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Abstract: Bridges serve as vital engineering structures crafted to facilitate secure and effective
transportation networks. Throughout their life-cycle, they withstand various factors, including
diverse environmental conditions, natural hazards, and substantial loads. Recent bridge failures
underscore the significant risks posed to the structural integrity of bridges. Damage detection
techniques, being core components of structural health monitoring, play a crucial role in objectively
assessing bridge conditions. This article introduces a novel framework for identifying damage in
bridges utilizing continuous wavelet analysis of accelerations recorded using two sensors mounted
on a vehicle traversing the bridge. The proposed method leverages changes in the static response
of the bridge, which has proven to be more sensitive to damage than its dynamic counterpart.
By doing so, the method eliminates the reliance on modal parameters for damage identification,
addressing a significant challenge in the field. The proposed framework also addresses key challenges
encountered by drive-by monitoring methods. It mitigates the adverse effects of road roughness
by utilizing residual accelerations and efficiently detects and locates damage even in the absence of
corresponding data from an undamaged bridge. Numerical investigations demonstrate the robustness
of the proposed method against various parameters, including damage location and extent, vehicle
speeds, road roughness levels, different boundary conditions, and multi-damage scenarios.

Keywords: damage detection; vehicle-scanning methods; wavelets; drive-by monitoring

1. Introduction

The aging of transport infrastructure presents a challenging dilemma for infrastructure
managers tasked with maintaining extensive networks within budget constraints. Bridges
play a crucial role in both road and rail transport, and their failure can disrupt transport
networks and pose safety risks [1]. Notably, recent years have witnessed significant bridge
collapses, such as the Tretten Bridge in 2022 and the Randklev Bridge in 2023 in Norway,
illustrating the imperative for continuous inspection and monitoring. This underscores the
need to prioritize ongoing safety assessments to ensure the well-being of bridges and imple-
ment intelligent maintenance practices. The development of Structural Health Monitoring
(SHM) techniques has been underway for decades as a crucial step in achieving these goals.
The vibration-based methodology within SHM methods presents innovative solutions
to the previously mentioned challenges. Typically, these methods leverage changes in
structural modal characteristics before and after damage occurs, making them capable of
detecting not only surface faults but also sensitive to interior damage. However, conven-
tional vibration-based methods usually necessitate multiple sensors and specialized data
collection systems tailored to specific applications [2–9]. The custom nature and associated
costs of traditional SHM approaches often pose obstacles for large-scale monitoring initia-
tives. Consequently, there has been a notable shift towards adopting indirect monitoring
techniques for bridges, ranging from drone-based visual inspections [10,11] to capturing
bridge vibration signals using measurements collected on a specially equipped passing
vehicle, commonly known as “drive-by monitoring” or “vehicle scanning method” (VSM).
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In VSM method, initially proposed by Yang et al. [12], the instrumented vehicle serves as
both the actuator and receiver while traversing a bridge. Drive-by monitoring systems
offer advantages over vision-based damage identification systems, as signals collected
from the vehicle can reveal structural changes caused by damage on a bridge, providing
valuable insights into the impact of the damage on the overall behavior of the structure [13].
As a result, this approach has gained popularity and undergone further development
to extract the dynamic characteristics of bridges including natural frequencies [14–19],
mode shapes [20–24], and damping ratios [25–27]. Some studies focused on estimating and
characterizing road profiles [28–30]. Several studies validated theoretical and numerical
findings through laboratory and field experiments [31–35]. However, the literature on dam-
age identification is relatively sparse in comparison to the abundance of articles addressing
modal properties using drive-by monitoring methods.

Damage detection techniques, being one of the core components of SHM , offer essen-
tial means for assessing the condition of bridges [36]. To this end, typically, drive-by moni-
toring methods establish a bridge damage index using either modal-related parameters
or other damage-related parameters extracted from the vibration data using data-driven
algorithms. In modal-parameter-based methods, as the name suggests, the initial step
involves identifying the frequency, mode shapes, and damping of the bridge using the
acceleration data obtained from the vehicles. Subsequently, the bridge damage index is
constructed based on these modal characteristics. For example, O’Brien and Malekjafar-
ian [37] introduced an innovative algorithm for bridge damage detection based on mode
shapes, using laser vibrometers and accelerometers on an instrumented vehicle. The al-
gorithm demonstrated effectiveness and precision, particularly at speeds below 8 m/s.
Similarly, Oshima et al. [38] assessed bridge damage, including support immobilization
and reduced girder stiffness at mid-span, utilizing mode shapes recovered from passing
vehicle responses. Zhang et al. [20,39] proposed a damage detection method using mode
shape squares derived from the amplitude history of Short Time Fourier Transform applied
to the recorded acceleration of the vehicle after crossing the bridge. Tan et al. [40] also
utilized mode shape squares extracted from the response of a moving vehicle via the Hilbert
Transform (HT) for detecting damage in bridges. In a different approach, Tan et al. [41]
employed bridge frequencies to identify damage in bridges. They utilized acceleration
signals from a quarter car model, processed them using Continuous Wavelet Transform,
and analyzed them to quantify the modal frequencies of the bridge under various vehicle
speeds and damage scenarios. The reduction in natural frequency served as a damage
index, enabling the identification of the presence and severity of the damage.

Alternative methods frequently leverage other damage-related parameters, such as
instantaneous mode functions and instantaneous amplitude squared (IAS) of the driving
component, extracted through data-driven algorithms, incorporating signal processing
techniques and machine learning. The benefit of machine learning algorithms lies in
their ability to effectively utilize the extensive data amassed by the drive-by monitoring.
Mei et al. [42] introduced an innovative method for the indirect health monitoring of
bridge populations using acceleration data collected from a mobile sensor network. Distin-
guishing itself from the majority of literature, the study involved obtaining acceleration
responses from a variety of vehicles under both baseline and damaged conditions. In both
scenarios, the acceleration data from each vehicle crossing the bridge were collected and
processed using Mel-frequency cepstrum (MFC). For damage identification, the extracted
MFC coefficients were utilized in combination with Principal Component Analysis [42],
Kullback–Leibler (KL) divergence [43], and the root mean square deviation [44]. Sarwar
and Cantero [45] proposed a damage assessment method using a deep autoencoder (DAE)
with multiple convolutional layers and an LSTM layer. The DAE, trained for healthy bridge
conditions, constructed a feature space sensitive to bridge dynamics. The damage index,
based on KL divergence, was found to be effective for damage detection and severity
quantification, as in [43]. Corbally and Malekjafarian [1] introduced an innovative deep
learning framework for bridge damage detection, employing an artificial neural network
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(ANN), taking into account environmental factors such as temperature and operational
effects such as road roughness, similar to [46].

Some studies studied proposed detection methodologies that do not rely on modal
parameters, eliminating the need for acceleration data collected from a mobile sensor net-
work. Kildashti et al. [47] utilized Instantaneous Mode Functions (IMFs) derived through
Empirical Mode Decomposition (EMD) applied to the response of a moving vehicle passing
over a bridge. They proposed a damage indicator based on the difference between the IMFs
of the vehicle response during passage over a healthy bridge and a damaged bridge to char-
acterize damage. Zhang et al. [48] developed a method using the instantaneous amplitude
squared (IAS) of the contact point acceleration via Hilbert transform, leveraging its narrow-
band nature for damage detection and localization. Numerical simulations demonstrated
the successful detection and localization of damage using the IAS at the driving frequency.
Erduran and Gonen [49] introduced a novel damage detection method that establishes
a physical link between contact point accelerations and the instantaneous curvature of a
bridge. This approach facilitates effective and precise damage detection and localization
in bridges through drive-by monitoring methods. Hester and Gonzalez [50,51] proposed
a wavelet-based drive-by algorithm for damage detection in bridges, using wavelet coef-
ficients obtained from the acceleration responses of the vehicle within specific frequency
bands sensitive to damage. Inspired by this approach [51], Zhang et al. [52] employed
characteristic wavelet coefficients (CWC) extracted from the contact point acceleration of a
quarter car to identify bridge damage .

While these studies have made significant strides in bridge damage identification
using indirect measurements, there remains a critical gap in the literature. Approaches
relying on modal-related parameters necessitate prior knowledge of modal parameters such
as frequencies, mode shapes in normal/healthy conditions, posing a significant drawback
for efficient first-time damage inspection where damage already exists [20,37–41]. On the
other hand, the studies utilizing non-modal-related parameters [1,42–46] and incorporating
machine learning demonstrate the capability to identify the presence of damage through
continuous monitoring as it propagates throughout the lifespan of the structures. However,
they fall short in providing information about the specific location of the damage. More-
over, machine-learning-based indirect inspection methods require extensive training data,
presenting additional challenges for damage identification and are prone to overfitting.
On the other hand, studies utilizing contact point accelerations show better promise in
detecting and localizing damage when the car configurations are known or when the same
car is used for both baseline and damaged cases. However, this requirement may pose
challenges in real-world applications where a standardized test car configuration is not
feasible. Certain studies [50–52] also showcase significant potential for both detecting and
localizing damage, even in cases with no prior information about the damage presence
in the bridge. Nevertheless, their effectiveness diminishes in the presence of road rough-
ness, as the high-frequency content of roughness contaminates the extracted components
(wavelet coefficients), leading to a hindrance in damage detection.

In order to address these gaps and enhance the robustness of bridge damage identifi-
cation using drive-by monitoring methods, we propose a framework that is based on the
continuous wavelet analysis of accelerations recorded on two sensors mounted on a vehicle
that crosses the bridge. The proposed framework improves the state-of-the-art in damage
detection using drive-by monitoring methods by combining the following aspects, which
lead to a more reliable, accurate, and applicable approach.

• The proposed method aims to utilize the changes in the static response of the bridge,
which was shown to be much more sensitive to damage than its dynamic counterpart.
As such, it eliminates the dependence on modal parameters, which are known to be
significantly affected by factors other than damage such as environmental factors.

• Unlike the methods that depend on contact point acceleration, the proposed method
does not require a priori knowledge about the mechanical properties of the instru-
mented vehicle such as its suspension stiffness and damping. The only vehicle param-



Appl. Sci. 2024, 14, 2969 4 of 23

eter that is required to apply the proposed framework is the vehicle frequency, which
can be easily measured.

• The proposed framework attenuates the negative impacts of road roughness by using
the residual accelerations computed as the difference between front-axle and rear-
axle accelerations.

• The proposed framework can detect and locate damage in the absence of correspond-
ing data from the undamaged bridge.

As such, the article contributes significantly to our common understanding of use
of drive-by monitoring methods for damage detection paving the way to more accurate,
reliable, and economical structural health monitoring practices.

2. Numerical Models

The efficacy of the proposed framework in detecting and locating damage will be
developed and validated through numerical simulations. For this, we used a single-span
bridge with a 25 m span length. The instrumented vehicle was modeled as a two-axle
vehicle, commonly known as a 2 DOF half-car model. An overview of the numerical
models of the bridge and the vehicle used in the numerical analysis is shown in Figure 1
The bridge was modeled using Bernoulli beam elements spaced at equal intervals of 0.5 m.
The values of the bridge and vehicle parameters are presented in Table 1. In the first phase,
we modeled the boundary conditions of the bridge as pin-supports, which completely
restrain the vertical movement at the support nodes. However, virtually all bridges globally
rest on bearings that attenuate the thermal and seismic effects. Therefore, in the parametric
study, supports were modeled using elastic springs which emulate the behavior of bearings.
The supports were assumed to be fixed in the longitudinal and transverse directions as
the stiffness in these directions do not have significant impact in the vertical behavior of
the bridge. Ref. [53] demonstrated that the supports in existing bridges can have some
rotational stiffness due to several reasons such as aging. Nevertheless, this study ignored
these effects, and the supports were simulated as free to rotate.

Finally, rigid beams were modeled at both ends of the bridge to emulate the bridge
approaches. Accordingly, the vehicle starts its trip with its front axle positioned at the first
support and continues until the rear axle reaches the final support. In this situation, the rear
axle moves during the initial phase of the car’s motion on the approach, whereas the front
axle undergoes a similar motion towards the end.

Figure 1. Bridge and vehicle models.
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Table 1. The properties of bridge and instrumented vehicle [21].

Bridge Mass per length ρ = 2 t/m
Young’s modulus E = 30 GPa
Moment of inertia I = 0.20 m4

First mode frequency fb,1 = 4.35 Hz
Second mode frequency fb,2 = 17.23 Hz
Third mode frequency fb,3 = 38.06 Hz

Vehicle Mass mv = 5 t
Mass moment of Inertia Jv = 3.5 t·m2

Stiffness coefficient (front) k1 = 5750 kN/m
Stiffness coefficient (rear) k2 = 2875 kN/m
Damping coefficient (front) c1 = 2.5 kN·s/m
Damping coefficient (rear) c2 = 2.5 kN·s/m
Axle distance to the mass d1 = d2 = 1 m
Bounce frequency fv,h = 5.77 Hz
Pitching frequency fv,r = 8.53 Hz

Among the parameters that adversely affect the accuracy of drive-by monitoring
methods in e.g., estimating bridge frequencies and mode shapes or detecting damage, road
roughness remains one of the most important because it is a major source of dynamic
excitation in vehicles. While a vehicle traverses a rugged road surface, it experiences forces
resulting from the uneven terrain, influencing its behavior and dynamic response, thereby
contaminating the recorded accelerations of the vehicle. Thus, any drive-by monitoring
method has to account for the adverse effects of road roughness. For this, we numeri-
cally generated a road roughness profile following the procedure described below and
elsewhere [54].

Dodds and Robson [55] proposed the Power Spectral Density (PSD) functions to
generate the road surface roughness that is assumed to be a zero-mean stationary Gaussian
random process. This function supplies the amplitudes of surface roughness based on
its spatial frequency. Spatial frequency refers to the reciprocal of the wavelength of the
roughness features. According to ISO-8608 [56], the one-sided PSD function, G(n), is
described in Equation (1).

G(n) = G(n0)

(
n
n0

)−2
nmin < n < nmax (1)

where G(n0) is the roughness coefficient that represents the degree of roughness in the road
classification ranging from Class A to Class H. In this study, G(n0) is adopted as 0.01 × 10−6 m3,
which accounts for Class A profile in the road classification [56], n0 = 0.1 cycles/m is the
reference spatial frequency. nmin = 0.01 cycles/m and nmax = 10 cycles/m are the lower
and upper spatial frequency limits, respectively. n is the spatial frequency value increased
incrementally by ∆n = 0.01 cycles/m in the range between nmin to nmax. Road rough-
ness irregularities are generated using the sum of a series of harmonics as described in
Equation (2).

r(x) =
N

∑
i=1

√
2G(ni)∆n cos(2πnix + φi) (2)

where φi is the random phase angle that varies between 0 and 2π, x denotes a location on
the surface where the irregularity r(x) is defined, and N represents the number of spatial
frequencies, which is calculated as follows:

N =
nmax − nmin

∆n
+ 1 (3)
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The road roughness profile was generated at 10 mm intervals along the 25 m span of
the bridge, as shown in Figure 2a. Figure 2b depicts the PSD of the generated road profile
and the target PSD.

(a) (b)

Figure 2. (a) The road roughness profile generated (b) Power Spectral Density of the road profile.

3. Continuous Wavelet Transform and Development of the Proposed Method

Traditionally, Fourier transform is extensively used for analyzing the frequency con-
tent of a signal. However, it has two primary limitations. First, it examines the entire
signal without offering insights into potential variations in its frequency content over time.
Additionally, the Fourier transform is constrained to using sinusoidal waves as the basis for
signal decomposition. The Wavelet Transform (WT) addresses both shortcomings by offer-
ing detailed information about the temporal variation of frequency content and permitting
the use of diverse basis functions, known as mother wavelets, for signal decomposition [57].
A mother wavelet, is a waveform of limited duration and has an average value of zero:∫ +∞

−∞
Ψ(t)dt = 0 (4)

where Ψ(t) is the mother wavelet function. The Continuous Wavelet Transform (CWT) of a
signal f (t) is then given by:

W(a, b) =
1√
a

∫ +∞

−∞
f (t)Ψ(

t − b
a

)dt = 0 (5)

The function W(a, b) denotes the degree of correlation between the signal at a par-
ticular time interval and the mother wavelet. The scaling parameter, a, is employed to
stretch and dilate the mother wavelet and is associated with the frequency of the wavelet,
while the translation parameter, b, is utilized to shift the finite-duration wavelet in time.
The function W(a, b) can be plotted as a wavelet coefficient map (WCM), which presents the
variation of wavelet coefficients with time at different scales, which are correlated with the
frequency. As such, a wavelet coefficient map provides information about the variation of
the frequency content of the signal with time. Equation (6) shows the relationship between
the scales used in CWT and frequency:

f =
Fc

s∆t
(6)

where f is the pseudo-frequency corresponding to the scale s, Fc is the central frequency of
the mother wavelet, and ∆t is the time step of the analysis. As indicated by Equation (6),
scale and frequency are inversely proportional to each other; i.e., the frequency decreases
as the scale increases and vice versa.

The methodology developed here is inspired by the work by Hester and Gonzalez [50],
which shows that, when a vehicle crosses over a damaged bridge, the wavelet coefficient
map of the accelerations recorded on the bridge reveals the damage and its location at
scales that are significantly higher than the scale that corresponds to the lowest bridge
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frequency. Later, Hester and Gonzalez [51] further developed the method to detect damage
on the bridges from the accelerations recorded on the vehicle. For this, they conducted
a numerical study where the bridge and the vehicle were modeled in a similar way to
this study while only one sensor was used to record the accelerations. In these studies,
Hester and Gonzalez [50,51] showed that, damage can be observed as deviations at the
damage locations in the horizontal sections of the WCM of the accelerations recorded both
on the bridge [50] and on the vehicle [51], when the vehicle travels on a smooth bridge.
However, when road roughness was included, detection and location of damage became
very difficult when the accelerations were recorded on the bridge (i.e., direct monitoring)
and impossible when the accelerations were recorded on the vehicle (drive-by monitoring).
Further, in both studies, damage could only be detected and located only when compared
with the corresponding information obtained from the undamaged bridge. In this study, we
aim to negate the adverse effects of road roughness on damage detection using continuous
wavelet analysis of accelerations recorded on the vehicle while proposing a standardized
framework that will allow us to detect and locate damage in the absence of corresponding
information from the undamaged bridge.

However, we will first take a step back and explain the physical principles of the
methodology that will be utilized in the proposed framework. For this, we will discuss the
components of the response of a bridge to a moving load (or vehicle). When the bridge
is exposed to the dynamic loading applied by a moving load, there are three components
to its response. The first one is the static response, which is the response created by the
presence of the load at a certain location on the bridge. The other component is the dynamic
response that is created by the movement of the load. These two components are present in
the response of all bridges; damaged or undamaged. The third component is the damage
component, that is visible only in the damaged bridges and close to the damage location.
The damage component impacts both of the other two components of the bridge response;
the static component and the dynamic component. However, the main impact of the
damage component is on the static component while its effect on the dynamic component
is much more subtle. For example, Figure 3a shows the displacement response of the
bridge both in its undamaged and damaged states. The depicted displacement response is
computed separately for each point on the span at the instant the back axle is exactly at
that point. For comparison, Figure 3b depicts the first mode shape of the undamaged and
damaged bridges, which have frequencies of 4.35 Hz and 4.20 Hz, respectively. Comparing
Figure 3a,b, and considering that the change in the first mode frequency is relatively small,
it is clear that the impact of the damage is mostly visible on the static response while its
impact on the mode shape remains imperceptible.

(a) (b)

Figure 3. (a) The displacement of the undamaged and damaged bridge under a moving vehicle
(b) first mode shape of the undamaged and damaged bridges.

Thus, if we can estimate the static response of the bridge from the vibrations recorded
on the vehicle, we can then, potentially, detect the presence of damage and estimate
its location.
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Based on this fact, Hester and Gonzalez [50,51] state that, for the case of direct moni-
toring, a horizontal section of the wavelet coefficient maps at a scale significantly higher
than the scale corresponding to the first mode frequency of the bridge will be free from the
dynamic response and closer to the static response. As such, Hester and Gonzalez [50,51]
showcases that the wavelet coefficients taken at such high scales can be used to detect and
locate damage.

In this article, we will build on this work by expanding it to drive-by monitoring
methods while also eliminating the negative impacts of road roughness, which is arguably
the parameter that most adversely affects the success of these methods.

For this, let us first examine how damage effects the wavelet coefficient maps and
how it can be used to detect damage. Figure 4 depicts the WCM of the accelerations
recorded at the rear-axle of the vehicle as it travels with a constant speed of 2 m/s over the
undamaged and damaged bridges with no road roughness. The Mexican hat wavelet was
used in the continuous wavelet transform as it was previously shown to be very effective
in damage detection [51]. Also depicted in Figure 4 is the scale that corresponds to the first
bridge frequency, which is 4.35 Hz. The damage is introduced in the bridge by reducing
the flexural stiffness of a one-meter segment of the bridge between 12 m and 13 m by
50%. Comparing Figure 4a with Figure 4b, we can observe that, damage clearly leads to
disturbances in the wavelet coefficients at scales higher than 250 in the vicinity of damage,
while the coefficients for an undamaged bridge remains constant throughout the entire
length of the bridge. These disturbances can be better observed when we take a horizontal
section at a scale that is far away from driving, bridge and vehicle frequencies, which is
plotted at a scale of 600; see Figure 5. In this figure, the location on the bridge in the abscissa
corresponds the location of the vehicle on the bridge at a given instant and computed as
x = v ∗ t, where v is the vehicle speed and t is time. Figure 5 clearly shows that, in the
absence of road roughness, the induced damage leads to a significant disturbance in the
wavelet coefficients close to the damage location while the wavelet coefficients for the
undamaged bridge remain stable at zero.

(a) (b)

Figure 4. Wavelet Coefficient Map of the rear-axle accelerations for smooth profile (a) Undamaged
case (b) 50% damage.

When we repeat the exercise summarized above on a bridge with the road roughness
profile depicted in Figure 2, we can observe that the wavelet coefficient maps for the
damaged and undamaged case are significantly affected by the road roughness; see Figure 6.
As a result, the wavelet coefficient maps, especially in the higher scales, become more
chaotic and the effect of damage on the WCM becomes negligible compared to the effect
of road roughness. Accordingly, when we take a horizontal section from WCMs for the
undamaged and damaged bridges at the same scale (Figure 7), the wavelet coefficients fail
to provide any useful information about the state of the bridge yet alone the location of
the damage.
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Figure 5. Wavelet coefficients at scale 600 of the rear-axle accelerations for smooth profile and
50% damage.

(a) (b)

Figure 6. Wavelet Coefficient Map of the rear-axle accelerations for rough profile (a) Undamaged
case (b) 50% damage.

Figure 7. Wavelet coefficients at scale 600 of the rear-axle accelerations for rough profile and 50% damage.

The wavelet coefficient maps and the wavelet coefficients at a scale of 600 shown in
Figures 4–7 suggest that these tools can be effective in detecting and locating damage if
only we can suppress the adverse effects of road roughness. Since the negative impacts
of road roughness on the drive-by monitoring methods have been known for a long time,
researchers have invested significant time and energy to negate them [58–61]. One of the
most successful methods to minimize the negative effects of road roughness was shown
to drive the vehicle twice on the same bridge and subtract the accelerations recorded in
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the second run from the first run. However, this method assumes that the vehicle drives
over the exact same roughness profile, a challenging task to achieve in practice. A more
practical application of this approach is to use two sensors on the same vehicle, one at the
front axle and one at the back axle, and subtract the acceleration response recorded at the
back axle from that recorded at the front axle. Several studies [15,26,62] demonstrate, both
theoretically and numerically, that the residual acceleration thus calculated is free from
the adverse effects of road roughness and provides much improved results for tasks like
frequency and mode shape estimation using drive-by monitoring methods. Compared to
its counterpart where the vehicle is driven over the bridge twice, this method is much more
easier to apply in practice, because the front and back axles of the car should be expected to
travel over the same roughness profile unless the direction of the vehicle changes sharply.
In this study, we leverage this approach to minimize the effects of road roughness.

The wavelet coefficient maps of the residual accelerations obtained by subtracting
the accelerations recorded at the rear-axle from those recorded at the front-axle for the
undamaged and damaged bridges are shown in Figure 8. Comparing Figure 8 with
Figures 4 and 6, we can observe that the approach utilized to remove the road roughness
effects indeed leads to a wavelet coefficient map that is closer to that obtained from a
vehicle crossing a bridge that has a smooth surface rather than that obtained from a bridge
with road roughness. Particularly, the WCM of the residual accelerations on an undamaged
bridge in Figure 8a demonstrate that the effect of road roughness is minimized at scales
greater than 300, which is the region of interest for us. As such, once we plot the WCM of
the residual accelerations recorded on a damage bridge (Figure 8b), the damage leads to
disturbances in the WCM at the higher scales that are clearly visible on the WCM.

(a) (b)

Figure 8. Wavelet Coefficient Map of residual acceleration response for rough profile (a) undamaged
case (b) 50% damage.

Further, taking a horizontal section of the wavelet coefficient maps at a scale of 600 in
Figure 9, we can clearly see the perturbations in the wavelet coefficients close to the
damage location on the damaged bridge. On the contrary the wavelet coefficients for the
undamaged bridge remains relatively stable at zero even in the presence of road roughness.

Next, we will explain how we decided to use the scale 600, where the horizontal section
depicted in Figures 5, 7 and 9 is taken at. As indicated before, Hester and Gonzales [50]
recommends, in case of direct monitoring, the scale where the horizontal section is taken
to be significantly higher than the scale corresponding to the bridge frequency to be
able to capture the static response. However, in case of vehicle scanning, where the
accelerations are recorded on the vehicle rather than the bridge, vehicle frequencies and
driving frequencies also need to be considered. The scale where we will take the horizontal
section should be far away from the vibration frequencies of the vehicle because the
behavior at scales close to these vibration frequencies will be dominated by the vehicle
response itself and not the static response of the bridge. On the other hand, the driving
frequency is free from the stiffness properties of the bridge and, thus, the behavior of the
bridge at this frequency should be expected to be either unaffected or minimally affected by
any damage in the bridge. Here, we should note that the driving frequency is generally a
very low frequency, especially for lower vehicle speeds for which the drive-by monitoring
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methods have been shown to be most effective. Thus, the scale where we will take the
horizontal section needs to be higher than those corresponding to the vehicle and bridge
frequencies to ensure that we are capturing the static response of the bridge and not
dynamic response, but also needs to be lower than the driving frequency. In our study,
the vehicle frequency is 5.77 Hz, and the first bridge frequency is 4.35 Hz (Table 1). These
frequencies correspond to Scale 44 and Scale 60 in the Wavelet Coefficient Map (WCM),
respectively, as computed using Equation (6) with Fc = 0.25 Hz for the Mexican Hat wavelet
and ∆t = 0.001 s. Figure 10 illustrates the WCM of the residual acceleration response
of the vehicle as it moves at a constant speed of 2 m/s across the damaged bridge with
road roughness.The driving frequency is 0.08 Hz, aligning with scale 3150 in the WCM.
Figure 10 schematically represents a region where the horizontal section can be taken
between the scales of the driving frequency and the first bridge frequency. Note that the
driving frequency is not shown in Figure 10 because it corresponds to such a high scale.
We selected scale 600 as it is close to the middle of the window but any scale within this
window can be a viable option as they correspond to relatively low frequencies, and thus,
capturing static response. In each application of the proposed framework, we recommend
that the user creates a similar figure and determines the scale where the horizontal section
will be taken accordingly.

Figure 9. Wavelet coefficients at scale 600 for 50% damage.

Figure 10. Wavelet Coefficient Map between using vehicle’s residual acceleration response at 2 m/s
for 50% damage.
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Finally, we will focus on localizing the damage. For this, we will use Figure 9, which
depicts the wavelet coefficients at a scale of 600 extracted from the WCM of the residual
accelerations recorded on the undamaged and damaged bridges; see Figure 8. As expected,
in the absence of damage, the wavelet coefficients remain stable around zero while damage
causes a disturbance in these coefficients. Further, in our numerical analysis, we observed
that these disturbances follow a unique pattern as will be demonstrated for other cases in
the upcoming sections. There are two, nearly identical, peaks in terms of absolute value:
one in the negative direction and one in the positive direction as indicated in Figure 9.
The negative peak occurs just before the vehicle reaches the damaged location followed by
an increase in the wavelet coefficients leading to the second peak (the positive peak) which
is observed after the damage location. While the wavelet coefficients are increasing from the
negative peak to the positive one, they cross the horizontal axis (wavelet coefficients = 0)
within the damaged zone, generally very close to the middle of the damage location.
As such, using this unique pattern, we can estimate the location of the damage. Here, we
should note that, the negative and positive peaks used to locate the damage is observed
only when the WCM is computed for the residual vehicle response. On the other hand,
we cannot observe the same behavior when the WCM is computed for the accelerations
recorded only on the rear-axle (or front-axle) of the vehicle traveling on a smooth bridge
(Figure 5), because using residual response is not necessary in this case due to the lack of
road roughness. We should also note the smooth road profile case only presents an academic
case as all bridges exhibit a certain level of road roughness. Thus, tracing the negative and
positive peaks of the WCM of residual vehicle response as shown in Figure 9 will lead to
successful damage location in real-life applications. To explain why the disturbances in
the wavelet coefficients (Figure 9) start before the damaged zone and extend beyond it,
we need to take a closer look at the static displacements under the moving load depicted
in Figure 3. It is clear from this figure that the changes in the static displacements due to
damage also extend to a range that is much longer than the damage location. Since the
scale we focus on is carefully selected to reveal the pseudo-static behavior of the bridge,
the disturbances in the wavelet coefficients occur approximately at the region of the bridge
where the damage significantly impacts the static displacements.

At the end of this section, we should also mention a recognized phenomenon in
continuous wavelet transform that leads to high wavelet coefficients at the two ends of the
bridge. These relatively high coefficients are attributed to boundary effects due the finite
length of the input signal [50,51]. These effects are generally limited to the first and final
20% of the bridge length. These edge effects can clearly be seen in the first and last 5 m
of the WCM (Figure 10). Due to these edge effects, the proposed method are limited to
detecting and locating damage where these edge effects are not prominent (i.e., between
0.2L and 0.8L where L is the length of the bridge). As such, the horizontal sections of the
WCM will be presented for a bridge section between x = 5 m and 20 m. This limitation is
also mentioned in other studies that rely on WCM for damage detection [50–52].

The proposed damage detection and location method can be summarized as:

1. Drive the instrumented vehicle over the bridge and record the accelerations at the
front and rear axles.

2. Subtract the rear-axle accelerations from the front-axle accelerations with a time lag to
compute the residual accelerations.

3. Conduct a continuous wavelet transform of the residual accelerations to obtain the
wavelet coefficient map.

4. Determine the window which is sufficiently lower than the scale corresponding to
the driving frequency and higher than the scales corresponding to the vehicle and the
bridge frequencies. Decide on the scale where the horizontal section will be taken.
Although, any scale within this window can be a viable option for the horizontal
section, as they correspond to relatively low frequencies that capture static response,
some engineering judgment can be required to select the final horizontal section.
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5. Plot the horizontal section of the WCM at the selected scale for a bridge segment
between x ≈ 0.2 L and x ≈ 0.8 L and evaluate the variation of the wavelet coefficients
over the length of the bridge. Due to the edge effects that are commonly encountered
in WCM of signals, the proposed method cannot detect damage that is located between
0–0.2 L and 0.8–1 L.

6. If the wavelet coefficients remain stable around zero, the bridge can be assessed to
be undamaged. However, disturbances of the wavelet coefficients similar to those in
Figure 9 indicate presence of damage.

7. Once damage is detected, its approximate location can be estimated as the point where
the wavelet coefficients crosses the zero line between the negative and the positive
peaks of the disturbance; see Figure 9.

4. Parametric Study

After demonstrating the efficacy of the proposed framework to detect and locate
damage, we conducted a parametric study to evaluate the impact of different parameters on
the damage estimates of the proposed framework. Accordingly, we repeated the numerical
analysis by varying the following parameters: (1) Damage location and amount (2) vehicle
speed (3) road roughness level (4) boundary conditions and (5) multiple damage.

4.1. Damage Location and Level

First, we will take a look at the efficacy of the proposed framework to detect and locate
different levels of damage at different locations. For this, we simulated three different
levels of damage that correspond to 20%, 50%, and 80% reduction in the flexural stiffness
of the bridge at three different segments. These segments start at 7 m, 12 m, and 16 m away
from the left support of the bridge and are 1 m long. For each case, we first conducted
a numerical analysis for a vehicle speed of 2 m/s and a sampling frequency of 1000 Hz.
The road roughness profile in Figure 2 was considered in the analyses. We then carried
out a continuous wavelet transform on the residual accelerations, which are computed by
subtracting the accelerations recorded at the back-axle from those recorded at the front
axle, to create the wavelet coefficient map for each case. Finally, we took a horizontal
section of the wavelet coefficient maps at scale 600, which meets the criteria summarized
above. Figure 11 presents the variation of the wavelet coefficients with location on the
bridge for different damage locations and levels including the undamaged case. The plots
are provided between x = 5 m and x = 20 m, i.e., 5 m away from each support due to the
aforementioned edge effects.

In Figure 11, the damage location is marked by red-colored vertical dashed lines,
and, for each damage location, the wavelet coefficients were plotted for the different
damage levels. The wavelet coefficients for the undamaged case remain relatively stable
at zero. On the other hand, induced damage creates a clear perturbation in the wavelet
coefficient around the damage location, while they revert to zero once the vehicle travels
away from the damage. As such, presence of damage can be successfully detected for each
damage location and each damage level depicted in Figure 11. Further, the disturbances
in the wavelet coefficients follow the unique pattern explained in Figure 11. Accordingly,
the wavelet coefficients reach a negative peak before the damage location, start to increase
crossing the horizontal axis close to the middle of the damaged segment on their path to a
positive peak, which occurs after the damaged section. Hence, the location of the damage
can successfully estimated for each damage location by the proposed method.

Further, the perturbations in the wavelet coefficient maps increase with an increase in
the damage level paving the way for potentially quantifying the damage. However, this
amplification in the perturbations with damage level, makes it difficult to visually identify
the effect of 20% damage on the wavelet coefficients when we plot all three damage levels
in one plot. Therefore, we re-plotted the wavelet coefficients for the undamaged case and
the 20% damage between 12–13 m and 16–17 m cases in Figure 12. In this figure, we can
clearly observe that, the wavelet coefficients for 20% damage follows their counterparts
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for higher damage levels in Figure 11. Thus, we can confidently state that, the proposed
framework can detect and locate damage for all damage levels and locations investigated.

(a) Damage between 7 m and 8 m (b) Damage between 12 m and 13 m

(c) Damage between 16 m and 17 m

Figure 11. Wavelet coefficients at scale 600 for different damage locations and amounts.

(a) Damage between 12 m and 13 m (b) Damage between 16 m and 17 m

Figure 12. Wavelet coefficients at scale 600 for 20% damage at different locations for.

4.2. Vehicle Speed

Next, we will take a look at the effect of vehicle speed on the accuracy of the proposed
framework. The first immediate impact of the driving speed on the proposed framework
is its effect on the driving frequency and the scale it corresponds to. As such, it is likely
to alter the scale at which we take a horizontal section of the WCM. The shift in the scale
corresponding to the driving frequency with the vehicle speed is demonstrated in the
wavelet coefficient maps depicted in Figure 13 for different vehicle speeds. Recalling the
procedure to select the scale where a horizontal section of the WCM will be taken, we first
need to identify a range of scales which is sufficiently lower than the scale corresponding
to the driving frequency and higher than the scales corresponding to the vehicle and the
bridge frequencies. As shown in Figure 13 and also in Figure 10 for a speed of 2 m/s,
which is not repeated here for brevity, this range is quite wide for lower vehicle speeds



Appl. Sci. 2024, 14, 2969 15 of 23

but gets narrower as the vehicle speed increases because the scale corresponding to the
driving frequency decreases with increasing vehicle speed. Also depicted in the figure are
the suitable ranges of scales for each vehicle speed to select the scale that will be used for
damage detection and location. Accordingly, we selected the scales 600, 240, 240, and 185
for vehicle speeds of 2 m/s, 5 m/s, 7.5 m/s, and 15 m/s, respectively, as indicated by the
dashed, red lines in Figure 13.

(a) V = 5 m/s

(b) V = 7.5 m/s

(c) V = 15 m/s

Figure 13. Wavelet coefficient maps for different vehicle speeds.

The variation of wavelet coefficients with the location of the vehicle on the bridge for
different vehicle speeds at the respective scales are shown in Figure 14. The damage is
located between x = 10 m and x = 11 m and the damage level varies between 20% and 80%.
Figure 14 along with Figure 13 indicate that the accuracy of the proposed framework in
detecting and locating damage decreases significantly with an increase in the vehicle speed.
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(a) V = 2 m/s (b) V = 5 m/s

(c) V = 7.5 m/s (d) V = 15 m/s

Figure 14. Wavelet coefficients at for different vehicle speeds.

This can be attributed to the fact that, the interaction between the driving frequency,
bridge frequency and the vehicle frequency increases as the vehicle speed increases,
i.e., when the driving frequency decreases. This interaction make it difficult to find a scale
that is dominated by the static response, which is critical for the success of the proposed
framework. Further, the dynamic response of the bridge is amplified significantly with an
increase in the vehicle speed. As such, capturing the static response of the bridge becomes
more difficult as the vehicle speed increases due to the increased dynamic response and
the interaction between the driving, bridge and vehicle frequencies. Recalling that the pro-
posed method owes its success in estimating the static displacements of the bridge, lower
vehicle speeds lead to a much improved success rate in detecting and locating damage.

4.3. Road Roughness Level

As discussed above, road roughness is one of the parameters that adversely affect
the success of drive-by monitoring methods in estimating bridge modal parameters and
detecting damage. We also demonstrated in Section 3 that using residual accelerations,
which are computed as the difference between the accelerations recorded on the front-axle
and the rear-axle, eliminates these adverse effects. However, so far, we only tested the
efficacy of this approach for one roughness level. This section investigates the effect of
four distinct Class A roads on damage estimation of the bridge utilizing the proposed
method. The roughness profiles were generated using Equations (1)–(3). The G(n0) value
was specified as 0.01 × 10−6 m3, 0.1 × 10−6 m3, 1 × 10−6 m3, and 10 × 10−6 m3 for very
low, low, moderate, and high roughness levels, respectively.

Figure 15 depicts the wavelet coefficients at a scale of 600 obtained from the residual
accelerations for the different roughness levels. Different levels of damage is introduced
between 10 m and 11 m. The speed of the vehicle was kept constant at 2 m/s. The results
indicate that, despite the remedies taken to reduce its effect, road roughness still plays a
significant role in detecting damage. For very low and low levels of road roughness, its
effects are very limited and we can clearly detect the lowest levels of damage investigated in
this study. However, once we reach the moderate roughness level, it becomes very difficult
to distinguish the wavelet coefficients from the undamaged case and 20% damaged case.
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As such, only damage levels of 50% and above can be clearly identified for this roughness
level. Finally, for the high roughness level, the fluctuations in the wavelet coefficients of
the damaged case due to the road roughness become so significant that it is not possible to
ascertain whether they are created by the damage or by the road roughness. Further for the
moderate and high levels of road roughness, the wavelet coefficients for the undamaged
bridge do not remain as stable as they do for the lower roughness levels, making it difficult
for the proposed method to detect and locate the damage.

(a) Very Low Roughness (b) Low Roughness

(c) Moderate Roughness (d) High Roughness

Figure 15. Wavelet coefficients at a scale of 600 for different roughness levels.

One question that needs to be considered here is: “If we do not know the road rough-
ness level, how do we understand if the fluctuations are due to damage (e.g., Figure 15a)
or due to road roughness (e.g., Figure 15d)”. This is a crucial question for the success
of the practical applications of the proposed method. Focusing on Figure 15a,d, which
depict the wavelet coefficients for very low and high roughness levels, respectively, we can
observe that the fluctuations due to damage have mainly low frequency. On the other hand,
fluctuations due to road roughness have significant high frequency components as can be
observed from Figure 15d, and to a certain extent, Figure 15c. Therefore, the frequency
content of the fluctuations in the wavelet coefficients should be examined to determine the
source of the fluctuations in the wavelet coefficients to ascertain whether they are caused
by road roughness or damage.

4.4. Boundary Conditions

To explore the impact of finite support stiffness on the efficacy of the proposed method,
we substituted the pin-supports at both ends of the bridge with elastic springs. Commonly
available bearings typically exhibit vertical stiffness ranging from kspr = 1 × 105 kN/m
and kspr = 1× 107 kN/m [63]. Hence, we systematically altered the vertical spring stiffness
within this range, using equal values for the springs on both sides. Damage is introduced to
the model as a 20%, 50%, and 80% reduction in the bending stiffness of the bridge between
x = 10 m and x = 11 m and the analyses were conducted for a vehicle speed of 2 m/s.
Road profile A depicted in Figure 2 was used in the analysis.
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Figure 16 presents the wavelet coefficients at a scale of 600 computed from the residual
accelerations recorded on a vehicle crossing a bridge with different boundary conditions.
Comparing Figure 16a,d, which represent the softest and stiffest boundary conditions,
respectively, we can observe that the edge effects associated with the continuous wavelet
transform are distributed over a longer section of the bridge when the softest bearing
stiffness is used. As a result, the section of the bridge where damage can be identified
using the proposed method becomes more limited. More specifically, for bearing stiffness
of kspr = 1 × 106 kN/m and higher, it is possible to detect damage between 5 m and 20 m
away from the left support. On the other hand, for kspr = 1 × 105 kN/m, the wavelet
coefficients become flat only when the vehicle reaches 7.5 m due to the edge effects limiting
the possible damage detection to a portion of the bridge between 7.5 m and 17.5 m. When
the damage is simulated between 10m and 11m, as is the case in this study, the disturbance
in the wavelet coefficients around the damage location can clearly be identified for all three
levels of damage leading to successful detection and localization of damage.

(a) k = 1 × 105 kN/m (b) k = 1 × 106 kN/m

(c) k = 1 × 107 kN/m (d) Pin Support

Figure 16. Wavelet coefficients at a scale of 600 for different boundary conditions.

4.5. Multiple Damage

Damage in bridges is not necessarily confined to one portion of the bridge, but,
especially if created by environmental conditions, can occur simultaneously at different
sections. To investigate the efficacy of the proposed method to detect damage at multiple
locations, we simulated two scenarios where damage is introduced at two separate sections.
In the first scenario, damage is simulated between 7 m and 8 m and also between 12 m
and 13 m measured from the left-hand support. In the second scenario, the damage is
between 7 m and 8 m and between 16 m and 17 m. In both scenarios, we focused only on
20% damage because detecting and locating this damage level ensures that higher damage
levels can also be detected and located. The numerical analysis was then repeated for
both scenarios with road roughness, and the residual accelerations on the vehicle were
computed. The vehicle speed was 2 m/s. Figure 17 depicts the variation of the wavelet
coefficients with location at a scale of 600.
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(a) (b)

Figure 17. Wavelet coefficients at scale 600 for 20% damage at multiple locations. (a) Multiple
damages between 7–8 m and between 12–13 m, (b) Multiple damages between 7–8 m and between
16–17 m.

Comparing Figures 12 and 17, we can observe that multiple damage leads to two
separate peaks (two each with positive and negative sign) with virtually the same amplitude
in the wavelet coefficients when two separate sections of the bridge are damaged. On the
other hand, only a one peak in the wavelet coefficients (one with negative and one with
positive sign), that has a much higher amplitude, occurs when a single section of the bridge
is damaged. Hence, presence of multiple damage can be detected using the proposed
method in the form of multiple peaks in the wavelet coefficients.

Further, the peaks, and more specifically the location where the wavelet coefficient
crosses the horizontal axis between the negative peak and the positive peak clearly indicates
the location of the damage.

As such, we can confidently state that, for low vehicle speeds and relatively low road
roughness levels, the proposed method can detect and locate multiple damage occurring
concurrently on the bridge.

5. Concluding Remarks

This article summarizes a drive-by monitoring method that is based on the continuous
wavelet transform of the residual accelerations recorded on a vehicle crossing the bridge.
First, we demonstrated that, using the residual accelerations, which are computed by the
accelerations recorded at the back axle from those recorded at the front axle, eliminates the
adverse effects of road roughness on the wavelet coefficient maps. Once these effects are
eliminated, the wavelet coefficients at a scale far away from the bridge, vehicle and driving
frequencies, are shown to be stable around zero in the absence of damage. On the other
hand, flexural damage leads to disturbances in the wavelet coefficients around the damage
location. Leveraging this observation, the proposed method can detect and locate damage
even in the absence of data from the undamaged bridge.

We also conducted a parametric study to investigate the effect of different parameters
on the efficacy of the proposed method. Through this parametric study, we observed that:

• The proposed method can successfully detect damage as low as 20% at different
locations of the bridge even in the presence of road roughness.

• The proposed method illustrated that, as the damage level increases, perturbations in
the wavelet coefficient maps also increase, potentially facilitating the quantification
of damage. However, the proposed method cannot quantify the damage level in
its current form when the damage is detected for the first time. However, as the
damage propagates with time, repeated application of the proposed method enables
the detection of the escalating damage levels.

• The vehicle speed has a negative impact on damage detection using the proposed
method because, as the vehicle speed increases the driving frequency becomes closer
to the vehicle and bridge frequencies, minimizing the window that we select the scale
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used for damage detection. Hence, the proposed method should be used with low
vehicle speeds to ensure successful damage detection.

• Although using the residual accelerations largely eliminates the negative impacts of
road roughness when road roughness is limited to low levels, for higher levels of road
roughness, only higher levels of damage can be detected successfully.

• Owing to the edge effects encountered in CWT, the proposed method is constrained to
identifying and locating damage in regions where these edge effects are less pronounced.

• When the bridge is seated on relatively soft bearings, the edge effects associated with
continuous wavelet transform, is amplified and extends to a longer section of the
bridge at the ends. As such, the segment of the bridge where damage can be detected
becomes shorter. However, when the damage is close to the middle of the span and
sufficiently away from the supports, the proposed method can successfully detect and
locate damage.

• The proposed method was also shown to detect and locate presence of multiple
damaged sections. In the numerical analysis where we introduced damage in two
separate sections of the bridge, we can clearly observe two peaks, both negative and
positive, close to the damage locations, while we could only observe a single peak
when only one bridge section was damaged. Further, as in the case of single damage,
the wavelet coefficients reach a negative peak just before the damage location, increase
after this peak, and cross the time axis at the middle of the bridge location before
attaining a positive peak. Thus, using the proposed method, we can locate both
damaged sections successfully.

One parameter that we did not include in the parametric study is the measurement
noise. The main reason for omitting this parameter lies in the underlying principle of the
proposed framework, which aims to capture the static response of the structure at low fre-
quencies. Thus, the proposed framework is relatively immune to the effects of measurement
noise, which is typically proportional to the square root of the bridge frequency, as indicated
by most accelerometer manufacturers [49]. Additionally, Yang et al. [64] demonstrated that
noise tends to affect bridge frequencies more prominently in the high frequency region,
above 22 Hz, while having minimal impact on the first few frequencies. In this study,
given that the damage component of the bridge was extracted from the wavelet scales
corresponding to frequencies between 0.4 Hz and 1.0 Hz, that are situated far from the high
frequency region where the measurement noise effects are most prominent. With that being
said, the effects of measurement noise on the efficacy of the proposed framework should be
investigated in future studies to confirm that the proposed framework is indeed immune
to the adverse effects of this parameter.

Further, in future studies, the efficacy of the proposed method in detecting damage
in three-dimensional structures should be investigated. Further, laboratory and field tests
should be conducted to test its efficacy in physical applications. Finally, the method should
be improved further to minimize the edge effects to ensure that damage close to the
supports can also be successfully detected and located.
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