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Abstract: Colorectal cancer (CRC) is one of the most common and deadliest cancers worldwide. Ac-
cording to the GLOBOCAN (WHO) report in 2020, nearly 2 million patients were diagnosed globally.
Despite the advances in cancer diagnosis and therapy, CRC remains a global challenge. Recently,
attention has been paid to the tumor microenvironment (TME), which constitutes a significant part of
the tumor and mainly includes various immune cells, fibroblasts, vascular cells, and extracellular
elements, such as the extracellular matrix (ECM). Many components of the stroma initially exert an
anti-tumor effect, but over time, they undergo functional transformation into elements that promote
tumor growth. As a result, conditions conducive to further cancer development, invasion into local
tissues, and distant metastasis arise. The microenvironment of colorectal cancer (CRC) may be
an important direction in the search for therapeutic targets, but it requires further understanding.
The main purpose of our review is to explain the role of the complex CRC microenvironment in
the progression of this cancer and highlight the potential of targeted therapy directed at the TME.
Therefore, continued research into its components and typical biomarkers is necessary to improve
therapy and enhance the quality of life for patients.
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1. Introduction

The constant bidirectional communication between cancer cells and stromal cells
shapes the complex and dynamic tumor microenvironment (TME). The interactions oc-
curring within the TME are complicated because they involve a wide spectrum of cells,
both normal and cancerous, as well as extracellular components. The diversity of TME
elements makes it challenging to clearly determine the functions of individual components.
However, the microenvironment, as a cohesive entity, may either provide protective effects
against the tumor or even promote its malignancy. The effective functioning of the niche
relies on efficient intercellular communication, which can occur directly through physical
connections or indirectly through soluble mediators, such as the transfer of cytokines,
growth factors, and enzymes and the diffusion of metabolites [1,2]. Both types of commu-
nication are inseparable, and there are feedback loops between them. In these loops, direct
cell-to-cell interaction can induce cytokine production, and those cytokines can induce the
appearance of specific molecules on cell surfaces (e.g., during inflammation) [3].

This review focused on colorectal cancer because it is one of the deadliest and most
frequently occurring cancers in humans. According to data from 2020, nearly 2 million
patients worldwide have been diagnosed [4].

Understanding the basic mechanisms of intercellular communication in the TME and
ensuring the growth and development of transformed cells may be a step to limit the
malignancy of cancer. Therefore, it is important to search for therapeutic targets among
elements involved in the transport of active molecules within tumor mass.
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2. Direct Communication in the Tumor Microenvironment

Direct interactions between cells include gap junctions, which connect cells located in
close proximity. Hemichannels (connexons) made of connexin proteins connect each other
within the intercellular space, facilitating the transport of small molecules (approx. 1 kDa)
and ions. This mechanism in the tumor microenvironment also involves RNA exchange
among interacting cells [5,6]. Primarily, gap junctions can easily regulate intercellular
communication within the tumor microenvironment. This is because the direct transport
between the cytoplasm of adjacent cells allows a rapid exchange of substances and a quick
cell response [7].

Connexins are subject to multifactorial regulation, which affects the number and
function of gap junctions. While the homeostasis between their degradation and synthesis
is maintained in normal cells, it may be disrupted in the tumor microenvironment [8].
Initially, connexin proteins were classified as cancer suppressors [9]; however, an increasing
number of studies suggest their significant role in tumor progression through the induction
of cell migration.

In colorectal cancer (CRC), heterogeneity in gap junction connections has been iden-
tified. The site of their occurrence between stromal cells determines the prognosis. Their
modulating role in carcinogenesis was thus indicated. The progression of CRC has been
linked to the expression of connexin Cx37 on fibroblasts present in the TME [10]. Addition-
ally, cancer cells can influence the expression of connexins, as well as the endothelium of
blood vessels, suggesting the involvement of connexins in pathological angiogenesis [11].

Direct interactions between TME cells also include the interaction of ligands with
membrane receptors, which involves various types of cells. While several interactions
between two cell types (ligand–receptor pairs) have been identified, the complex interac-
tions still remain unclear [12]. Recent studies have shown the impact of ligand–receptor
interactions on the infiltration of immune cells in the CRC microenvironment. Specifically,
two ligand–receptor pairs (intercellular adhesion molecule 1, ICAM-1, and interleukin
2 receptor subunit alpha, IL-2RA; ICAM-1 and integrin subunit alpha M, ITGAM) have
been identified as driving the infiltration of tumor mass by dendritic cells (DCs). This
effect does not necessarily correlate with immune response support, as, similar to other
types of immune cells in the tumor microenvironment, DCs may exhibit impaired func-
tions [12,13]. Another immunotherapeutic target is immune checkpoint inhibitors (ICI),
such as programmed death receptor-1 (PD-1), programmed cell death-ligand 1 (PD-L1),
and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [14,15]. Elevated levels of thy-
mocyte selection-associated high-mobility group box (TOX), T-cell immunoglobulin and
mucin domain-3 mRNA (TIM-3 mRNA), CTLA-4, V-domain Ig-containing suppressor
of T cell activation (VISTA), T cell immunoreceptor with Ig and ITIM domains (TIGIT),
killer cell lectin-like receptor subfamily G member 1 (KLRG1), TOX2, silent information
regulator 1 (SIRT1), proliferation marker (Ki-67), and T cell activation and proliferation
marker (Helios) have also been demonstrated in advanced CRC tissue, indicating them as
potential biomarkers [15].

Adhesive molecules such as integrins, selectins, and cadherins mediate cell–cell and
cell–extracellular matrix interactions. The migratory ability of cells is closely associated
with the regulation of these proteins, specifically integrins, which may occur at the transcrip-
tional level in CRC [16–18]. The main role of such connections is to maintain interactions
between neighboring cells, resulting in changes in the expression of these molecules under
the influence of environmental factors. Also, restructuring of the cytoskeleton occurs,
leading to a change in the cell structure. However, due to the cytoskeletal remodeling
associated with adhesive molecules, they are also responsible for changing the cell structure.
This can result in epithelial–mesenchymal transition (EMT), which is closely associated
with metastasis induction. Additionally, changing the organization of the cytoskeleton
is a mechanism limiting the effectiveness of tumor-infiltrating immune cells. The loss or
increase in the quantity of connections based on adhesive complexes in cancer cells can
also lead to excessive proliferation, resulting from the loss of contact inhibition. Specifically,
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loss of E-cadherins in cancer is associated with a poor prognosis [3,16,17,19]. On the other
hand, the presence of ICAM, in particular ICAM-1, promotes an increase in the density of
tumor-infiltrating lymphocytes (TILs) in colorectal cancer [20]; as in the case of dendritic
cells, it may have an ambiguous effect.

Direct long-distance communication in the TME takes place through tunneling nan-
otubes, known as intercellular bridges. Due to the extension of the cytoplasm formed by
F-actin fibers, these structures form thin conduits, transporting larger particles and even cel-
lular organelles (such as mitochondria and lysosomes) [21,22]. They ensure communication
not only between normal cells, such as macrophages [23] or T lymphocytes [24], but also be-
tween immune cells and cancer cells, initiating metastatic phenotype in tumors [25]. Cancer
cells also develop these communication structures. A study by Desir et al. demonstrated
that hypoxia promotes the formation of tunneling nanotubes in ovarian cancer [26]. This
was also proved in colon cancer cells, and hypoxia-induced connections were observed be-
tween SW480, HCT-116, and DLD-1 cells. The results confirm that hypoxia, which is typical
for tumors, determines new communication pathways, enhancing tumor progression [27].

3. Indirect Communication in the Tumor Microenvironment
3.1. Extracellular Vesicles (EVs)

Extracellular vesicles (EVs) were first described in 1967 by Wolf. He observed small
coagulants among the products of human blood platelets, which are now known as EVs [28,29].
EVs are structures surrounded by a lipid bilayer and released by cells [30]. Due to the
differences in their size and biogenesis, they are divided into exosomes with a diameter
of 30–100 nm, microvesicles with a diameter of 50–1000 nm, and apoptotic bodies with a
diameter of 1–5 µm [31]. They mediate the transport of nucleic acids, proteins, lipids, and
metabolites through paracrine communication [32]. They can participate in cancer invasion
by inducing the formation of blood vessels [33], avoiding the immune system [34], and
regulating resistance to 5-fluorouracil [35,36], mitomycin [37], or oxaliplatin [38]. They are
also involved in the formation of a premetastatic niche and metastasis [39]. They cause
immunosuppressive effects [40], primarily due to the presence of the exosomal ligand
PD-L1, which can bind to receptors on the surface of CD8+ T lymphocytes, blocking their
functions and allowing the tumor to escape immune surveillance [41,42].

In the TME, cancer cells use EVs to interact with tumor-infiltrating fibroblasts (CAFs),
macrophages, and endothelial cells to ensure their survival and facilitate further expansion
into healthy tissue [43]. Studies by Giusti et al. confirmed the ability of EVs to modulate the
phenotype of TME fibroblasts by activating their transformation into CAFs. These CAFs
can initiate pro-tumor behaviors in both normal and cancer cells [44]. This indicates the
involvement of EVs in multifaceted communication occurring not only in the direction
of cancer–microenvironment or cancer–cancer but also microenvironment–cancer [45].
Therefore, cancer cells also receive EVs produced by stromal cells, delivering crucial
components for their development. Exosomes released by CAFs support the growth of
cancer cells by providing nutrients [46]. Moreover, they are also strong inducers of M1 to
M2 macrophage polarization. M2 macrophages are known to be pro-tumorigenic [47].

The acidic environment and hypoxia in the TME particularly favor the secretion of
cancer-derived EVs. Therefore, the information flows along the cancer-cell pathway and
can effectively deepen the anaplasia and malignancy of tumor cells [45,48]. Moreover, EVs
released by hypoxic cancer cells act as messengers delivering miRNA to normoxic cancer
cells, initiating EMT and promoting the metastatic phenotype [49]. There is a positive
feedback loop in which mesenchymal CRC cells release more exosomes than CRC cells
with proper polarization, determining subsequent transformations [50].

3.2. Soluble Mediators

Soluble mediators, such as cytokines, chemokines, and signaling molecules, similar to
EVs, facilitate multifaceted communication in the CRC microenvironment [51]. Depending
on their composition and proportions, their actions in the TME may induce both pro- and
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anti-tumor effects [52]. By controlling biological functions in the TME, they influence the
differentiation, proliferation, and migration of cells. Therefore, the disruption of the balance
between these soluble mediators can be one of the determinants of CRC progression [51,53].

The tumor microenvironment includes signaling molecules released from both cancer
cells and infiltrating tumor-associated cells, making their actions dependent on their origin.
The goal of cancer cells is obvious: to autocrinally drive proliferation and recruit new
niches to increase tumor mass. However, mediators released by tumor-infiltrating cells
are initially an important weapon in the fight against cancer, but their long-term action
may have the opposite effect [54,55]. Among the main pro-inflammatory cytokines in the
TME are interleukins (IL), e.g., IL-1β, IL-6, and IL-8 (CXCL-8) and tumor necrosis factor
α (TNF-α) [56].

Increased production of IL-1β is common in many types of cancer (including lung
and breast cancer), but it is not fully known which specific niche cells are responsible
for its increased production [57–59]. IL-1β has been attributed to regulating processes
such as proliferation, differentiation, and apoptosis of cells. Additionally, it stimulates
the production of inflammatory mediators, i.e., TNF-α, IL-6, IL-8, IL-17, cyclooxygenase-2
(COX-2), and (prostaglandin E2) PGE2. However, its role in the CRC requires further
research [60]. It is known that IL-1β can promote the mesenchymal phenotype of CRC
through EMT and stimulate the self-renewal of colorectal cancer stem cells [61]. Studies on
CRC patient samples confirm its increasing levels up to stage III, which then decrease in
stage IV. This indicates that its level is dependent on the advancement of cancer (up to stage
III) and makes it a prognostic marker until metastasis occurs [62]. Furthermore, the role of
IL-1β in some tumor invasions (like breast cancer) is supported by studies where inhibiting
its production correlates with a lower likelihood of metastasis and an improvement in the
anti-tumor immune response. Its operation in this respect should also be checked in the
CRC [63,64]. In CRC, IL-1β is also associated with chemoresistance [65].

IL-6 is a pleiotropic pro-inflammatory cytokine that also plays a role in promoting
cancer. Patients with colorectal cancer show increased levels of IL-6 compared to healthy
individuals. This may be due to its production by cancer cells themselves as well as
macrophages, CAFs, and T lymphocytes induced by cancer. Its action is associated with
the IL-6/STAT3 (signal transducer and activator of transcription 3) pathway, which in CRC
is linked to cell proliferation, the inhibition of apoptosis, invasion, metastasis, angiogenesis,
and chemotherapy resistance. Additionally, IL-6 activates the proliferation of CAFs, which
are also its source, maintaining a pro-tumor microenvironment in cancer and enhancing
the metastatic phenotype of CRC [66–68]. Studies by Zeng et al. demonstrated a correlation
between the level of IL-6 and the occurrence of metastasis to lymph nodes in CRC [69].

TNF-α, i.e., a promoter of inflammation, is responsible for the initiation and mainte-
nance of the production of many cytokines, participation in leukocyte recruitment, and
contribution to angiogenesis. However, these functions make it a factor that promotes tumor
development in the tumor microenvironment. TNF-α is mainly produced by macrophages
and monocytes, but also by cancer cells, aiming to escape immune surveillance [70,71].
It can not only inhibit the anti-tumor action of lymphocytes but also promote the tumor
phenotype, which is more difficult for the immune system to recognize [72]. Its elevated
levels in tumors and serum of CRC patients correlate with poor prognosis, explained by the
increased migratory and invasive capabilities of tumor cells. This effect may be associated
with an upregulation of the calcium-associated tumor transducer 2 (TROP-2) signaling
protein. Studies on colorectal cancer cells have shown an elevated level of TROP-2, de-
pendent on the TNF-α concentration [73]. Another study showed a significant increase in
TNF-α mRNA and TNF-α levels in the serum of patients with advanced colorectal cancer
compared to earlier stages. All these data point to the role of TNF-α in promoting colorectal
cancer invasion [74,75]. In general, IL-1β, IL-6, and TNF-α can be useful significant diag-
nostic markers in CRC and potential therapeutic targets. However, their application in CRC
therapy requires further research. So far, several drugs targeting these proinflammatory



Appl. Sci. 2024, 14, 2930 5 of 26

cytokines have been approved (e.g., canakinumab, etanercept, and tocilizumab), but mainly
in therapies for inflammatory diseases rather than cancer [62,76–78].

IL-8 (CXCL-8) is a pro-inflammatory cytokine that has an affinity for the C-X-C motif
chemokine receptor (CXCR). It is produced by the epithelium and most immune cells, but
it also acts as a chemoattractant for many of these cells (including acute inflammatory
neutrophils) as well as endothelial cells, thus mediating the angiogenesis process. Its
level increases in response to specific conditions, such as hypoxia or the presence of other
pro-inflammatory cytokines (including TNF-α and IL-1β) [60,79,80]. In CRC, elevated
levels of IL-8 are associated with cancer invasion [81]. IL-8 is involved in the progression of
colorectal cancer, mainly through the development of liver metastases and resistance to
chemotherapy. By binding to membrane receptors on the surface of cancer stem cells (CSCs),
IL-8 mediates the migration and invasion of CSCs and the production of EMT inducers [82].
The use of specific IL-8 antagonists is a promising strategy for cancer treatment, as increased
sensitivity of CRC cells to cytostatic agents has been observed after introducing the CXCR-2
antagonist SCH-527123 into treatment [83].

The pro-inflammatory cytokines of the CRC microenvironment also include the IL-
17, IL-1, and IL-12 families. Anti-inflammatory cytokines include IL-4, IL-10, and IL-13.
Moreover, a number of pleiotropic cytokines have both pro- and anti-inflammatory effects
(e.g., interferon γ IFN-γ) [60]. In the CRC microenvironment, most cytokines are associated
with tumor-promoting effects [52].

Indirect mediators also include chemokines, which constitute the most numerous
subgroup of cytokines. Similar to other cytokines, they exhibit a wide range of actions
specific to different types of cancer [52]. Initially, they were correlated only with the ability
to target immune cells, but recent discoveries suggest that chemokines are also involved
in controlling reprogrammed cells to maintain tumor progression. In CRC, the C–C motif
chemokine ligand 2 (CCL-2) is the pro-tumor chemokine, and its presence correlates with
poor prognosis. This effect is the result of action mainly on niche cells that maintain a
suppressive environment for normal immune cells. It has been shown that the chemokine
CCL-2 may be associated with the infiltration of unfavorable M2 macrophages. In turn,
chemokines from the group of C-X-C motif chemokines (CXC) are strong chemoattractants
for neutrophils [52,84]. The chemokines involved in CRC include the following ligands:
C-X-C motif chemokine ligand 5 (CXCL-5), CXCL-8, CXCL-9, CXCL-10, CXCL-12, CXCL-15,
and CCL-20, and the following receptors: CXCR-1, CXCR-2, CXCR-3, CXCR-4, CXCR-7, and
C-C motif chemokine receptor 6 (CCR-6), the levels of which were increased in CRC patients
and were associated with metastases, mainly to the lymph nodes and liver [84,85]. Some
in vivo studies confirm the role of chemokines and their receptors (CCL20-CCR6) in CRC,
with particular emphasis on their role in the recruitment of niche cells (i.e., macrophages)
and the maintenance of the invasive cancer phenotype [86].

4. Cellular Component of the CRC Microenvironment

The colorectal cancer mass consists of approximately 60–90% of stromal cells located
in the extracellular matrix [87]. These include mainly cells of the immune system as well as
vascular endothelial cells and fibroblasts, which regulate the development of cancer [88].
It is important to distinguish the classical action of these cells from the action dictated by
the conditions prevailing in the tumor environment, because chronic exposure to factors
released by the tumor may induce functional changes in infiltrating cells. Phenotypically
transformed cells and a wide range of their products maintain the conditions for further
development of cancer (Table 1 and Figure 1) [89,90].
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Figure 1. Interactions between CRC cells and TME components. Arg: arginase; bFGF: basic fibroblast
growth factor; CAF: cancer-associated fibroblast; CCL: C–C motif chemokine ligand; CXCL−12:
C−X−C motif chemokine ligand−12; EC: endothelial cell; EGF: epidermal growth factor; FGF: fi-
broblast growth factor; HGF: hepatocyte growth factor; IGFBP2: insulin−like growth factor binding
protein−2; IL: interleukin; iNOS: inducible nitric oxide synthase; LOX: lysyl oxidase; MMP: ma-
trix metalloproteinase; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase;
ONOO−: peroxynitrite; PDGF: platelet−derived growth factor; PGE2: prostaglandin E2; ROS: reac-
tive oxygen species; TAM: tumor−associated macrophage; TGF−β: transforming growth factor β;
TIL: tumor−infiltrating lymphocyte; TNF: tumor necrosis factor; tPA: tissue plasminogen activator;
uPA: urokinase plasminogen activator; VEGF: vascular endothelial growth factor; VEGFR: vascular
endothelial growth factor receptor.

4.1. Tumor-Associated Macrophages (TAMs)

Macrophages are immune cells with diverse phenotypes and functions. Their primary
role involves the maintenance of homeostasis, tissue repair, and contribution to the non-
specific immune response against pathogens [91]. These functions are attributed to their
phagocytic abilities and the ability to activate and recruit immune-competent cells [92]. In
the TME, TAMs play a complex role that is different from primary macrophages. Due to
their plasticity, TAMs can undergo polarization that changes their phenotype and func-
tions [93]. This means that they have a dualistic nature. Adoption of the M1 phenotype
(considered anti-cancer) to the pro-cancer M2 phenotype depends on the stage of the tumor
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and factors present in its microenvironment [94]. According to the current paradigm, M1
macrophages are associated with anti-tumor functions such as phagocytosis or antibody-
dependent cell-mediated cytotoxicity (ADCC) [95]. Their actions include the production
of various pro-inflammatory cytokines, mainly IL-1β, IL-6, IL-23, IL-12, IL-1, and TNF-α,
which are responsible for the inflammation induced to fight cancer [93,96,97]. As the tumor
develops, TAMs polarize towards a phenotype similar to M2, promoting the more invasive
features of the cancer [98]. The actions of these macrophages are associated with the pro-
duction of such cytokines as IL-10, IL-13, and IL-4 and transforming growth factor (TGF-β),
which support the suppression of inflammation [1,96]. Moreover, among M2 macrophages,
there are M2a, M2b, M2c, and M2d variants varying in the type of inducer and activation
pathway. Therefore, the significant diversity of TAMs creates a challenge to clearly confirm
the effects of their actions [99,100].

So far, several pro-tumor products of TAMs have been characterized; they include
the following proangiogenic factors: vascular endothelial growth factor (VEGF), IL-8,
angiopoietin 2 (Ang-2), fibroblast growth factor (FGF), and matrix metalloproteinase 9
(MMP-9); factors involved in the remodeling of the ECM: MMP-9 and MMP-12; growth
factors: epidermal growth factor (EGF), FGF, and platelet-derived growth factor (PDGF);
the following immunosuppressive factors: arginase (Arg), PD-L1, Fas ligand (FasL), IL-10,
and TGF; and the following factors responsible for the recruitment of new cells: CXCL-17,
CXCL-22, and CXCL-24. On the other hand, TAMs contribute to anti-tumor effects through
the activation of T helper 1 (Th1) cells and natural killer (NK) cells, phagocytosis, and the
release of reactive oxygen species (ROS) [88].

In the case of many solid tumors, such as ovarian cancer [101], pancreatic cancer [102],
glioblastoma [103], breast cancer [104], and bladder cancer [105], the presence of TAMs
is associated with a poor prognosis. In CRC, there are also studies indicating a tumor-
promoting influence of macrophages [106–108]. However, numerous studies, particularly
those based on patient samples, also demonstrate their suppressive actions [97,109,110]. In
CRC, macrophages can induce apoptosis through the interaction of the Fas ligand with
tumor cells [111]. This indicates that macrophages effectively fight the tumor through
direct contact [98], but dependently on the tumor stage. In a study by Edin et al., a high
percentage of M1 macrophages, dependent on the CRC stage, gave a higher likelihood of
patient survival, and this was not disrupted even by the accompanying infiltration of M2
macrophages [94]. In turn, recent in vitro studies have shown that cancer cells promote the
polarization of macrophages towards M2 to inhibit inflammation and escape from immune
surveillance. Lactate secreted by cancer cells was found to be involved in this process,
confirming the immunosuppressive role of the acidic tumor microenvironment [112]. Other
mediators of M2 polarization include IL-4, IL-6, IL-10, TGF-β, EGF, and cancer-derived
exosomes, which mediate the exchange of malignant traits within the tumor [88,113].

TAMs are considered inducers of angiogenesis in CRC for two main reasons. First,
TAMs themselves secrete vascular factors like VEGF [98,114]. Second, they can stimulate
colorectal cancer cells to release VEGF-A, recognized as the most potent inducer of an-
giogenesis and lymphangiogenesis [95,114]. VEGF-A is acknowledged as a mitogen for
vascular endothelial cells, promoting their proliferation and mediating the regeneration
of blood vessels during embryonic development. However, in cancer, VEGF serves as
a supportive factor for tumor vascularization, leading to metastasis to distant sites. Ad-
ditionally, angiogenesis is enhanced by the characteristic hypoxic tumor environment,
which increases as the tumor develops [114–116]. Macrophages also increase the level of
pro-angiogenic IL-8 through the production of TNF-α and IL-1α [117,118]. The angiogenic
effect of TAMs in CRC was confirmed by studies on patient samples, which showed that
macrophage infiltration is associated with an increase in the production of angiogenic
growth factors, such as VEGF. Furthermore, TAM infiltration correlates with the density
of blood vessels in tumors. This means that, under the influence of TAMs–cancer interac-
tions, the number of microvessels increases, which facilitates further cancer invasion and
distant metastases [104,119].
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4.1.1. Metabolic Profile of TAMs

The functions of TAMs are closely associated with the type of metabolism they engage
in. Various stimuli from the TME lead to their differentiation into various subtypes, with
functions shaped by specific metabolic profiles. Several factors contribute to the polarization
of macrophages, inducing changes in their metabolism. These include pro-inflammatory
inducers such as lipopolysaccharides (LPS) and IFN-γ associated with classically activated
M1 macrophages and IL-4 and IL-10 linked to the anti-inflammatory subtype M2 [120,121].
Classically, activated M1 macrophages are characterized by intense glycolysis, where
glucose is converted to lactic acid and the pentose phosphate pathway (PPP), which is a
source of NADPH. The result of this metabolic adaptation is the production of inflammatory
inducers and reactive oxygen species. M1 also differs from M2 in arginine metabolism.
Due to the presence of nitric oxide synthase 2 (NOS2, iNOS), they produce NO, serving
as a weapon in the fight against cancer cells [96,120]. However, long-term exposure to
the products of this type of metabolism in the TME may also have the opposite effect,
increasing oncogenic mutations.

In contrast to M1, M2 macrophages primarily derive energy from oxidative phospho-
rylation, the tricarboxylic acid (TCA) cycle, and β-oxidation, resulting in the promotion of
tumor invasion [122]. Studies confirm that alterations in the metabolism of TAMs regulate
their functions and, consequently, the course of the disease [123]. The high metabolic
flexibility of TAMs can also be explained by the fact that they must compete for nutrients
with transformed TME cells [121].

Recently, the following eight enzymes: acyl-CoA dehydrogenase medium chain
(ACADM), acyl-CoA dehydrogenase short chain (ACADS), glutathione peroxidase 4
(GPX4), glutathione-disulfide reductase (GSR), hydroxyacyl-CoA dehydrogenase (HADH),
3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL), 3-hydroxy-3-methylglutaryl-CoA syn-
thase 1 (HMGCS1), and isocitrate dehydrogenase (NADP(+)) 1 (IDH1) associated with the
characteristic amino acid metabolism of colorectal TAMs have been identified. The loss of
one of them—ACADS—influenced the polarization of TAMs to M2, indicating the role of
this protein in modifying the CRC microenvironment [124].

4.1.2. TAMs as Potential Therapeutic Targets

The activity of macrophages significantly regulates the growth and metastatic prop-
erties of cancer cells through a broad modification of the local TME [95]. So far, several
molecular targets (IL-6, IL-1β, TGF-β, VEGF, and several chemokines) regulating the ac-
tion of macrophages in metastatic CRC have been identified. A detailed characterization
has been conducted by Zhang et al. Nevertheless, further investigations are necessary to
explore the molecular mechanisms explaining how changes in the macrophage phenotype
influence cancer at different stages [95,96].

There are several potential therapeutic strategies involving TAMs. These include
blocking the recruitment of monocytes and TAM infiltration, blocking polarization to
M2, or repolarizing M2 to M1 [14,125]. In the context of interference with infiltration
and differentiation of macrophages, Xu et al. observed that the protein Six1 (sine oculis
homeobox 1), overproduced by CRC cells, induces TAM infiltration by chemotaxis. This
results in tumor development and cell mobility induction. Silencing the Six1 gene lim-
ited the proliferation and mobility of CRC cells associated with increased expression of
factors recruiting macrophages, e.g., colony stimulating factor 1 (CSF-1), CCL-2/5, and
VEG [126,127]. Furthermore, blocking the chemotactic axis CCL-2/CCR-2 can limit the re-
cruitment of monocytes and, consequently, TAM infiltration into the inflammatory site [128].
CCL-2, produced by both cancer cells and stromal cells, strongly enhances the infiltration of
monocytes or macrophages expressing CCR-2. Therefore, limiting its role seems to be a sig-
nificant direction for targeting the TME [129]. The importance of the CCL-2/CCR-2 axis was
also demonstrated by older studies in a mouse model, where CCR-2 knockout disrupted
the targeted recruitment of monocytes [130]. On the other hand, the CCL-2/CCR-2 axis has
been shown to play a significant role in the activation of T lymphocytes that participate in
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the fight against cancer. Therefore, a closer look at these elements of the microenvironment
and an assessment of the potential impact of targeting thereof seems to be necessary [131].
Studies by Wang et al. pointed to CXCL-12/CXCR-4 binding as mediating increased M2
polarization, which promoted CRC liver metastases [132]. Conversely, other authors report
the induction of the M2 phenotype through the Wnt5a pathway [133]. These findings
suggest targeting the polarization of macrophages to avoid negative transformation into
M2. Other potential strategies include the inhibitor of signal regulatory protein α (SIRP1α),
ICI, toll-like receptor (TLR) agonists, CD40 agonists, histone deacetylase (HDAC) inhibitors,
phosphoinositide 3-kinases (PI3K) inhibitors, and siRNA/miRNA [134–136].

4.2. Cancer-Associated Fibroblasts (CAFs)

Tumor-infiltrating fibroblasts, known as CAFs, are an important component of the
TME. Currently, they are increasingly being paid attention to in the context of cancer
progression because they extensively infiltrate cancerous tumors, which is connected with a
bad prognosis [137,138]. CAFs are a valuable source of extracellular matrix components and
proteolytic enzymes (metalloproteinases). Therefore, in the tumor environment, they can
impact the structure of the tumor extracellular matrix and induce metabolic reprogramming
of malignant cells [139]. The key markers of CAFs typical for CRC include α-smooth
muscle actin (α-SMA), fibroblast-specific protein 1 (FSP1), fibroblast activation protein
(FAP), podoplanin, and S100A4 [140–143].

In CRC, CAFs mainly originate from fibroblasts. However, precursors such as mes-
enchymal stem cells (MSCs) or endothelial cells (ECs) have also been identified [140]. In
the case of tumor epithelial origin, fibroblasts provide tumor cells with numerous fac-
tors promoting their development. This occurs through direct connections and also via
EVs [88,143,144]. Additionally, as they are naturally involved in the wound healing process,
these cells intensively infiltrate the tumor, sustaining its structure and promoting volumet-
ric development. The conditions of hypoxia and acidification in the TME also favor the
production of factors inducing tumor progression. The secretome of CAFs in CRC mainly
includes metalloproteinases, proangiogenic factors such as VEGF, proliferation-stimulating
factors such as EGF, PDGF, hepatocyte growth factor (HGF), and basic fibroblast growth
factor (bFGF), interleukins inhibiting the immune response, and genetic material in the
form of miRNA [17,143,145–148].

In the process of metastasis, CAFs play a significant role through several closely related
actions. One of them is the initiation of the migratory phenotype (EMT) and angiogenesis
through TGF-β, of which CAFs are a valuable source. Their high percentage in the CRC
microenvironment and, consequently, the production of TGF-β enhance the metastatic
phenotype and the expansion of cancer. Moreover, TGF-β mediates the recruitment of
additional CAFs from the pool of MSCs, intensifying fibroblast infiltration and the autocrine
production of this pro-tumorigenic factor. The strong pro-tumorigenic properties of TGF-
β released by CAFs are evidenced by the reduced metastatic ability of CRC cells after
knockdown of its gene in a mouse model [1,145,149]. The role of transforming growth
factor β (TGF-β) is indeed highly dependent on the stage of cancer. While this factor
inhibits further tumor development in the early stages, in advanced disease, it promotes
further progression [150,151].

CRC-derived CAFs are a valuable source of IL-6, which induces the production of VEGF
by these cells and further enhances angiogenesis [66]. Another process involves the release
of metalloproteinases, which induce the dissociation of intercellular connections (E-cadherin
digestion). This results in the loosening of the tumor structure and invasion of the local
environment as well as distant sites [1,140]. CAFs are also strong producers of fibronectin,
whose deposits are localized in the tumor microenvironment and can influence its modification.
Moreover, the presence of fibronectin in the premetastatic niche is a strong chemotactic signal
for cancer cells. Therefore, an elevated level of this marker in samples collected from CRC
patients is associated with a poor prognosis and shorter survival [152,153].
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CAFs, alongside vascular cells and inflammation in the CRC microenvironment,
contribute to the malignant phenotype of cancer as well as drug resistance (chemoresistance)
and disease recurrence [145,154]. Particularly, CAFs expressing the transcription factor-
snail family zinc finger 1 (Snai1), which may be a cause of CRC resistance to oxaliplatin
and cetuximab, are considered highly unfavorable in this tumor microenvironment. This is
probably an effect of ECM modification, including a change in the orientation, degradation,
or deposition of fibers. Therefore, SNAI1 is suspected to be an inducer of CRC resistance
to chemotherapy, through the fibrosis of the ECM and the EMT process [155]. Another
example of the protective action of CAFs is the exosomal transfer of miRNA (miR-93-
5p), which induces resistance in CRC cells to radiation treatment. Additionally, CAFs
produce more miR-93-5p than normal fibroblasts, emphasizing their protective role against
the tumor [156,157].

CAFs are strong immunomodulators because they can regulate the action of cytotoxic
T lymphocytes, monocytes, and NK cells [140,158,159]. The action of CAFs isolated from
colorectal cancer has been studied in relation to NK cells. It appears that CAFs suppressed
the expression of NK cell receptors and the production of granzymes and perforins, which
are the main weapons of these cells. Moreover, their secretory role was also limited, as
CAFs inhibited the production of the anti-tumor cytokines TNF-α and IFN-γ. This example
of the action of tumor stroma fibroblasts reflects their crucial role in immune surveillance
and immunoediting. This also suggests that they may be potential therapeutic targets in
the fight against CRC [157].

CAFs as Potential Therapeutic Targets

The diversity of fibroblasts in the CRC microenvironment, resulting from their different
origins, makes it difficult to define their role. Nevertheless, being the most numerous
infiltrating cells in the tumor, fibroblasts exhibit potential in anti-cancer therapy. Therefore,
it is crucial to continue the exploration of therapeutic possibilities, taking into account the
quantities and diversity of particles secreted by CAFs [160,161].

IL-6, which promotes cancer by stimulating proliferation, migration, and angiogenesis,
is abundantly produced not only by CRC cells but also by CAFs [66]. In the case of
cancers such as ovarian tumors, the efficacy of IL-6-targeted therapy has been confirmed in
preclinical and clinical studies [162]. There is limited evidence for the effectiveness of this
approach in CRC; however, Nagasaki et al. observed that blocking the IL-6 receptor limits
its transfer between stromal cells and CRC, thereby limiting further steps of invasion [66].
Attention was also paid to IL-11, which belongs to the IL-6 family. This cytokine produced
by fibroblasts worsened the prognosis of CRC patients and promoted tumor progression. Its
action led to the recruitment of additional IL-11-positive fibroblasts, initiating the division
of cancer cells. Therefore, directing synthetic inhibitors towards these cytokines may have
a beneficial effect in cancer therapy [163].

It has been shown that CAF products, such as fatty acids, initiate the movement of
CRC cells in vitro. Fatty acid synthase, responsible for their production, is therefore another
element that may influence cancer progression [164].

CAFs participate in the migration process of CRC cells. Phenotypically altered cells
increase the production of metabolites that stimulate the migratory phenotype of CRC
cells. Fibroblasts associated with CRC metastasis have been isolated and called metastasis-
associated fibroblasts (MAFs). They differ from CAFs in surface proteins and secreted
products. The presence of CD38 and the expression of the IGFBP2 gene were considered
characteristic for MAFs [165,166].

4.3. Tumor-Infiltrating Lymphocytes (TILs)

Tumor-infiltrating lymphocytes (TILs) play one of the main roles in the fight against
cancer. They induce apoptosis and express cytotoxic-dependent immune response, thereby
limiting the proliferation and migration of abnormal cells [167,168]. In the cancer microen-
vironment, there is a mixture of cytotoxic T lymphocytes (Tc, CD8+), helper T cells (Th,
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CD4+), B lymphocytes, and NK cells classified as cytotoxic cells. The homeostasis between
these lymphocyte populations is crucial because, in the tumor microenvironment, effector
T lymphocytes are assigned an anti-tumor role, while some helper cells (e.g., Th17) have
partially immunosuppressive functions. Therefore, disruption of this balance may result in
tumor progression [169–171]. After antigen recognition in the induction phase, cytotoxic
lymphocytes and NK enter the effector phase, which is the actual stage of fighting cancer
and involves the release of cytolytic granules containing granzymes, perforin, cytotoxic
cytokines (IL-2, IL-12, IFN-γ), TNF-α, and FasL [170,172]. Studies have confirmed that high
infiltration of CD8+ lymphocytes correlates with the longer survival of patients, including
those with colorectal cancer. Histopathological analyses of CRC suggest that the infiltration
of TILs into the tumor area has a protective effect on patients, especially those with mi-
crosatellite instability (MSI) tumors. This also indicates the dependence of the effectiveness
of the immune system on the genetic background of cancer [165,168].

NK cells are characterized by a high diversity and a wide range of surface markers.
Generally, they are considered similar to effector lymphocytes, but they exhibit greater
cytotoxicity and faster reaction times, especially towards tumors [170]. Their presence
in the microenvironment of colorectal cancer is associated with higher patient survival
rates [173]. This may be due to the fact that, as producers of IFN-γ, NK cells regulate the
function of cytotoxic lymphocytes, mainly by participating in the maturation of dendritic
cells, supporting the immune reaction, and driving a direct cytotoxic reaction against
cancer cells [174]. Moreover, the main mechanism of the NK fight against transformed
cells is antibody-dependent cellular cytotoxicity. This property has been used in studies
on the treatment of CRC using NK cells and radiotherapy combined with cetuximab.
NK cells irradiated or combined with antibodies have been shown to effectively fight
cancer. Additionally, their high infiltration increased the likelihood of the effective action
of modified NK cells in the treatment of CRC [175].

The population of Th cells includes a wide range of those classified into subtypes based on
the factors they produce: Th1, Th2, Th17, and follicular helper T cells (TFH). Th lymphocytes are
mainly responsible for the elimination of cancer cells by activating the immune system during
an immune response. However, the action of this lymphocyte group shows some inconsistency
due to their diversity. Th1 cells, expressing IFN-γ and TNF-α, are attributed to anti-tumor
activity in colorectal cancer, while other subpopulations show varied effects depending on the
type and stage of the tumor. Some subsets of CD4+ T cells also have the potential for direct
fighting against tumors through the acquisition of cytotoxic abilities. Such abilities have been
observed in in vivo models [170,174,176–179]. Th17 lymphocytes, expressing IL-17, have
been classified as predictors of poor prognosis not only in CRC [180,181] but also in ovarian
cancer [182]. The negative impact of IL-17 is associated with IL-6 derived from cancer
cells, whose production in the tumor microenvironment increases under the influence of
IL-17, promoting tumor growth and the polarization of subsequent Th17 lymphocytes.
Therefore, Th17 lymphocytes in CRC are mainly considered pro-tumorigenic [174,183].
The group of TFH lymphocytes, in the case of non-lymphocytic tumors, supports the
immune response and enhances the effectiveness of therapy. TFH cells participate in
the maturation and activation of B lymphocytes through the chemokine CXCL-13 and
can support the infiltration of both normal and malignant B lymphocytes. However,
the activation of negative B lymphocytes by TFH is mainly associated with lymphomas.
In the case of solid tumors such as CRC, TFH supports the development of anti-tumor
responses. These functions are mainly explained by the production of IL-21, which activates
B lymphocytes [184,185].

Regulatory T cells (Treg) are a subpopulation of CD4+ lymphocytes. They are re-
sponsible for regulating the immune system and contribute to silencing inflammation,
suppressing immune responses, and impeding immune surveillance, thereby promoting
tumor progression. In many types of tumors, high Treg infiltration has been characterized
and shown to be driven by the presence of chemokines such as CCL-17, CCL-22, CCL-1,
CCL-28, CCL-9, CCL-10, and CCL-11, which are associated with poor patient progno-
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sis. Therefore, treatment strategies targeting Treg and their products hold promise for
immunotherapy [177,186–190].

B cells can exhibit dual functions in the tumor microenvironment. As antigen-
presenting cells, cytokine producers, or participants in direct killing, they may demonstrate
anti-tumor activity. On the other hand, regulatory B cells (Bregs), a subpopulation acting
immunosuppressively through the secretion of cytokines (IL-10, TGF-β, and IL-35), reg-
ulation of anti-tumor functions of immune cells, and direct interaction with tumor cells,
can exert pro-tumor effects [191–193]. Some results indicate that the infiltration of CD20+
B cells correlated with an improvement in patients’ conditions and additionally activated
the anti-tumor activity of T lymphocytes [191,194,195]. However, this largely depends on
the stage of cancer. While initially the action of B cells was considered to have anti-tumor
effects, in advanced stages, infiltrations of unfavorable Bregs were also observed [196].

Lymphocytes in Immunotherapy

Immunotherapy associated with T lymphocytes in CRC is primarily based on support-
ing the action of cytotoxic lymphocytes. It involves manipulating immune checkpoints,
such as PD-1/PD-L1, CTLA-4/B7, and MHC I/TCR (major histocompatibility complex
I/T-cell receptor), using specific antibodies that block either negative costimulatory recep-
tors on T cells or their ligands on the surface of tumor cells. This approach prevents the
exhaustion of cytotoxic cells and inhibits the apoptosis induced by cancer cells [170]. In
CRC immunotherapy, the blockade of PD-1, PD-L1, and CTLA-4 has been found to be
effective [197]. As reported by the FDA (Food and Drug Administration), it is possible
to use immune checkpoint inhibitors, e.g., nivolumab (targeting PD-1) and ipilimumab
(targeting CTLA-4) in CRC treatment [198–200].

4.4. Myeloid-Derived Suppressor Cells (MDSCs)

Myeloid suppressor cells (MDSCs) are a diverse population of immature cells that
regulate the immune system [201]. This population includes two main subsets: monocytic
cells (monocytes, macrophages, and dendritic cells) and granulocytic cells (neutrophils,
eosinophils, basophils, and mast cells). Their presence is characteristic of the cancer
microenvironment, as they are strongly activated in pathological conditions by injury, trans-
formed cells, or pathogens. The removal of the threat allows them to return to homeostasis.
However, the prolonged impact of inflammatory mediators or chemokines, even at low
concentrations, maintains the expansion of MDSCs. This may result in strong immuno-
suppression of the local immune response because immature cells are much more easily
recruited and immunomodulated than pro-tumor cells. On the one hand, the persistent
level of MDSCs in a pathological state is an emergency mechanism in situations where the
threat is not effectively eliminated. However, in the cancer microenvironment, such an
effect may block an effective immune response. MDSCs exhibit suppressive effects, mainly
against cytotoxic T lymphocytes, but this has also been extended to immunosuppression
against NK cells and B lymphocytes [202,203]. The suppressive role of MDSCs is mainly
attributed to their high ROS and ONOO− (peroxynitrite) production [201], which can block
TCR, preventing the activation of T lymphocytes. Additionally, MDSCs are characterized
by the activity of arginase-1 (Arg-1) and inducible nitric oxide synthase, whose presence
results in a decrease in the level of L-arginine necessary for the proper functioning of
T cells [204,205].

In CRC, the presence of MDSCs has been attributed to advanced stages of the tumor.
The action of tumor-associated MDSCs has been defined as blocking the expansion of
T lymphocytes. Furthermore, the metabolic profile of these cells has been defined as
oxidative, which is associated with the production of reactive oxygen species and nitric
oxide [206]. While high concentrations of these particles induce anti-tumor effects (through
apoptosis induction), the persistent low level of these mediators generates damage to
genetic material, enhancing mutations and the instability of cancer cells. Therefore, the
presence of oxidative MDSCs may favor CRC progression [207]. The development of
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MDSCs in the cancer microenvironment is associated with the chemokine CCL-2 level,
which drives the expansion of MDSCs. Studies conducted on samples from CRC patients
showed that the level of CCL-2 increased with the cancer stage. Blocking the production of
CCL-2 in a mouse model resulted in a reduction of this chemokine and, consequently, a
decrease in the infiltration of immunosuppressive MDSCs [204,208]. MDSCs also mediate
the resistance of colorectal cancer to chemotherapy. It has been demonstrated that bacteria,
such as Peptostreptococcus anaerobius, typical of the gut flora of CRC patients, recruit MDSCs
that can participate in resistance to oxaliplatin treatment. This effect indicates the broad
spectrum of pro-tumorigenic activity of MDSCs and their ease of differentiation into cells
with a malignancy-promoting phenotype [209].

Autophagy, often described as cellular recycling, is considered a process that promotes
the development of less malignant MDSCs. It is induced in hypoxic conditions, which
are typical for tumors. Therefore, myeloid suppressor cells present in the hypoxic tumor
environment are also exposed to autophagy. The induction of autophagy weakens their
immunosuppressive activity. Redirecting MDSCs towards the autophagy pathway could
be an effective alternative to immunotherapy [210,211]. However, no results confirming
this effect have been found in the case of colorectal cancer.

In the context of therapy targeted at MDSCs, recent studies by Kang et al. report
the effective action of metformin, an anti-diabetic drug with anti-tumor properties, which
limits undesirable infiltration of MDSCs in CRC [212]. A comprehensive review of the role
of MDSCs in colorectal cancer and the targeting of MDSCs in therapy has been conducted
by Siemińska and Baran, as well as Al-Mterin and Elkord [204,213].

4.5. Vascular Cells

The vascular cells include blood endothelial cells (BECs), lymphatic endothelial cells
(LECs), and pericytes (characteristic only for blood vessels). These cells build transport path-
ways that maintain homeostasis in physiological processes by regulating vessel permeability
and tension. However, their primary functions can be exploited by tumors for survival and
invasion [214–216]. Tumor progression involves proliferation and the growth of the tumor
mass. Substance exchange through diffusion only affects the external layers of the tumor
mass, leading to strong hypoxia and acidosis in the growing pathological tissue. In such
conditions, hypoxia-inducible factor (HIF) is activated, regulating the behavior of endothelial
cells towards the formation of microvessels. Proangiogenic factors secreted by the malignancy-
promoting phenotype of endothelial cells participate in this process, leading to vasculogenesis
(formation of blood vessels from endothelial cell precursors) or angiogenesis (using existing
blood vessels), resulting in tumor vascularization [1,11,217–219].

In the tumor microenvironment, vascular cells are referred to as tumor-associated
endothelial cells (TECs). They have different morphology and functions compared to
normal vascular cells, resulting in the formation of mostly dysfunctional vessels. These
vessels may be blind-ended, and their irregular arrangement and abnormal connections
can slow down blood flow. This increases the malignancy of the tumor by maintaining
compensatory mechanisms around the dysfunction of vessels, such as the production of
proangiogenic factors and the activation of HIF, allowing energy acquisition in limited
oxygen conditions [216,219,220]. On the other hand, partially dysfunctional vessels mediate
substance exchange. Although this process does not guarantee full transport, it ensures the
continued functioning and migration of cancer cells. Therefore, increased vessel density
in the tumor niche correlates with a poor prognosis [216,221]. The tumor vasculariza-
tion process also depends on the location and type of tumor invasion, influencing the
expression of such angiogenic factors as VEGF-A [222]. In patients with CRC, a high level
of lymphangiogenic markers (VEGF-C and VEGFR-3) has been identified. In a mouse
model, the VEGF-C/VEGFR-3 axis initiated the formation of lymphatic vessels. Therefore,
Tacconi C. et al. identified these factors as molecular targets for preventing metastasis [223].
Moreover, factors released by endothelial cells can stimulate tumor growth and resistance
to chemotherapy [224,225].
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Table 1. Cellular elements of the CRC microenvironment and the pro-tumor factors they produce.

Cellular Elements of
the CRC TME Pro-Tumor Effect Factors References

TAMs

Proliferation TGF-β1, NADPH Oxidase, ROS, VEGFR3 [98]

Immunosupression Arg-1, iNOS, IL-10, PD-1, CCL-2,
CCL-3, CCL-4, CCL-5, CCL-20 [96,98]

Invasion and migration MMP-9, MMP-2, IL-6, TGF- β, CCL-20 [98,226]

Angiogenesis VEGF, PDGF, EGF, FGF-2, IL-8, IL-1, IL-6, TNF-α,
CXCL-12, MMP-9, MMP-2 [96,98,226,227]

CAFs

Proliferation EGF, PDGF, HGF, bFGF, IL-11, IL-6 [140,147,163]
Immunosupression PGE2 [228]

Invasion and migration MMP-2, CCL-5, CCL-2, PDGF, HGF, IGFBP2, IL-6 [140,166,228,229]
Angiogenesis VEGF, IL-6 [140,228]

MDSCs Immunosupression high ROS, ONOO−, iNOS,
Arg-1 [204]

Vascular cells Angiogenesis VEGF [216]

5. Extracellular Components of the CRC Microenvironment
5.1. Extracellular Matrix (ECM)

The extracellular matrix is an integral component of the tumor microenvironment,
serving structural functions as a scaffold for tissue cells and acting as a rich source of
proteins and sugars involved in cellular processes [230,231]. The ECM is a dynamic
structure that remodels itself as needed, such as during tissue development [232]. The main
components of the ECM include basement membranes, fibers (such as fibronectin, laminin,
collagen, tenascin, and elastin), and soluble components (heparin, cytokines, growth factors,
and mediators). However, the composition of the ECM varies depending on the location
and is specific to each tissue [233–235].

5.1.1. Degradation of the Extracellular Matrix in the CRC Microenvironment and Its Impact
on Cancer Progression

In the tumor microenvironment, the ECM undergoes structural changes due to strong
exposure to the actions of cancer cells and niche conditions (hypoxia, reduced pH, free rad-
icals, and stromal cells), contributing to cancer progression by facilitating the proliferation
of cancer cells, local invasion, and migration to distant sites [234,236]. First, the physical
barrier that limits proliferating cells is broken. Second, bioactivators are released into the
extracellular environment, and many binding sites for cell receptors are exposed [218].

There are two pathways of tumor invasion involving ECM remodeling. One is the
degradation of the ECM, mediated by MMPs, which are proteins with proteolytic activity.
They influence the loss of cell adhesion by mediating the dissociation of intercellular and
cell-ECM connections, resulting in the loosening of the primary tumor structure and release
from the primary niche. MMPs include collagenases (MMP-1, MMP-8, MMP-13, and MMP-
18), gelatinases (MMP-2 and MMP-9), matrilysins (MMP-26 and MMP-7), stromelysins
(MMP-3 and MMP-10), membrane-type (MT-MMP), and unclassified MMPs. Cancer cells
are not the main producers of metalloproteinases but release interleukins, growth factors,
or extracellular matrix metalloproteinase inducer (EMMPRIN), which stimulate other
stromal cells to MMP production [218,237]. Studies conducted on samples taken from CRC
patients have shown increased levels of MMPs. The impact of the CRC niche on MMP
production was examined using M2 macrophages, and it was found that CRC cells isolated
from a late-stage tumor (SW480 cell line) showed increased gene expression encoding
MMP-9 when treated with medium derived from M2 macrophages [238]. MMP-7 has
been classified as a prognostic marker in CRC [239], and MMP-25 (MT6-MMP) has shown
increased expression, correlating with the invasive phenotype of CRC [240]. However, the
action of MMPs depends on activators, such as tissue plasminogen activator (tPA) and
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urokinase plasminogen activator (uPA) [218], which mediate the processes of migration,
invasion, proliferation, and angiogenesis. Increased expression of uPA has been observed
in in vitro CRC models, and the use of uPA inhibitors (including ATN-658) resulted in
reduced migratory capabilities of model cells and inhibited tumor growth in the liver, the
most common site of metastasis, in a mouse model [241].

CAFs within the tumor are responsible for remodeling the ECM through the pro-
duction of MMPs and TGF-β. Their role includes maintaining hypoxia in the TME and
cross-linking collagen fibers, causing ECM stiffness and, consequently, its degradation. The
consequence is the proliferation of cancer cells, their release from the niche, and migra-
tion [242,243]. The ECM reorganization induced by reduced elasticity of fibers is mainly a
consequence of reprogrammed niche cells depositing larger amounts of collagen, primarily
type I as well as II, III, IV, and IX. Additionally, lysyl oxidase (LOX), an enzyme involved
in ECM remodeling in physiological conditions, cross-links collagen fibers in the TME,
leading to the formation of thick collagen bundles that serve as pathways for cancer cell
transport [244]. In studies conducted on tissues from CRC patients, increased expression
of one of the LOX family oxidases (specifically LOX2) was shown to correlate with the
likelihood of distant metastases. This effect was also verified using LOX2-positive and
LOX2-knockdown cell lines, revealing that the presence of LOX2 promoted the migratory
potential by initiating the EMT process [245].

In another study, an elevated level of collagen and its crosslinking were observed in
the invasive phenotype of CRC, and the stiffness of the ECM was 9.4 times higher than in
the case of ECM derived from normal colorectal cells. In the same study, it was noted that
this effect additionally correlated with increased vascularization, indicating the regulation
of angiogenesis by the remodeled ECM [246].

The composition of the ECM in CRC differs from that in normal colorectal cells and
correlates with increased cell proliferation. The quantity of extracellular matrix components
and factors involved in its remodeling change depending on the stage of CRC advance-
ment. The content of collagen I and MMP-2 in later stages is higher than in the initial
ones. Conversely, for collagen IV and tissue inhibitor of metalloproteinase-3 (TIMP-3), a
decreasing trend was observed with the progression of CRC [247].

5.1.2. Targeting Therapy at the ECM

A detailed characterization of the ECM in CRC, especially metastatic stroma, is a
challenge due to the shortage of biological samples. On the other hand, in vitro and in vivo
studies do not fully capture the real disease mechanisms. This leads to difficulties in
designing therapies targeted at the ECM [248].

Somewhat distant in vitro studies focusing on serine proteases (such as uPA) in tumor
invasion drew attention to inhibitors of these factors as potential therapeutics [249]. How-
ever, other studies questioned their effectiveness, as continued cancer development was
observed [250]. Since a variety of cellular components and particles are involved in ECM
remodeling, Liang et al. proposed a model/suggestion for therapy that takes into account
the ECM characteristics for different stages of cancer:

Early stage: maintaining the proper elasticity of the ECM by limiting fiber deposition;
targeting MMPs to restrict early metastasis.

Intermediate stages: reversing ECM modifications induced by tumor progression and in-
hibiting further fibrosis; improving chemotherapy effectiveness by facilitating drug transport.

Advanced stages: regulating ECM degradation, limiting neo-vascularization and
metastasis, enabling drug transport, improving quality of life.

To normalize the state of the extracellular matrix, the researchers proposed the use
of natural substances, such as flavonoids, phenols, polysaccharides, saponins, terpenoids,
alkaloids, and quinones. Their action has been demonstrated in reducing the deposition
of ECM components, reversing potential modifications, inhibiting ECM degradation, and
targeting cancer-associated fibroblasts (CAFs) [251].
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6. Conclusions

The interactions between cancer and the tumor microenvironment are very complex
because they involve a wide spectrum of cells, both normal and cancerous, as well as extra-
cellular elements (Figure 1). This review focused solely on the most important components,
such as immune cells, fibroblasts, vascular cells, and the extracellular matrix. However, the
TME includes many more cells and factors secreted by these cells, making further research
in this direction extremely important, especially as there have been increasing reports in re-
cent decades suggesting that the TME effectively supports cancer development. Moreover,
most of the cells in the TME include undifferentiated cells, which makes their recruitment
and immunoediting much easier. Therefore, the question arises whether depriving the
tumor of its microenvironment would be an effective way to enhance immunotherapy. This
seems to be the right direction; however, the complexity of intercellular interactions in the
TME complicates targeting its elements.

So far, in the treatment of CRC, therapies targeting the immunological checkpoints
of the microenvironment (PD-1/PD-L1, CTLA-4) and proteins associated with tumor
angiogenesis (VEGFR) have been approved. However, the genetic diversity of CRC means
that this therapy is effective only in specific subtypes, such as dMMR–MSI-H CRC. In
addition to the genetic background, elements of the TME, such as immune cells, fibroblasts,
vascular cells, and their products, may mediate resistance to immunotherapy. Therefore, it
is necessary to further understand the interactions between tumor microenvironment cells
and verify biomarkers to better understand tumor function.

First of all, efforts should be focused on blocking the infiltration of normal cells, which
have been shown in several studies to play a protective role against the tumor. They support
further growth and the avoidance of the immune response. Indeed, initial infiltration and
induction of inflammation in some cases correlate with patient survival chances, but this
process evolves over time and favors the tumor. Therefore, another approach is to try to
inhibit the transformation of normal cells into cells with pro-tumor potential. In the case of
immune cells, high plasticity may also be an advantage for restoring the normal phenotype
of immune cells.

Developing targeted therapies focused on the TME is becoming a less distant direction
in cancer treatment, but it certainly requires a more holistic approach, taking into account
all the intercellular networks of this complex system.
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71. Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and Colon Cancer. Gastroenterology 2010, 138, 2101–2114.e5. [CrossRef]
[PubMed]

72. Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Ségui, B. The TNF Paradox in Cancer Progression and
Immunotherapy. Front. Immunol. 2019, 10, 1818. [CrossRef] [PubMed]

73. Zhao, P.; Zhang, Z. TNF-α Promotes Colon Cancer Cell Migration and Invasion by Upregulating TROP-2. Oncol. Lett. 2018, 15,
3820–3827. [CrossRef] [PubMed]

74. Warsinggih; Limanu, F.; Labeda, I.; Lusikooy, R.E.; Mappincara; Faruk, M. The Relationship of Tumor Necrosis Factor Alpha
Levels in Plasma toward the Stage and Differentiation Degree in Colorectal Cancer. Med. Clínica Práctica 2021, 4, 100224. [CrossRef]

75. Obeed, O.A.A.; Alkhayal, K.A.; Sheikh, A.A.; Zubaidi, A.M.; Vaali-Mohammed, M.-A.; Boushey, R.; Mckerrow, J.H.; Abdulla,
M.-H. Increased Expression of Tumor Necrosis Factor-&alpha; Is Associated with Advanced Colorectal Cancer Stages. World J.
Gastroenterol. 2014, 20, 18390–18396. [CrossRef]

https://doi.org/10.3390/cells12010138
https://www.ncbi.nlm.nih.gov/pubmed/36611932
https://doi.org/10.1016/j.cyto.2022.155916
https://www.ncbi.nlm.nih.gov/pubmed/35644058
https://doi.org/10.4103/aam.aam_56_18
https://www.ncbi.nlm.nih.gov/pubmed/31417011
https://doi.org/10.2174/156800911795538066
https://www.ncbi.nlm.nih.gov/pubmed/21247378
https://doi.org/10.18794/aams/110503
https://doi.org/10.1158/2326-6066.CIR-20-0431
https://www.ncbi.nlm.nih.gov/pubmed/33361087
https://doi.org/10.1158/0008-5472.CAN-18-0413
https://www.ncbi.nlm.nih.gov/pubmed/30012670
https://doi.org/10.1164/ajrccm.156.3.9701122
https://www.ncbi.nlm.nih.gov/pubmed/9310021
https://doi.org/10.3390/biomedicines10071670
https://www.ncbi.nlm.nih.gov/pubmed/35884974
https://doi.org/10.1186/1476-4598-11-87
https://www.ncbi.nlm.nih.gov/pubmed/23174018
https://doi.org/10.3390/life13122261
https://www.ncbi.nlm.nih.gov/pubmed/38137862
https://doi.org/10.1073/pnas.1812266115
https://www.ncbi.nlm.nih.gov/pubmed/30545915
https://doi.org/10.1073/pnas.2103180118
https://www.ncbi.nlm.nih.gov/pubmed/34016751
https://doi.org/10.3389/fonc.2022.1010380
https://www.ncbi.nlm.nih.gov/pubmed/36531053
https://doi.org/10.1038/bjc.2013.748
https://www.ncbi.nlm.nih.gov/pubmed/24346288
https://doi.org/10.2147/OTT.S278013
https://www.ncbi.nlm.nih.gov/pubmed/33376351
https://doi.org/10.1007/s00384-009-0818-8
https://www.ncbi.nlm.nih.gov/pubmed/19898853
https://doi.org/10.3748/wjg.v23.i10.1780
https://www.ncbi.nlm.nih.gov/pubmed/28348483
https://doi.org/10.1080/13102818.2014.965047
https://www.ncbi.nlm.nih.gov/pubmed/26019577
https://doi.org/10.1053/j.gastro.2010.01.058
https://www.ncbi.nlm.nih.gov/pubmed/20420949
https://doi.org/10.3389/fimmu.2019.01818
https://www.ncbi.nlm.nih.gov/pubmed/31417576
https://doi.org/10.3892/ol.2018.7735
https://www.ncbi.nlm.nih.gov/pubmed/29467899
https://doi.org/10.1016/j.mcpsp.2021.100224
https://doi.org/10.3748/wjg.v20.i48.18390


Appl. Sci. 2024, 14, 2930 20 of 26

76. Olayinka, T.; Okoye, C.; Amarachi, O. A Review of the Role of Canakinumab—An Anti-Inflammatory Agent in CAD. Int. J.
Health Sci. Res. 2023, 13, 48–52. [CrossRef]

77. Pan, A.; Gerriets, V. Etanercept. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.
78. Preuss, C.V.; Anjum, F. Tocilizumab. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.
79. Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An Evolving Chemokine. Cytokine 2022, 153, 155828. [CrossRef]
80. Li, J.; Huang, L.; Zhao, H.; Yan, Y.; Lu, J. The Role of Interleukins in Colorectal Cancer. Int. J. Biol. Sci. 2020, 16, 2323–2339.

[CrossRef] [PubMed]
81. Ha, H.; Debnath, B.; Neamati, N. Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics 2017, 7,

1543–1588. [CrossRef] [PubMed]
82. Conciatori, F.; Bazzichetto, C.; Falcone, I.; Ferretti, G.; Cognetti, F.; Milella, M.; Ciuffreda, L. Colorectal Cancer Stem Cells

Properties and Features: Evidence of Interleukin-8 Involvement. Cancer Drug Resist. 2019, 2, 968–979. [CrossRef] [PubMed]
83. Ning, Y.; Labonte, M.J.; Zhang, W.; Bohanes, P.O.; Gerger, A.; Yang, D.; Benhaim, L.; Paez, D.; Rosenberg, D.O.; Nagulapalli

Venkata, K.C.; et al. The CXCR2 Antagonist, SCH-527123, Shows Antitumor Activity and Sensitizes Cells to Oxaliplatin in
Preclinical Colon Cancer Models. Mol. Cancer Ther. 2012, 11, 1353–1364. [CrossRef] [PubMed]
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