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Abstract: The structure and function of retinal vessels play a crucial role in diagnosing and treating
various ocular and systemic diseases. Therefore, the accurate segmentation of retinal vessels is of
paramount importance to assist a clinical diagnosis. U-Net has been highly praised for its outstanding
performance in the field of medical image segmentation. However, with the increase in network
depth, multiple pooling operations may lead to the problem of crucial information loss. Additionally,
handling the insufficient processing of local context features caused by skip connections can affect the
accurate segmentation of retinal vessels. To address these problems, we proposed a novel model for
retinal vessel segmentation. The proposed model is implemented based on the U-Net architecture,
with the addition of two blocks, namely, an MsFE block and MsAF block, between the encoder and
decoder at each layer of the U-Net backbone. The MsFE block extracts low-level features from different
scales, while the MsAF block performs feature fusion across various scales. Finally, the output of the
MsAF block replaces the skip connection in the U-Net backbone. Experimental evaluations on the
DRIVE dataset, CHASE_DB1 dataset, and STARE dataset demonstrated that MsAF-UNet exhibited
excellent segmentation performance compared with the state-of-the-art methods.

Keywords: deep neural networks; attention mechanism; retinal vessel segmentation

1. Introduction

The retinal vascular system is a crucial component of the visual system, playing a
key role in maintaining intraocular homeostasis and ensuring visual function. It serves as
a vital actor in sustaining the normal functionality of visual tissues by regulating blood
flow and adjusting vascular tension, ensuring an ample supply of blood and oxygen to
visual tissues. Additionally, the retinal vascular system is involved in the regulation of
intraocular pressure, which is essential for maintaining the morphology and structure of
the eyeball [1,2].

Under normal circumstances, the retinal vascular network exhibits a highly organized
distribution, including major vessels, such as the central artery and central vein, along
with various branches and capillaries. This structured arrangement ensures a stable blood
supply to the retina, establishing optimal conditions for the transmission and processing of
visual signals. Nevertheless, in pathological conditions, alterations to this structure may
occur, leading to the formation of vascular abnormalities. These abnormalities can result in
issues such as insufficient nutrient supply and hypoxia, ultimately affecting the normal
functioning of the visual system [2,3].

In the field of ophthalmology, the structure and function of retinal vessels play a
crucial role in diagnosing and treating various ocular and systemic diseases. The diameter,
reflectivity, curvature, and branching characteristics of retinal blood vessels are crucial
indicators for various retinal and systemic diseases [4–6]. A quantitative analysis of retinal
vessels can assist ophthalmologists in detecting and diagnosing the early stages of certain
severe conditions [7,8].
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In recent years, methods utilizing artificial intelligence (AI) technology for medical
image segmentation have garnered widespread attention [9]. In medical image analysis,
AI technology has become a potent tool, assisting doctors in diagnosing diseases quickly
and accurately. Retinal vessel segmentation is a crucial task in medical image analysis.
The manual segmentation of retinal vessels is a laborious and time-consuming task
prone to inter-observer variability. With the aid of AI technology, particularly machine
learning and deep learning algorithms, automated retinal vessel segmentation can be
achieved, aiding ophthalmologists in better understanding and analyzing the morphol-
ogy and structure of retinal vessels, thereby providing superior clinical decision support
for ophthalmologists.

The advancements in medical image segmentation have primarily been driven by
deep learning techniques. The well-known CNN architecture U-Net [10] has demonstrated
excellent performance in medical image segmentation. However, with the increase in
network depth, multiple pooling operations may lead to the problem of crucial information
loss, and the handling of insufficient local contextual features caused by skip connections
can affect the accurate segmentation of retinal vessels. To address these problems, we
proposed a multi-scale attention fusion network (MsAF-Net) for retinal vessel segmentation.
Our main contributions are as follows:

(1) We propose a multi-scale feature extraction (MsFE) block to capture diverse scale
information from low-level features, providing the network with richer contextual
information.

(2) We propose a multi-scale attention fusion (MsAF) block, which combines channel
attention from low-level features and spatial attention from high-level features, enabling
the network to comprehensively understand the content of the image.

(3) Combining the MsFE block and MsAF block, we propose a novel model for retinal vessel
segmentation. Experimental results on three datasets demonstrated that our proposed
model exhibited strong competitiveness compared with other state-of-the-art methods.

2. Related Works
2.1. Multi-Scale Feature Extraction

Multi-scale feature extraction is a common technique used in various computer vision
tasks. A popular method for multi-scale feature extraction involves using filters with
different sizes or receptive fields for image convolution. One notable example of this is the
Inception v1, v2, and v3 modules proposed by Szegedy et al. [11,12].

For the task of retinal vessel segmentation, Yang et al. [13] proposed a segmentation
method based on U-Net that utilizes the inception module to replace the convolution
operation in the encoder. Compared with traditional convolution operations, the inception
module can extract features at multiple scales. Experimental results on two datasets demon-
strated the superior performance of this method, showing its competitiveness. Shi et al. [14]
proposed a novel segmentation method named MD-Net. MD-Net adopts a strategy of
dense connections and multi-scale feature extraction, enabling the network to simultane-
ously focus on both local details and global features of the image, thereby better capturing
the structure and morphology of retinal vessels. Additionally, this method enhances the
network performance by effectively utilizing residual learning and multi-scale receptive
field design. Experimental validation on multiple datasets demonstrated the performance
of MD-Net, with results indicating high segmentation accuracy and performance metrics
across different datasets, thus confirming its superiority and effectiveness in retinal vessel
segmentation tasks.

2.2. Attention Mechanism

Vaswani et al. [15] introduced the Transformer architecture, allowing the model to
attend to different parts of a sequence without being constrained by the sequence length,
thus enhancing the model’s ability to handle long-range dependencies. Subsequently,
attention mechanisms have found widespread application in computer vision tasks [16–24].
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Researchers have proposed many methods for retinal vessel segmentation that com-
bine attention mechanisms with the U-Net backbone. Dong et al. [25] proposed a cascaded
U-Net framework to progressively extract features at different hierarchical levels from
images. They introduced a residual attention block, incorporating an attention mechanism
to enhance the network’s focus on crucial image regions, thereby improving the precision
of vessel segmentation. The experimental results on the DRIVE dataset and CHASE_DB1
dataset demonstrated its outstanding segmentation performance. Guo et al. [26] introduced
SA-UNet for retinal vessel segmentation. SA-UNet replaces the original convolutional
blocks in the U-Net framework by incorporating DropBlock [27] and batch normaliza-
tion. Additionally, a spatial attention module is integrated between the encoder and
decoder. The segmentation performance of SA-UNet is excellent on the DRIVE dataset and
CHASE_DB1 dataset.

However, despite the good performance exhibited by U-Net and its variants in the
field of medical image segmentation, increasing the network depth may lead to issues such
as the loss of crucial information due to multiple pooling operations and the inadequate
handling of local contextual features caused by skip connections. These issues can have an
impact on the accurate segmentation of retinal vessels.

3. Methodology

Figure 1 illustrates the framework of the proposed model. The model is implemented
based on the U-Net architecture and incorporates two blocks: the MsFE block and the
MsAF block. These blocks are inserted between the encoder and decoder at each layer of
the U-Net backbone. The MsFE block extracts low-level features from different scales, while
the MsAF block performs feature fusion across different scales. Ultimately, the output of
the MsAF block replaces the skip connection in the original U-Net.

Figure 1. The framework of the proposed model.

3.1. MsFE Block

Multi-scale features have the capability to capture semantic information at different
scales, providing richer contextual information. Therefore, inspired by [11,28], we em-
ployed the MsFE block to extract multi-scale information. As illustrated in Figure 2, the
MsFE block consists of four parallel branches and a residual connection. The four parallel
branches include convolutional operations of 1 × 1, 3 × 3, and 5 × 5, as well as a 3 × 3
max-pooling operation. After concatenating the outputs of the four parallel branches, a
1 × 1 convolution and sigmoid activation are applied.
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Figure 2. Illustration of the MsFE block. The MsFE block extracts features at different scales by using
convolutional kernels of different sizes.

3.2. MsAF Block

The channel attention mechanism focuses on adjusting the weights of different chan-
nels in the network’s feature maps to enhance useful features and suppress those that are
less relevant to the current task. On the other hand, the spatial attention mechanism is con-
cerned with how the network prioritizes different spatial positions in the image, allowing
for a selective emphasis on crucial areas. Inspired by [16,29], we simultaneously introduced
both channel attention and spatial attention mechanisms, designing a novel MsAF block.
As illustrated in Figure 3, we applied channel attention to low-level features and spatial
attention to high-level features. The final step involved merging the features extracted
from each attention mechanism, enabling the network to comprehensively understand the
content of the image. We describe the detailed operation below.

Figure 3. Illustration of the MsAF block. The MsAF block fuses channel attention from low-level
features and spatial attention from high-level features.

First, we defined the low-level features as XL and the high-level features after the
upsample operation as XH . For the low-level features XL, global average pooling was
applied to compress the features. Subsequently, two fully connected (FC) layers and an
activation function were utilized to obtain channel-wise dependencies Y′

L. This can be
expressed as
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Y′
L = θ( f2(δ( f1(AvgPool(XL))))), (1)

where f1 and f2 denote the fully connected layers, θ denotes a sigmoid function, and δ
denotes a ReLU function. Then, the channel attention map can be represented as

YL = XL · Y′
L, (2)

where YL ∈ RH×W×C.
For the high-level features XH , we initially performed two pooling operations, con-

catenated the resulting two feature maps, and then utilized a 7 × 7 convolution to generate
the spatial attention map Y′

H . This can be expressed as

Y′
H = θ( f 7×7([AvgPool(XH); MaxPool(XH)])), (3)

where θ denotes a sigmoid function. Then, the final spatial attention map YH can be
represented as

YH = XH · Y′
H , (4)

where YH ∈ RH×W×C.
We concatenated the obtained channel attention map XL and spatial attention map

XH , performed a 3 × 3 convolution operation, and generated a multi-scale attention fusion
feature map Y. This can be represented as follows:

Y = f 3×3([XL; XH ]), (5)

where Y ∈ RH×W×C, and f 3×3 represents the convolution operation.

4. Experiments and Results
4.1. Dataset

The experiments were conducted using the DRIVE dataset [30], the CHASE_DB1
dataset [31], and the STARE dataset [32]. Table 1 displays the specific information of each
dataset. Due to the small sizes of the three datasets, which may lead to overfitting, we
utilized horizontal flips, vertical flips, rotations, addition of Gaussian noise, adjustment of
brightness, and other methods to augment the data. After the augmentation, the training
samples for the DRIVE dataset and CHASE_DB1 dataset reached 800 images each, and for
the STARE dataset, there were 400 training samples.

Table 1. The specific information of each database.

Dataset Total Images Training Set Testing Set

DRIVE dataset 40 20 20
CHASE_DB1 dataset 28 20 8
STARE dataset 20 10 10

4.2. Experimental Setup

All experiments employed the Adam optimizer, training was stopped after 200 epochs,
and the input image size was uniformly resized to 448 × 448 × 3. The Dice loss was used
as the loss function, with an initial learning rate of 0.001. Evaluation metrics comprised
the sensitivity (SE), F1-score (F1), specificity (SP), accuracy (ACC), and the area under the
receiver operating characteristic curve (AUC).

4.3. Results
4.3.1. Comparison with Baseline Models

We conducted experiments on U-Net [10], Unet++ [33], and attention U-Net [34] as
baseline models.
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Table 2 displays the sensitivity, F1-score, specificity, accuracy, and AUC values of the
proposed model and the baseline model on the DRIVE dataset. It can be observed that
compared with the baseline models, although the specificity value of Unet++ was higher
than that of the proposed model, the proposed model achieved the highest values in terms
of sensitivity, F1-score, accuracy, and AUC.

Table 2. The segmentation results on the DRIVE dataset.

Model SE F1 SP ACC AUC

U-Net [10] 0.8452 0.8287 0.9798 0.9521 0.9738
Unet++ [33] 0.8510 0.8319 0.9865 0.9542 0.9741
Attention U-Net [34] 0.8427 0.8294 0.9807 0.9534 0.9726
The proposed model 0.8611 0.8383 0.9851 0.9629 0.9760

Tables 3 and 4 display the sensitivity, F1-score, specificity, accuracy, and AUC values of
the proposed model and the baseline model on the CHASE_DB1 dataset and STARE dataset,
respectively. It can be observed that compared with the baseline models, all evaluation
metrics of the proposed model achieved the highest values on the CHASE_DB1 dataset
and the STARE dataset.

The ROC curves for the proposed model and the baseline models on three datasets are
depicted in Figure 4. It is evident that the proposed model achieved higher ROC values on
all three datasets compared with the baseline models, indicating superior segmentation
performance of the proposed model over the baselines.

(a) (b)

(c)

Figure 4. The ROC curves of the proposed model and baseline models. (a) The ROC curves on
the DRIVE dataset. (b) The ROC curves on the CHASE_DB1 dataset. (c) The ROC curves on the
STARE dataset.
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Table 3. The segmentation results on the CHASE_DB1 dataset.

Model SE F1 SP ACC AUC

U-Net [10] 0.8459 0.8322 0.9805 0.9613 0.9788
Unet++ [33] 0.8443 0.8325 0.9823 0.9615 0.9789
Attention U-Net [34] 0.8517 0.8384 0.9825 0.9608 0.9798
The proposed model 0.8630 0.8435 0.9850 0.9721 0.9812

Table 4. The segmentation results on the STARE dataset.

Model SE F1 SP ACC AUC

U-Net [10] 0.8320 0.8217 0.9814 0.9644 0.9758
Unet++ [33] 0.8425 0.8253 0.9829 0.9650 0.9764
Attention U-Net [34] 0.8349 0.8236 0.9817 0.9637 0.9779
The proposed model 0.8614 0.8511 0.9866 0.9754 0.9845

4.3.2. Comparison with State-of-the-Art Segmentation Methods

The comparison of the performance between the proposed model and state-of-the-art
methods on the DRIVE dataset is shown in Table 5. Compared with the other advanced
models, MsAF achieved the highest sensitivity value of 0.8611 and the highest F1-score
value of 0.8383 on the DRIVE dataset, surpassing the highest values obtained by the other
advanced models by 0.14% and 0.26%, respectively. The differences in specificity, accuracy,
and AUC compared with the highest values obtained by the other advanced models were
0.19%, 0.72%, and 1.15%, respectively.

Table 5. Comparison results on the DRIVE dataset.

Model SE F1 SP ACC AUC

Jin et al. [35] 0.7894 0.8203 0.9870 0.9697 0.9856
Guo et al. [36] 0.7891 0.8249 0.9804 0.9561 0.9806
Wang et al. [37] 0.7940 0.8270 0.9816 0.9567 0.9772
Li et al. [38] 0.7791 0.8218 0.9831 0.9574 0.9813
Zhang et al. [39] 0.8215 0.8267 0.9845 0.9701 0.9867
Wu et al. [40] 0.8520 0.8297 - 0.9555 0.9814
Li et al. [41] 0.8324 - 0.9757 0.9574 0.9820
Wang et al. [42] 0.8071 0.8251 0.9782 0.9565 0.9801
Gegundez-Arias et al. [43] 0.8597 - 0.9690 0.9547 0.9837
Lin et al. [44] 0.8361 0.8287 0.9740 0.9563 0.9799
Guo et al. [26] 0.8212 0.8263 0.9840 0.9698 0.9864
Li et al. [45] 0.8291 0.8302 0.9852 0.9622 0.9859
Wei et al. [46] 0.8302 0.8018 0.9826 0.9581 0.9821
Shen et al. [47] 0.8056 0.8357 0.9854 0.9680 0.9875
The proposed model 0.8611 0.8383 0.9851 0.9629 0.9760

The comparison of the performance between the proposed model and state-of-the-
art methods on the CHASE_DB1 dataset is shown in Table 6. Compared with the other
advanced models, MsAF achieved the highest sensitivity value of 0.8630 and the highest
F1-score value of 0.8435 on the DRIVE dataset, surpassing the highest values obtained by
the other advanced models by 0.57% and 0.85%, respectively. The differences in specificity,
accuracy, and AUC compared with the highest values obtained by the other advanced
models were 0.46%, 0.34%, and 0.94%, respectively.



Appl. Sci. 2024, 14, 2955 8 of 14

Table 6. Comparison results on the CHASE_DB1 dataset.

Model SE F1 SP ACC AUC

Jin et al. [35] 0.8229 0.7853 0.9821 0.9724 0.9863
Guo et al. [36] 0.8155 0.7883 0.9752 0.9610 0.9804
Wang et al. [37] 0.7888 0.7983 0.9801 0.9627 0.9840
Li et al. [38] 0.7970 0.8073 0.9823 0.9655 0.9851
Wu et al. [40] 0.7996 0.8031 - 0.9642 0.9823
Gegundez-Arias et al. [43] 0.8044 - 0.9698 0.9663 0.9880
Lin et al. [44] 0.8448 0.8332 0.9795 0.9668 0.9861
Guo et al. [26] 0.8573 0.8153 0.9835 0.9755 0.9905
Li et al. [45] 0.7856 0.8355 0.9896 0.9660 0.9876
Wei et al. [46] 0.8196 0.8138 0.9824 0.9678 0.9872
Shen et al. [47] 0.8250 0.8350 0.9875 0.9734 0.9906
The proposed model 0.8630 0.8435 0.9850 0.9721 0.9812

The comparison of the performance between the proposed model and state-of-the-
art methods on the CHASE_DB1 dataset is shown in Table 7. Compared with the other
advanced models, MsAF achieved the highest sensitivity value of 0.8630 and the highest
F1-score value of 0.8435 on the DRIVE dataset, surpassing the highest values obtained by
the other advanced models by 0.48% and 0.20%, respectively. The differences in specificity,
accuracy, and AUC compared with the highest values obtained by the other advanced
models were 0.91%, 0.05%, and 0.81%, respectively.

Table 7. Comparison results on the STARE dataset.

Model SE F1 SP ACC AUC

Jin et al. [35] 0.7428 0.8079 0.9920 0.9729 0.9868
Li et al. [38] 0.7715 0.8146 0.9886 0.9701 0.9881
Li et al. [41] 0.8189 - 0.9887 0.9759 0.9912
Gegundez-Arias et al. [43] 0.8441 - 0.9764 0.9754 0.9926
Lin et al. [44] 0.8566 0.8491 0.9819 0.9681 0.9874
Li et al. [45] 0.7616 0.8022 0.9957 0.9653 0.9889
Wei et al. [46] 0.8341 0.8012 0.9865 0.9672 0.9876
Shen et al. [47] 0.8140 0.8000 0.9817 0.9686 0.9832
The proposed model 0.8614 0.8511 0.9866 0.9754 0.9845

4.3.3. Qualitative Analysis

In order to visually observe the segmentation results more intuitively, this work in-
troduced qualitative analysis for performance visualization. A sample image was selected
from each respective test set, and the corresponding segmentation results are presented
in Figures 5–7. As demonstrated in these figures, the proposed model exhibited satis-
factory segmentation performance, showcasing its ability to effectively detect vessels in
retinal images.

Examining the red box in Figure 5, it is evident that the proposed model accurately
identified vessels in the retinal image, whereas the baseline model mistakenly identified
a branching vessel at the same location, resulting in false positives. In the green box
of Figure 5, it is apparent that all models failed to recognize a small vessel, leading to
false negatives.

In Figure 6, the proposed model accurately identified vessels in the retinal image.
In the red box of Figure 6, the baseline model erroneously identified a branching vessel,
resulting in false positives. In the green box of Figure 6, Attention U-Net accurately
recognized this vessel, while U-Net and Unet++ only identified a portion, resulting in
false negatives.
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Figure 5. The segmentation result on the DRIVE dataset. The red boxes in subfigures (c–f) represent
false positives, while the green boxes represent false negatives.

Figure 6. The segmentation result on the CHASE_DB1 dataset. The red boxes in subfigures (c–f)
represent false positives, while the green boxes represent false negatives.

Examining the green box in Figure 7, it is observed that the proposed model accurately
identified this vessel more completely. Unet++ recognized only a small portion, while
U-Net and Attention U-Net almost failed to identify this vessel, resulting in false negatives.
In the red box of the ground truth in Figure 7, representing a completely background area,
all models recognized an incomplete vessel, leading to false positives.

Figures 8–10 display the differential images of segmentation results on a different
dataset each. Through the analysis of the differential images, we can distinctly observe
the distribution of false positives and false negatives across different models and datasets.
Upon comparing the differential images of different models, as depicted in Figures 8–10,
it is evident that the proposed model exhibited lower false positives and false negatives
compared with the baseline model across all three datasets. Furthermore, contrasting the
differential images of different datasets revealed significant variations in the quantities
of false positives and false negatives. In the segmentation of the DRIVE dataset and
CHASE_DB1 dataset, missegmentation of major vessels led to a higher occurrence of false



Appl. Sci. 2024, 14, 2955 10 of 14

positives and false negatives. Conversely, in the segmentation of the STARE dataset, major
vessels were accurately segmented, with only minor vessels exhibiting no segmentation,
resulting in lower false positives and false negatives. After an analysis, we attributed these
differences to variations in image quality and annotation accuracy between the datasets.

Figure 7. The segmentation result on the STARE dataset. The red boxes in subfigures (c–f) represent
false positives, while the green boxes represent false negatives.

(a) The proposed model. (b) U-Net. (c) Unet++. (d) Attention U-Net.

Figure 8. The differential images from the DRIVE dataset.

(a) The proposed model. (b) U-Net. (c) Unet++. (d) Attention U-Net.

Figure 9. The differential images from the CHASE_DB1 dataset.

(a) The proposed model. (b) U-Net. (c) Unet++. (d) Attention U-Net.

Figure 10. The differential images from the STARE dataset.
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4.4. Discussion

Due to the complex morphology of retinal vessels, which includes branching, bending,
and irregular shapes, and the small proportion of vessels leading to severe class imbalance,
retinal vessel segmentation poses significant challenges. Additionally, retinal fundus
images are often affected by noise, resulting in a low image contrast. Therefore, the task of
retinal vessel segmentation is highly challenging.

In retinal vessel segmentation tasks, false positives and false negatives can lead to dif-
ferent consequences. First, false positives may result in incorrect diagnoses or unnecessary
treatments. If non-vessel regions are erroneously labeled as blood vessels, clinicians may
mistakenly believe that abnormalities exist and proceed with unnecessary further exami-
nations or therapies. On the other hand, false negatives may lead to overlooking lesions
or abnormalities in the retina, such as vessel occlusion or abnormal vessel morphology.
If crucial vessel regions are erroneously excluded, clinicians may miss important clues
for diagnosing diseases, leading to delayed treatment or inadequate therapy. Therefore,
reducing the occurrences of false positives and false negatives is crucial in retinal vessel
segmentation tasks.

The proposed MsFE block extracts low-level features from different scales, and the
MsAF block integrates channel attention from low-level features and spatial attention
from high-level features, enabling the model to comprehend the image content more
comprehensively. As observed in Figures 5–7, the proposed model accurately identified
small vessels in the images, demonstrating lower false negatives compared with the baseline
network. Meanwhile, the analysis of the differential images in the previous section for
Figures 8–10 demonstrated that the false positives and false negatives of the proposed
model were lower than those of the baseline model across all three datasets. All of these
indicate that the fusion of features from different scales contributed to the improvement of
accuracy in retinal vessel segmentation.

After a comprehensive analysis of the data in Tables 5–7, it is evident that in compari-
son with other state-of-the-art models, the proposed model achieved the highest values in
sensitivity and F1-score on the three datasets. Although the proposed model did not attain
the highest values in specificity, accuracy, and AUC, the differences compared with the
other advanced models were minimal. Sensitivity measures a model’s ability to identify
true positive samples, while the F1-score provides a balanced evaluation of the model’s
classification performance on both positive and negative samples, which is particularly
useful in scenarios with class imbalance. In the context of retinal vessel segmentation
tasks, correctly identifying vessel pixels in the image is crucial. The small proportion of
vessel pixels in retinal images led to a severe class imbalance issue. Therefore, given that
the proposed model attained the highest values in sensitivity and F1-score on the DRIVE
dataset, CHASE_DB1 dataset, and STARE dataset, it demonstrated excellent segmenta-
tion performance.

Overall, the segmentation performance of the proposed model was satisfactory. How-
ever, there were still some segmentation errors due to the unique morphology of the vessels
and factors such as a low image contrast. Additionally, the limited size of the datasets may
pose challenges to the generalization capability of the model.

5. Conclusions

In this paper, we propose a novel model for retinal vessel segmentation built upon the
U-Net backbone architecture. For each layer of the U-Net backbone, two additional blocks,
namely, the MsFE block and the MsAF block, were incorporated between the encoder
and decoder. The MsFE block extracts low-level features from different scales, while the
MsAF block performs attention fusion across various scales. Experimental evaluations were
conducted on the DRIVE dataset, CHASE_DB1 dataset, and STARE dataset, demonstrating
that MsAF-UNet exhibited competitive performance.

In future work, our focus will be on investigating multi-scale attention fusion mecha-
nisms to further enhance the segmentation performance of retinal vessels.
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