2 + 0.00136 AB + 6.4·10−4 AC + 6·10−4 AD−
4.7·10−4 AE − 0.00753 BC − 0.01116 BD + 0.00545 BE − 0.00484 CD + 0.00180 CE + 0.00374 DE

(7)

Considering the coarse-graining employed in our study, it is important to conduct
further investigations into the impact of particle size. This is crucial as coarse-graining
may yield misleading results, and a better examination of actual particle size could provide
a more accurate understanding of the system’s behaviour. Moving to Figure 8, a Pareto
Chart reveals that the main effect on power consumption seems to be rotation velocity,
with significant rates also observed in terms of clearance and shaft diameter. Concerning
shear intensity, stresses, and strains (Figures 9–11), clearance emerges as having the most
significant effect. At a particular particle size, wear drastically arises because of the “particle
entrapment”. Thus, it’s critical to note that coarse-graining may yield misleading results,
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and further examination of actual particle size should be used in future in order to provide
a more comprehensive explanation.

PPower (A, B, C, D, E) = −2136 + 1.68 A + 3.2 B + 28.5 C − 0.6 D + 21.6 E − 0.00130 A2+
0.292 B2 − 0.0754 C2 + 0.0245 D2 − 0.0526 E2 − 0.0533 AB − 0.0321 AC − 0.0151 AD+
0.0285 AE + 0.246 BC + 0.181 BD − 0.286 BE + 0.135 CD − 0.185 CE − 0.099 DE

(8)

PShear (A, B, C, D, E) = −3373 + 2.02 A − 15.6 B + 44.0 C + 11.8 D + 33.9 E − 0.00151 A2+
0.016 B2 − 0.1149 C2 − 0.0912 D2 − 0.0905 E2 − 0.0325 AB − 0.0335 AC − 0.0192 AD+
0.0235 AE + 0.230 BC + 0.459 BD − 0.131 BE + 0.035 CD − 0.264 CE − 0.102 DE

(9)

PDe f ormation (A, B, C, D, E) = 22.1 + 0.0344 A − 2.991 B − 0.136 C + 0.401 D − 0.380 E−
3.1·10−5 A2 + 0.00571 B2 − 0.00126 C2 − 0.00223 D2 + 2.5·10−4E2 − 5.4·10−4 AB−
3.8·10−4 AC − 9.8·10−4 AD + 4.4·10−4 AE + 0.01775 BC + 0.00503 BD + 0.01765 BE+
0.00191 CD + 0.00288 CE − 0.00318 DE

(10)

PStress (A, B, C, D, E) = 724 + 0.39 A − 85.6 B − 3.7 C + 14.9 D − 13.0 E − 8.5·10−4 A2 + 0.239 B2−
0.0331 C2 − 0.0606 D2 + 0.0217 E2 − 0.0067 AB − 0.0077 AC − 0.0264 AD + 0.0157 AE+
0.479 BC + 0.094 BD + 0.516 BE + 0.030 CD + 0.078 CE − 0.112 DE

(11)
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The standardized Pareto chart can also effectively demonstrate (Figure 7) the im-
portance of various factors that influence the mass flow response. Notably, the screw 
blade diameter emerged as the primary factor, applying a substantial impact, and catego-
rizing it as the critical factor. At the same time, the remaining factors were considered as 
fine adjustment factors. Additionally, the regression model, when presented in uncoded 
units, enables the prediction of values, as depicted in relation 7. As anticipated, our obser-
vations in Figure 7. indicate a direct correlation between the screw blade diameter and 
shaft angular velocity with variation in mass flow. However, an interesting deviation from 
expectations occurred in the context of clearance. Upon closer examination, we identified 
that the material behaved as a moving nut traversing along a thread, and the reduction in 
clearance translated to a decrease in space and an increase in geometry volume inside the 
housing. Mass flow increases with a larger clearance due to the expanded volume between 
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3.1. Parameters Optimization

Response optimization involves the identification of the most beneficial combination
of variables to achieve predetermined objectives, such as the reduction of wear depth or
power consumption, as well as the optimization or maximization of parameters like mass
flow. The application of tools such as Minitab’s Response Optimizer [49] enables users to
finely adjust settings to effectively reach the above goals. This iterative process requires
the creation of models for each response and the assignment of appropriate weights that
reflect their level of importance. Through visual representation and analytical examination,
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optimal solutions can be determined using the desirability function, where a desired value
of (1) indicates highly desirable responses. By concentrating on the target mass flow of
the screw conveyor while simultaneously minimizing the shear intensity, the optimization
process was successfully applied in our research study. All desirability values met the
desired criteria and were considered acceptable (D = 1).

The prediction and simulation results presented in Table 4 indicate a close agreement
for the mass flow of the screw conveyor, with only a 0.75% error observed. However, for
shear intensity, there is a slightly higher discrepancy, with a 4% error between the predicted
and simulated values.

Table 4. Response optimization data with the comparison of predicted and simulated results.

Opti. Function Prediction Simulation Error

Mass flow
[t/h]

Target value
(5.35) 5.35 5.31 0.75%

Shear Intensity [W/m2] Minimum 14 14.56 4%

Optimum parameters:

N [rpm] Clearance [mm] Dscrew [mm] Dshaft [mm] Pitch [mm]

167 8.60 80 27 87

3.2. Response Surface

Contour plots provide valuable visual tools to illustrate the impact of input variables,
such as screw blade pitch and screw conveyor angular velocity, on response variables like
shear intensity and mass flow. They provide a holistic perspective, allowing engineers to
grasp the interconnectedness of various parameters and their effects on system performance.
Through the examination of contour plots generated using a fitted model equation, we
obtained valuable insights into how variations in these parameters not only influence
mass flow, but also influence power consumption, stresses, deformations, and wear in
screw conveyors. These plots exposed regions of optimal performance, where various
responses were optimized while minimizing undesirable outcomes. The acquisition of such
insights is of utmost importance to enhance efficiency in processes involving bulk solids
and powders. Furthermore, in the continuation, all parameters that have previously been
determined to be significant will be further evaluated through the utilization of response
surface analysis, thereby providing a comprehensive understanding of their effects on the
system performance. In Figure 12, we present a contour plot illustrating the relationship
between mass flow and all input parameters. As clearance increases, mass flow also
increases. The material behaved analogous to a threaded nut, with no material left behind
on the screw housing. Additionally, we observed that as the screw diameter increases, so
does the mass flow. Conversely, an increase in shaft diameter resulted in a decrease in
mass flow. Furthermore, we observed that higher pitch values corresponded to higher
mass flow rates. These observations highlight the complex relationship between clearance,
screw diameter, shaft diameter, and pitch in influencing mass flow dynamics within the
system. Similarly, the power needed for driving the screw conveyor demonstrates a rapid
increase as clearance decreases and angular velocity increases, as depicted in Figure 13. In
addition, the examination of the clearance parameter was conducted to assess its impact on
the intensity of shear. This analysis yielded insights into the dissipation of energy during
collisions that occurred throughout the simulated period. The quantification of shear
intensity, which measures the power transferred per unit area, is of utmost importance in
abrasive wear models.
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Figure 13. Parametric Mapping of Power Dynamics in [W]: Contour Analysis Across Angular Velocity,
Shaft Diameter and Clearance with Hold Values from Response Optimization.

It facilitates the determination of shear wear on geometric surfaces and directly demon-
strates wear rates. The shown trend in Figure 14 (right) illustrates an increase in throughput
performance with higher angular velocity and reduced clearance. Consequently, this leads
to higher wear rates in the screw model. Similarly to the findings in [42], where the vertical
screw conveyor was studied we can compare the relationship between the rotation speed
and the wear rate of the screw flight. We noted that with the increase in rotation speed,
the trend of the wear rate increases, confirming the reported observations. Similarly to the
findings, our study also observed that the most severe wear occurs at the outer edge of the
screw blade. Interestingly, we found that the amount of wear on the inner side of the screw
shaft is relatively small, aligning with the observations.
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Figure 14. Qualitative screw blade wear (left), Parametric Mapping of Shear Intensity Dynamics
in [W/m2]: Contour Analysis Across Pitch, Angular Velocity, Shaft Diameter, Screw Diameter, and
Clearance with Hold Values from Response Optimization (right).

Conversely, negligible wear on the reverse side of the screw blade was not taken
into consideration. To approximate the quantitative wear results, the Archard model was
utilized, relying on the predicted wear coefficient as depicted in Figure 14 (left). It’s crucial
to emphasize that the wear coefficient was not calibrated but rather assumed based on
a literature review. Moving forward, calibration of this coefficient would be essential to
ensure accurate quantitative representation in the model. Our investigation expanded
beyond the minimization of wear depth to encompass an evaluation of the structural
integrity of the screw blade. Figure 15. showcases the stress field data obtained near the
support location. The initial conditions involved connecting the screw blade with the shaft
to fixed support on specifically created surfaces on each side of the shaft. On one side of the
shaft, a cylindrical support was added, with only the radial component fixed. This setup
allows rotation and movement in the axial direction while constraining radial movement.
In order to apply loading conditions, node forces were employed, which were transferred
from DEM simulations. The measuring point is positioned away from the edge of the
shaft. Notably, the measurement point is distinctly identified with an additional label. The
intention behind this measurement was to avoid any singular points and acquire stress
values that are not realistic. By employing FEM analysis at all time steps, we discovered
that the highest levels of stress for this specific geometry occur near the support, where the
transmission of torque takes place, as well as in the middle of the shaft.

Furthermore, the responsive surface is depicted in Figure 15. demonstrates that as the
clearance distances increase, so do the stresses.

During the design phase, the stresses were found to be insignificant, so they were
not considered back in the optimization process, which solely focused on the wear depth
and mass flow. However, it would be interesting to explore the potential impact of in-
corporating stress optimization into the analysis. Similarly, our exploration extended
to deformation analysis, delving into the structural integrity of the system. Figure 16.
display case for the deformation field, particularly emphasizing maximal deformations
occurring at the midpoint and increasing with greater clearance distances. Deformations
were also negligible and not included in the optimization process. However, considering
their potential impact on design, further exploration could provide valuable insights into
structural considerations.
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4. Conclusions

In summary, the proposed methodological approach, centred on numerical simu-
lations, offers engineers a powerful set of resources for the optimal design of material
handling equipment. By implementing parametric numerical analysis, we systematically
explore critical parameters and their interdependencies, providing a comprehensive under-
standing of the screw conveyor system’s behaviour:

• Our research study focused on calibrating the abrasive powder material model to en-
sure an accurate representation of material behaviour. We successfully approximated
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and calibrated the abrasive powder material within DEM simulations. This calibration
process was crucial for achieving verified material flow, laying a solid foundation for
reliable and realistic simulations.

• During the research, we build an advanced numerical model that integrates para-
metric modelled geometry, DEM, FEM, DOE and response surface optimization to
simulate the complex environment of the screw conveyor. The automated parametric
numerical model facilitates the exploration of various operating conditions and design
parameters, offering valuable insights into the performance of the screw conveyor,
wear depth, and structural adequacy of the screw blade.

• Clearance has emerged as an important parameter in the optimization process. The
mass flow rate demonstrates an increase as the clearance widens, this contributes to
the expanded area between the screw blade and the housing. This feature results in a
higher mass flow rate. Additionally, as expected, clearance was found to have the most
significant influence on power consumption, wear depth, stress, and deformations.
Moreover, because of the complexity of the employed material coarse-graining method-
ology, particle shape and size underwent approximation and adjustment during the
calibration process. Consequently, “particle entrapment” between the screw blade and
the housing may also occur. Further studies incorporating real particle shape and size
are of major importance in order to fully address the clearance effect. It’s crucial to
acknowledge that neglecting this aspect may lead to potentially misleading results.

• During the simulations, the stresses on the screw blade were identified to be minor,
therefore we have excluded them from further consideration in the optimization phase,
which exclusively prioritized wear depth and mass flow.

• Through the utilization of the Design of Experiments, we systematically investigated
critical parameters such as screw pitch, clearance, wear depth, rotational velocity,
and additional structural factors. We demonstrated how this systematic investigation
allows us to not only analyze the individual effects of each parameter but also to
consider their interdependencies. The optimization process was a success in focusing
on mass flow and reducing wear depth. After carefully studying and applying small
adjustments, we achieved our goals. We found an optimal set of factors that would give
us a good balance between the mass flow and wear depth. In future studies focusing
on screw conveyors where stresses and deformations are higher, it would be beneficial,
to include structural parameters in the optimization process (shaft thickness etc.).

Furthermore, through this study, we have acknowledged the necessity of addressing
the factors in handling smaller particles and considering the impact of realistic particle
shapes. While the present research provides valuable insights for the design of new
devices, future studies should prioritize exploring these specific areas to present a more
comprehensive analysis. Future research efforts could examine deeper into understanding
how factors such as clearance affect the behaviour of real particle-size materials within the
system. Additionally, conducting more simulations and exploring a wider range of input
parameters could provide more accurate results and better-fitting predictions. The findings
demonstrate the effectiveness of DOE analysis in achieving improved performance and
provide valuable insights for engineers and researchers involved in the design of material
handling systems. Furthermore, this approach clarifies how material handling systems
respond to changes in parameters and highlights the interaction between transported
particles and the material handling system. By understanding the interactions of these
factors, the proposed methodology does not provide only results but also a strategic
framework for advancing material handling system design in engineering practices.
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