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Abstract: This study examined the effects of an extract of the green algae Codium fragile (hereafter
referred to as CFE) on dextran sulfate sodium (DSS)-induced colitis. As the administration of
CFE increased, the proliferation of Akkermansia muciniphila, which is a key player in metabolic
and gastrointestinal disorders, also increased. After CFE administration for 10 weeks, acetic acid
was identified as the major metabolite in mouse cecum and β-glucuronidase activity in mouse
fecesdecreased. Further, CFE significantly alleviated the acute intestinal injury induced by DSS
administration, including DAI score, colon length, and histological score. The experimental group
also displayed indications of significantly lower neutrophil activity and inflammation. In conclusion,
the protective effect of CFE against DSS colitis suggests its clinical use by IBD patients.
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1. Introduction

Recent studies have shown marine algae to possess a wide range of potential health
applications, with moderating effects on the immune system being of particular interest
in this study [1–5]. Additionally, algal metabolites such as sulfated polysaccharides and
polyphenols have demonstrated multistep antiviral capability and provided a new route to
develop new therapeutic methods to treat COVID-19 and other viral diseases [6].

Codium fragile is a traditional Asian food ingredient [7] mainly consumed in South
Korea, Japan, and China. The main components of green algae are sulfated structural
polysaccharides such as ulvans and sulfated cellulose, galactans, pectin, and mannans.
These sulfated polysaccharides are not completely fermented by intestinal microbiota [8–10].
Some of the unfermented C. fragile polysaccharides have also been observed to have various
interactions with biological systems [11,12]. These properties provide opportunities for the
potential application of C. fragile polysaccharides as prebiotics.

The gut microbiota are microorganisms that live in the host’s gastrointestinal tract.
Human health is greatly influenced by the composition and metabolism of these mi-
croorganisms [13]. The microbiota in the human gastrointestinal tract have been studied
extensively owing to their role both in pathogenesis and gut health maintenance. An im-
portant function of large intestinal microbiota is to break down substrates such as resistant
starch and dietary fiber, which are not completely hydrolyzed by host enzymes in the
small intestines [14–17]. Thus, health improvement via regulation of the gut microbiota has
become an interesting research field.

Akkermansia muciniphila is a strictly anaerobic bacterium recently isolated from human
feces. It uses mucin as the sole source of carbon and nitrogen elements [18]. Ottman
et al. reported that A. muciniphila can utilize the mucin-derived monosaccharides fucose,
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galactose, and N-acetylglucosamin [19,20]. The abundance of A. muciniphila in the feces
appears to correlate with general gut health. The presence of A. muciniphila in feces has
been associated with a healthy gut, and its abundance has been inversely correlated with
several disease states. The abundance of A. muciniphila has been shown to be decreased in
patients with ulcerative colitis and Crohn’s disease [21,22]. However, as A. muciniphila is a
strict anaerobe with highly limited growth conditions, there are currently no A. muciniphila-
containing products in the world. Therefore, consuming prebiotics that can selectively
promote A. muciniphila in the intestines is necessary.

Inflammatory bowel diseases (IBDs) such as Crohn’s disease (CD) and ulcerative coli-
tis (UC) are chronic intestinal diseases of unknown etiology [23,24]. Natural compounds
have already shown promise as relatively safe therapeutic agents for the treatment and
maintenance of IBD symptoms [25–27]. Algal polysaccharides are good candidates for
the alleviation of intestinal inflammatory diseases due to their potential prebiotic effi-
cacy [28,29].

In this study, we hypothesized that CFE may contain polysaccharides that exhibit
therapeutic effects against intestinal inflammatory diseases. Until now, there have been
few studies on the protective effects of CFE in mice with DSS-induced colitis. Thus, the
present study was conducted to evaluate the protective effect of CFE against dextran sulfate
sodium (DSS) colitis along with the proliferation of specific beneficial bacteria associated
with a healthy intestine.

2. Materials and Methods

In this section, the methods for studying the effects of CFE on potential prebiotics and
intestinal diseases are presented. Section 2.2 presents methods for evaluating prebiotics
for growing specific beneficial bacteria important for maintaining intestinal health. In
Section 2.3, methods for evaluating improvement in intestinal diseases are presented.

2.1. Preparation of CFE

CFE was prepared according to a previously described method [30]. In brief, previ-
ously collected C. fragile were washed, dried, and ground into powder. Boiling water was
used to extract CFE from the powder, and the extract was concentrated and ultimately
freeze-dried.

2.2. Potential Prebiotics for Improving Intestinal Diseases
2.2.1. Mouse Model

Seven-week-old male BALB/c mice (15–20 g) were obtained from KOSA BIO Inc.
(Seongnam, Republic of Korea) and housed in A pathogen-free room (light cycle, 12 h
light/dark; temperature, 22 ± 2 ◦C; humidity, 50 ± 5%). All mice were fed an AIN-93
diet (Research Diets, Inc., New Brunswick, NJ, USA) (Table 1), and sterilized water was
provided ad libitum for a week during an adaptation period. Twenty mice were divided into
four groups of five: (1) CTRL, fed a normal diet; (2) LCFE group, fed 75 mg of CFE per kg of
body weight; (3) MCFE group, fed 150 mg of CFE per kg of body weight; (4) HCFE group,
fed 300 mg of CFE per kg of body weight. Each group of mice was administered a daily oral
dose of CFE dissolved in sterilized water for 10 weeks. The Mice were sacrificed via cervical
dislocation under ether anesthesia. All procedures for this experiment were conducted in
accordance with the Institutional Animal Care and Use Committee (IACUC233-041) and
the Ethical Committee of Experimental Animals in the Efficacy Evaluation Center of Berry
& Biofood Research Institute (BBRI-IACUC-21001).

Table 1. Detailed dietary composition of AIN-93.

Ingredient g/kg

Casein 200.00
Cornstarch 397.486
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Table 1. Cont.

Ingredient g/kg

Dextrose 132.00
Sucrose 100.00

Cellulose 50.00
Soybean oil 0.014

t-Butylhydroquinone 0.014
Salt Mix 35.00

Vitamin mix 10.00
L-Cystine 3.00

Choline Bitartrate 2.50

2.2.2. Real-Time PCR Quantification

Fecal samples from individual mice were collected in sterilized tubes and stored at
−80 ◦C. Genomic DNA was extracted using a QIAamp DNA Stool Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.

The primers used to detect A. muciniphila and S. aureus were based on 16S rRNA gene
sequences retrieved from the National Center for Biotechnology Information databases
using the Entrez program. Forward primers and reverse primers were designed using the
Primer Express 2.0 software (Applied Biosystems, Foster City, CA, USA) (Table 2).

Table 2. 16S rRNA gene-targeted bacteria-specific primers used in this study.

Target Primer Primer Sequence (5′–3′)

Probiotics

Bifidobacterium
spp.

Forward
Reverse

CTCCTGGAAACGGGTGG
GGTGTTCTTCCCGATATCTAC

Akkermansia
muciniphila

Forward
Reverse

CAGCACGTGAAGGTGGGGAC
CCTTGCGGTTGGCTTCAGAT

Pathogens

Staphylococcus
aureus

Forward
Reverse

GCCCCTTAGTGCTGCAGCTA
AGTTTCAACCTTGCGGTCGTA

Clostridium
spp.

Forward
Reverse

TTGAGCGATTTACTTCGGT
CCATCCTGTACTGGCTCAC

PCR amplification was carried out in a total volume of 25 µL containing 1 × TaqMan
Universal PCR Master Mix (Applied Biosystems), both primers (10 pmol each), 50 ng
purified target DNA, and final BSA concentration of 0.1 mg/mL (New England Biolabs,
Ipswich, MA, USA). A StepOne Plus RT-PCR system (Applied Biosystems) was used for
amplification and detection. The amount of genomic DNA extracted was determined using
an ultraviolet spectrophotometer at 260 nm. In the PCR assay, we compared different
amounts of bacterial DNA extracted from fecal samples to overcome bias due to inhibitory
compounds such as bile salts. Each assay was performed in duplicate in the same run.
The cycle threshold (CT) was calculated as the cycle number at which the reaction became
exponential. The CT of each sample was then compared with a standard curve made by
diluting genomic DNA (10-fold dilution) from cultures of the target bacterium.

2.2.3. Short Chain Fatty Acid (SCFA) Analysis

Cecum contents were stored at −80 ◦C for measurement of SCFA concentration.
Acetic acid and butyric acid concentrations were determined by flame ionization de-
tection on an Agilent 7890A GC-MS equipped with a DB-FATWAX Ultra Inert column
30 m × 530 mm × 0.25 µm (Agilent Technologies, Santa Clara, CA, USA).

2.2.4. β-Glucuronidase Activity Analysis

β-glucuronidase activity was analyzed using the method described by Goldin et al. [31].
Fecal samples were incubated at 37 ◦C in the wells of a microtiter plate, and then 10 mL
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of sample was added in duplicate. Next, 100 µL of substrate solution was added, and
incubated at 37 ◦C for 60 min. Next, 500 µL of 0.5 N NaOH was introduced to stop the
reaction. Protein activity was quantified by measuring the absorbance at 405 nm. Triplicate
assays were performed for each effector, and the mean values and standard deviations
were reported. The concentration of 4-nitrophenol was determined using a standard curve
of 4-nitrophenol in sodium phosphate buffer.

2.3. Potential Prebiotics for Improving Intestinal Diseases
2.3.1. Mouse Model

Mice (C57BL/6J, male, 9 weeks old at the time of purchase, 18 ± 2 g) were acquired
from Orient Bio (Sungnam, Republic of Korea). The mice were held in a pathogen-free
enclosure for 7 days prior to the exposure of DSS to some mice. For 5 days, 3% (w/v) of
DSS was provided in drinking water, followed by 3 days with no DSS (molecular weight
36–50 kDa; MP Biomedicals, Irvine, CA, USA). During the whole experimental period
of 8 days, CFE and sulfasalazine (St. Louis, MO, USA) were given to mice daily via oral
administration. Thirty mice were divided randomly into six groups of five: (1) normal
group fed water (N group), (2) negative control group fed DSS (NC group), (3) positive
control group fed DSS + sulfasalazine (150 mg/kg) (PC group), (4) DSS + LCFE group fed
DSS + 75 mg of CFE per kg of body weight, (5) DSS + MCFE group fed DSS + 150 mg of
CFE per kg of body weight, and (6) DSS + HCFE group fed DSS + 300 mg of CFE per kg of
body weight. The Animal Ethics Review Committee of Woojung Bio Inc. (Suwon, Korea)
reviewed and approved these animal experiments in line with the Institutional Animal
Care and Use Committee guidelines. The approval ID for using the animals at the Animal
Facility of Woojung Bio was IACUC2303–041.

2.3.2. Evaluation of the Severity of Colitis

Colon length was measured, as in Zong et al. [32], from the ileocecal junction to the
anal verge. We used the colitis DAI scoring system, as in Jeon et al. [33], to evaluate the
severity of colitis in the examined mice.

2.3.3. Myeloperoxidase (MPO) Activity

The MPO assay kit (Abcam, Cambridge, MA, USA) was used to measure MPO activity
in serum and tissue samples according to the manufacturer’s instructions. Absorbance was
read at 412 nm using a multimode microplate reader (BioTek Instruments, Winooski, VT,
USA). The results were presented as units per gram of tissue.

2.3.4. Histological Evaluation

Intestinal tissue was fixed with 10% formalin, embedded in paraffin, cut into 3 µm
sections, and stained with hematoxylin and eosin (H&E) for microscopic evaluation. The
stained slices were subsequently observed under an optical microscope and analyzed using
the i-Solution Lite software ver. 8.1 program (Innerview Co., Sungnam, Republic of Korea).
Histological evaluations of H&E-stained colonic sections were graded by two blinded
investigators (Table 3).

Table 3. Histological grading of colitis.

Grade Infiltration Lesion Epithelial Lesion

0 None None
1 Infiltration around crypt bases Some loss of goblet cells
2 Infiltration spreading to muscularis mucosa Extensive loss of goblet cells

3 Extensive infiltration in the muscularis
Mucosa with abundant edema Some loss of crypt

4 Infiltration spreading to submucosa Extensive loss of crypt
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2.3.5. Statistical Analysis

The t-test, one-way ANOVA for comparison of two or more groups, and post-hoc
Tukey’s multiple comparison test were conducted using the SPSS 22.0 software (IBM Corp.,
Armonk, NY, USA). All data are presented as mean ± standard deviation.

3. Results
3.1. Effect of CFE on the Growth of Individual Bacteria

After feeding on CFE for 10 weeks, changes in the DNA log copy number of bacteria
in mouse feces were determined (Figure 1). During CFE intake (10 weeks), an increase
in beneficial bacteria, A. muciniphila, and Bifidobacterium spp., was observed, while the
pathogenic bacteria, S. aureus and Clostridium spp., decreased. Moreover, in the HCEF group,
A. muciniphila significantly increased while S. aureus significantly decreased (Figure 1a,c).
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Figure 1. Changes in the number of Akkermansia muciniphila (a), Bifidobacterium spp. (b), Staphylococcus
aureus (c), and Clostridium spp. (d) in the feces of mice fed CFE, as determined by quantitative PCR.
The data shown are the mean ± SD of five independent experiments. Significant differences are noted
as * p < 0.05 compared with week 0.

3.2. Effect of CFE on Cecum SCFA Production

As shown in Table 4, the main metabolite in mouse cecum contents was acetic acid,
followed by butyric acid in small amounts. The contents of SCFAs in CFE-fed groups were
higher than in the CTRL group in a CFE concentration-dependent manner. The content
of acetic acid in the LCFE group (p < 0.05), the MCFE and HCFE groups (p < 0.001), and
butyric acid in the MCFE and HCFE groups (p < 0.05) were higher than in the CTRL group.
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Table 4. Analysis of SCFAs in mouse cecum contents.

Groups SCFAs (µmol/g)
Acetic Acid Butyric Acid

CTRL 9.05 ± 2.03 2.54 ± 0.48

LCFE 13.83 ± 1.12 ** 3.27 ± 0.98

MCFE 18.91 ± 2.70 *** 3.70 ± 0.53 *

HCFE 20.24 ± 1.60 *** 3.94 ± 0.69 *
Values are mean ± SD of 5 mice. Significant differences are noted as * p < 0.05, ** p < 0.01, and *** p < 0.001
compared with the control group.

3.3. Effect of CFE on Fecal β-Glucuronidase Activities

β-Glucuronidase activities in mouse feces were measured at week 10 of CFE feeding
(Figure 2). A marked decrease in β-glucuronidase activity was observed in the MCFE and
HCFE groups (p < 0.05) compared with the CTRL group, being 88% and 87%, respectively.
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3.4. Effect of CFE on Mouse Colitis

To evaluate the effects of CFE on colitis, 9-week-old mice (C57BL/6) were adminis-
trated 3% DSS, sulfasalazine (150 mg/kg), and CFE (75 mg, 150 mg, and 300 mg per kg of
body weight) separately or in combination, for 8 days (Figure 3a). The DAI score and colon
length directly reflect the severity of UC in mouse models and are used to proactively assess
the severity of UC. The DAI scores of each mouse group during days 0–7 are presented in
Figure 3b. The DAI scores were significantly decreased in the CFE-fed group compared
with the NC group. Another indicator that reflects the severity of intestinal inflammation is
colon length, which recovers as inflammation improves [34,35]. The colon length of mice in
the DSS + HCFE group was significantly longer (p < 0.05) than in mice in the NC group but
similar to that of mice in the PC group (Figure 3c,d).

3.5. Effect of CFE on the Histological Injury of Colonic Epithelium Caused by DSS

H&E staining was performed to investigate mucosal inflammation. Compared with
the N group, the DSS + HCHE (CFE-fed) group or the PC group showed lower microscopic
damage. The histological analysis indicated that the histological severity of the colitis
was more severe in the NC group compared with the CFE-fed and PC groups (Figure 4b).
Compared with the NC group, the DSS + HCHE group showed a significantly decreased
histology score. Test results showed that MPO activity in the colon was significantly
reduced in the CFE-fed and PC groups compared with the NC group (Figure 4c).
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4. Discussion

Sulfated polysaccharides derived from seaweed can be used as prebiotics for gut
microorganisms and degraded into other bioactive compounds, such as oligosaccharides,
phytochemicals, and SCFAs, which can serve as substrates for these organisms and al-
low them to grow [36–40]. Sulfated galactan from C. fragile consists of a large amount
of galactose residues, with trace arabinose and the presence of pyruvate and sulfate as
substituents [7]. Additionally, our previous research reported that CFE comprises many
galactose residues, with traces of arabinose and the presence of sulfate as substituents [30].

In the present study, we elucidated the ability of CFE to promote the growth of A.
muciniphila. The presence of A. muciniphila in feces has been associated with a healthy
intestine, and its abundance has been inversely correlated with several disease states.
Further analysis confirmed that A. muciniphila can degrade mucin and exert competitive
inhibition on other pathogenic bacteria that degrade the mucin [41]. Therefore, the present
study aimed to investigate the efficacy and underlying mechanisms of CFE in alleviating
DSS-induced colitis in mice.

The proliferation of bacteria during 10 weeks of CFE feeding was determined using
quantitative PCR. As the administration of CFE increased, the proliferation of probiotics
increased whereas the proliferation of pathogenic bacteria decreased. Therefore, our results
indicate that CFE can be used as a prebiotic material. Moreover, A. muciniphila significantly
increased in the HCEF group. A. muciniphila is abundant in the gut microbiota of healthy
individuals, and it is beneficial in the prevention and treatment of obesity, type 2 diabetes,
and other metabolic dysfunctions [18–21,42–45]. Therefore, CFE can be used as a prebiotic
that specifically promotes A. muciniphila growth for the treatment of metabolic diseases.

After CFE administration for 10 weeks, acetic acid was identified as the major metabo-
lite in mouse cecum. A similar result was also reported by Li et al. [46], who found that
acetic acid was a major metabolite produced by A. muciniphila in static and dynamic cul-
tures. Li et al. [46] reported that acetic acid increased lipolysis and decreased lipid synthesis
in BRL-3A cells, thus reducing the accumulation of hepatic fat in BRL-3A cells. Therefore,
CFE was thought to reduce lipid synthesis as it led to the production of acetic acid by
promoting the growth of A. muciniphila.

β-Glucuronidase activity is a major factor in causing colon cancer [47]. β-Glucuronidase
hydrolyzes β-D-glucuronides to glucuronic acid and aglycone, such as alcohol, amine,
imine, or a thiol compound. UDP-glucuronosyltransferase catalyzes glucuronide formation.
From the liver, where synthesis occurs, it is partially eliminated into the large intestines
along with bile. There, it is hydrolyzed to aglycone under the influence of bacterial β-
glucuronidase, which is further hydrolyzed to aglycones. High β-glucuronidase activity
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was observed in patients diagnosed with colonic neoplasia, suggesting that this enzyme
plays an important role in promoting colonic neoplasia [48]. During the adaptation period,
all mice were fed the AIN-93 diet for 1 week, but the enzymatic activity in each group at
week 0 was not the same because the large intestines of all mice form a complex microbial
ecosystem. A marked decrease in enzymatic activity was observed in the MCFE and HCFE
groups compared with the CTRL group, being 88% and 87%, respectively. These results
suggest that β-glucuronidase activity is decreased under CFE feeding of more than 150 mg
per kg of body weight.

Dextran sulfate sodium (DSS)–induced colitis is mainly used to evaluate its efficacy
against inflammatory bowel disease. Disease activity index (DAI) is increased, and colon
length is shortened in DSS-induced colitis [49]. CFE treatment significantly improved the
body weight, reduced the overall DAI score, and improved the colon length, suggesting the
protective effect of CFE in DSS-induced colitis. Histologic examination consistently revealed
an improvement in inflammatory signs, reducing inflammatory infiltrates and restoring
intestinal epithelia in CFE-fed groups compared with the NC group, demonstrating that
CFE alleviates mouse colitis.

MPO activity is a marker of neutrophil infiltration and is proportional to the number
of neutrophils in the inflamed tissue [50]. In our study, MPO activity in the colon was
significantly reduced in the CFE-fed group compared with the NC group, indicating that
CFE can inhibit neutrophil infiltration and inflammation in mice.

5. Conclusions

In conclusion, the protective effect of CFE against DSS colitis suggests its clinical use
by IBD patients. Further detailed studies would be needed to deepen A. muciniphila activity
in relation to microecological interventions for IBD, and additional preclinical studies are
needed to elucidate the underlying molecular mechanisms regulated by CFE in animal
models of DSS-induced colitis. The conventional anti-inflammatory drugs used for treating
IBD cause side effects such as allergic responses, diarrhea, vomiting, lymphopenia, raised
liver enzymes, and inflammation of the pancreas [51]. It is important to alleviate IBD using
natural plants with low toxicity and few side effects. Therefore, further studies on optimal
dosage and safety in humans are needed for the development of natural products with
enhanced properties for IBD prevention.
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