
Citation: Wang, C.; Wang, Z. Isolated

Forest-Based Prediction of Container

Resource Load Extremes. Appl. Sci.

2024, 14, 2911. https://doi.org/

10.3390/app14072911

Academic Editor: Andrea Prati

Received: 27 January 2024

Revised: 18 March 2024

Accepted: 28 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Isolated Forest-Based Prediction of Container Resource
Load Extremes
Chaoxue Wang and Zhenbang Wang *

School of Information and Control Engineering, Xi’an University of Architecture and Technology,
Xi’an 710055, China
* Correspondence: ae@wangzhenbang.com; Tel.: +86-181-9172-9187

Abstract: Given the wide application of container technology, the accurate prediction of container
CPU usage has become a core aspect of optimizing resource allocation and improving system
performance. The high volatility of container CPU utilization, especially the uncertainty of extreme
values of CPU utilization, is challenging to accurately predict, which affects the accuracy of the
overall prediction model. To address this problem, a container CPU utilization prediction model,
called ExtremoNet, which integrates the isolated forest algorithm, and classification sub-models are
proposed. To ensure that the prediction model adequately takes into account critical information on
the CPU utilization’s extreme values, the isolated forest algorithm is introduced to compute these
anomalous extreme values and integrate them as features into the training data. In order to improve
the recognition accuracy of normal and extreme CPU utilization values, a classification sub-model is
used. The experimental results show that, on the AliCloud dataset, the model has an R2 of 96.51%
and an MSE of 7.79. Compared with the single prediction models TCN, LSTM, and GRU, as well
as the existing combination models CNN-BiGRU-Attention and CNN-LSTM, the model achieves
average reductions in the MSE and MAE of about 38.26% and 23.12%, proving the effectiveness of
the model at predicting container CPU utilization, and provides a more accurate basis for resource
allocation decisions.

Keywords: cloud computing; CPU prediction; cloud platform resource allocation; cloud platform
CPU load prediction; temporal convolutional network

1. Introduction

With the continuous development of Internet technology, cloud computing has be-
come a core computing model in modern information technology [1]. In this context,
containerization technologies such as Docker have been widely used on cloud platforms [2],
providing a more flexible and efficient mode of service deployment for both enterprises and
individuals. In cloud computing environments, accurately predicting the extreme values of
container CPU utilization is crucial to safeguarding system performance and maintaining
efficient resource allocation.

Extreme fluctuations in container CPU utilization may not only lead to unoptimized
resource allocation, which reduces the quality of service, but can also trigger system
stability issues and severe service disruptions [3,4]. In addition, container CPU utilization
prediction provides a key reference for load balancing and container scaling strategies [5],
enabling tasks to be dynamically adjusted across multiple containers or computing nodes,
thus ensuring the stable and efficient operation of the entire cloud platform. Therefore,
accurately predicting container extreme values in CPU utilization has become an important
challenge [4].

In order to satisfy users’ needs for the high availability, performance, and efficiency of
computing services, load forecasting is employed to predict future container CPU usage
trends in a given period by analyzing historical usage data [6]. Several methods have been

Appl. Sci. 2024, 14, 2911. https://doi.org/10.3390/app14072911 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072911
https://doi.org/10.3390/app14072911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14072911
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072911?type=check_update&version=2

Appl. Sci. 2024, 14, 2911 2 of 12

used for container CPU utilization prediction, including autoregressive moving average
models (ARIMAs), Bayesian models, and recurrent neural networks (RNNs); however,
they still struggle to deal with the high volatility and rare extreme values in container
data, such as container CPU utilization. The existing models often struggle to accurately
capture and predict these critical extreme fluctuations, which affects the accuracy of the
prediction results and the generalization ability of the model. In addition, maintaining
computational efficiency and adapting to variable load characteristics are also challenges
hindering existing methods [7]. Therefore, there is an urgent need to further optimize the
existing models or explore new strategies to enhance the prediction accuracy.

In this paper, we propose a CPU utilization prediction model, named ExtremoNet,
which incorporates isolated forest and classification sub-models to address the extreme
value problem in container CPU utilization prediction. The model accurately identifies
CPU utilization extreme values by introducing the isolated forest algorithm, and incorpo-
rates their abnormal scores as important features in the prediction framework, effectively
enhancing the model’s responsiveness to extreme situations. Combined with the classifica-
tion sub-model, it further improves the accuracy of distinguishing between normal CPU
utilization and extreme CPU utilization.

This paper is organized as follows: Section 2 introduces the current state of the research
on CPU load prediction; Section 3 introduces the ExtremoNet model structure; Section 4
describes the experimental process and related analyses; Section 5 summarizes the paper
and proposes the next research direction.

2. Related Work

In recent years, many researchers have carried out extensive and in-depth explorations
of the container load prediction problem, using a range of methods ranging from traditional
statistical methods to modern machine learning and deep learning techniques.

(1) Traditional methods

Y. Xie et al. [8] proposed a hybrid linear model based on ARIMA and triple exponential
smoothing. This method performs well when working with small volumes of data or data
of high quality, but cannot sufficiently capture all the fluctuating characteristics present in
time series data, nor can it effectively deal with the extreme values of the nonlinearities.
Joshi, N.S. et al. [9] proposed a method that combines predictive analytics with a theoretical
controller, a novel approach that introduces a PID controller to ensure the stability of the
system. However, this study assumes that the workload is predictable and stable, which
may not hold true in a dynamic environment.

(2) Machine learning methods

Gopal et al. [10] proposed a Bayesian network model based on user behavior and time
frame analysis, which takes into account the interactions between concurrent applications
while making predictions. The results show that the method has better accuracy compared
to the regression and support vector techniques. However, the authors ignored the impact
of VM interference on application performance and data center load. R. Hu et al. [11]
proposed a CPU load prediction method based on support vector regression (SVR) and
Kalman smoothing. Although SVR is excellent at dealing with nonlinear problems, this
model performs poorly when the data are unstable or contain a large number of random
variations. Zhong et al. [12] proposed a model that combines the advantages of weighted
wavelet support vector machine (WWSVM) with PSO. The importance of multiple sample
points is considered by weighting the data to reduce the prediction error.

(3) Deep learning methods

Patel et al. [13] proposed a multi-step CPU utilization prediction method called RCP-
CL to model continuous and discontinuous CPU load values with random fluctuations and
novel continuous and periodic patterns by combining the 1D-CNN (1D-CNN) and LSTM
networks. However, this method is only applicable to CPU loads with random fluctuations

Appl. Sci. 2024, 14, 2911 3 of 12

and novel continuous and periodic patterns, and the prediction accuracy may be poor
in scenarios featuring sudden changes in CPU utilization. Javad Dogani et al. [14] used
wavelet transform to decompose the input data into sub-bands with different frequencies
to extract patterns from nonlinear and nonsmooth data, thus improving the prediction
accuracy, and then input the extracted features into BiGRU to predict future workloads.
Devi et al. [15] used a hybrid ARIMA-ANN model to predict future CPU and memory
utilization, but this algorithm is limited by the flaws inherent to the ARIMA and ANN
models themselves, which hinder their ability to fit nonlinear data. Yifei Wang et al. [16]
used Gram’s angle field (GAF) by converting the time series data into image format data
and extracted the spatio-temporal features using CNN and LSTM; however, the conversion
process leads to a loss of information, which affects the accuracy of the prediction results.
Malik et al. [17] investigated the prediction of multi-resource utilization using functional
link neural networks (FLNNs) combined with genetic algorithms (GAs) and particle swarm
optimization (PSO). Genetic algorithms and particle swarm optimization have a slow search
process, which may lead to a low computational efficiency. X. Li et al. [18] proposed a
combined model based on bi-directional long short-term memory (BILSTM) networks and
gated recurrent units (GRUs). However, due to the high impact of outliers on the MSE,
this may lead to an incomplete or inaccurate assessment of the model’s performance. Lu
Wang et al. [19] proposed a load prediction model, CNN-BiGRU-Attention, and a container
scheduling strategy based on load prediction. Wang Enxu et al. [20] proposed a dual-
attention mechanism network. This network introduces a feature attention mechanism and
a temporal attention mechanism on top of LSTM to enhance the importance of feature and
temporal information. Cao Zhen et al. [21] proposed an n-LSTM model based on LSTM
layers and input features that are extended horizontally. A specialized LSTM model is
designed for each feature to be learned. This method relies too much on feature selection,
and the prediction effect may not be good on datasets with a small number of features. He
Xiaowei et al. [22] developed a prediction model combining GRU and LSTM. Li Haoyang
et al. [23] proposed an Informer-DCR model based on the improved Informer, where dilated
causal convolution is introduced to enhance the prediction accuracy and ensure causality,
thus improving the prediction accuracy.

The studies of [18–23] mainly focused on the innovative combinations of modelling
architectures, ignoring the negative impact of extreme values in the data on model training.
In dynamically changing environments, such as cloud resource management, extreme
values are rare but often have a significant impact on system performance. Due to the
atypical nature and unpredictable occurrences of these extreme values, predictive models
are not only required to be able to capture and predict regular data trends, but also to
acutely recognize and accurately predict extreme situations. While the simple combination
of existing models has been effective in improving the overall prediction performance, such
an approach does not pay sufficient attention to, or effectively handle, the occurrence of
extreme values.

Therefore, this study aims to explore and implement a new prediction model that not
only achieves the best overall prediction performance, but is also specifically optimized
to improve the identification and prediction of extreme values in the data, with a view to
provide more accurate and reliable CPU utilization prediction in a dynamic and complex
container cluster environment.

3. Load Prediction Model
3.1. Description of the Problem

Container load prediction is a time-series data analysis task with the goal of estimating
the CPU resource usage of the inner container in a given period. The data contain most of
the normal values that contribute significantly to the overall predictability, as well as a few
extreme values that must be accurately predicted. In addition, considering that container
load is affected by a variety of factors, such as memory usage, disk occupancy, etc., we
include these factors in our definition of container load data.

Appl. Sci. 2024, 14, 2911 4 of 12

The problem can be described as follows:
For container load prediction, we set up a k-dimensional time series

(
Xt =

[
x1

t , x2
t , . . . , xk

t

])
,

where the components represent different system metrics, such as CPU utilization
(

x1
t
)
,

memory usage
(

x2
t
)
, and disk usage

(
xk

t

)
. The prediction model f utilizes historical

observations (Xt−n+1, . . . , Xt) to estimate the CPU utilization
(

x̂1
t+1

)
at the next point in

time (t + 1).
x̂1

t+1 = f (Xt−n+1, . . . , Xt) (1)

where f maps the historical data to predict future CPU utilization and represents the core
component in multivariate time series forecasting.

The choice to forecast data for only one point in time in the future, rather than multiple
points in time, was primarily made to avoid the problem of error accumulation in long-term
forecasts. Long-term forecasting can lead to an increase in error accumulation over time,
affecting forecast accuracy. Therefore, focusing on the forecast at the next point in time
minimizes errors and ensures the reliability of the forecast results.

3.2. Load Prediction Model Based on Isolated Forest

In order to accurately predict extreme values in container CPU utilization, the Ex-
tremoNet model is presented in this paper. ExtremoNet consists of the following three
separate models: a normal value model, used to train the normal values in the predicted
data; an extreme value model, used to train the extreme values in the predicted data; and
the classifier model, trained to detect whether a value is categorized as a normal value or
an extreme value.

This model combines the isolated forest algorithm and the classification sub-model to
detect and integrate the information on abnormal extreme values to improve the accuracy
of predicting extreme patterns. By introducing a classification sub-model, ExtremoNet can
more accurately distinguish between normal and extreme events, ensuring that it remains
efficient and accurate in a variable container load prediction environment. In addition,
a temporal convolutional network (TCN) is used to sensitively capture short-term peak
variations and minor fluctuations in a CPU to enhance the granularity and accuracy of the
predictions.

Figure 1 illustrates the structure of the proposed ExtremoNet model. The model
uses time-series data to estimate anomaly scores for each data point via an isolated forest
algorithm, and then combines these scores with the raw data as features for model training.

Appl. Sci. 2024, 14, 2911 5 of 13

Figure 1. ExtremoNet model structure diagram.

To describe the load prediction model in detail, its mathematical definition is first
given. Let the time series data be 𝑋௧, where 𝑡 denotes the time step, and the goal of model 𝐹 is to predict the load at the next time step 𝑋௧ାଵ෣. Model 𝐹 contains three sub-models, 𝐹ext, 𝐹௡௢௥௠, and the auxiliary classification network 𝐶.

The mathematical representation of the model can be summarized as follows:
First, the function for calculating the abnormal score for the isolated forest algorithm

is defined as follows: 𝐴(𝑋) = 𝑓௜ி௢௥௘௦௧(𝑋) (2)

The anomaly scores are combined as new data features to the original data as follows: 𝐹(𝑋) = 𝑋, 𝐴(𝑋) (3)

The classification network determines whether a data point is a normal or extreme
fluctuation, giving probabilities 𝑃௡௢௥௠ and 𝑃௘௫௧. 𝑃௡௢௥௠(𝑋), 𝑃௘௫௧(𝑋) = 𝐶൫𝐹(𝑋)൯ (4)

Then, based on the output of the classification network, the appropriate prediction
model is selected as follows: 𝑌 = 𝑃(𝑋) = 𝑃௡௢௥௠(𝑋) ൉ 𝐹௡௢௥௠൫𝐹(𝑋)൯ + 𝑃௘௫௧(𝑋) ൉ 𝐹௘௫௧൫𝐹(𝑋)൯ (5)

Ultimately, the output of the model Y is a weighted sum of the outputs of the two
models.

In the above mathematical framework, model 𝐹 is able to adaptively predict both
extreme and normal values. In predicting loads, the model not only captures daily fluctu-
ation patterns, but also reacts to sudden extremes, thus enabling efficient adaptation to
uncertain environments. This flexibility comes from the integrated design of the classifi-
cation network 𝐶 , 𝐹ext , and 𝐹௡௢௥௠ , which allows the model to dynamically adjust the
strength of its response to different load characteristics when making predictions. The
fully connected layer downscales the data to integrate the information, and the Sigmoid
activation function converts the classification result to a value between 0 and 1 for binary
evaluation.

Figure 1. ExtremoNet model structure diagram.

Appl. Sci. 2024, 14, 2911 5 of 12

The data flow is assigned to the following three paths in the model design: the extreme
value prediction branch focuses on rare but important extreme load cases, the normal value
prediction branch handles the constant load, and the auxiliary classification network is
responsible for distinguishing between these two cases and improving the accuracy of
the overall model in classifying the fluctuating nature of the data. The final prediction is
accomplished by integrating the outputs of the two sub-prediction models and the decisions
of the classification network. If the classification network judges the current data point
as being extreme, the model focuses on the output; if it judges it to be normal, the output
of the normal-value model is given a higher weight. The advantage of this approach is
that it allows the model to dynamically adjust its focus on different types of loads, thus
improving the overall accuracy of the prediction.

To describe the load prediction model in detail, its mathematical definition is first
given. Let the time series data be Xt, where t denotes the time step, and the goal of model
F is to predict the load at the next time step ˆXt+1. Model F contains three sub-models, Fext,
Fnorm, and the auxiliary classification network C.

The mathematical representation of the model can be summarized as follows:
First, the function for calculating the abnormal score for the isolated forest algorithm

is defined as follows:
A(X) = fiForest(X) (2)

The anomaly scores are combined as new data features to the original data as follows:

F(X) = X, A(X) (3)

The classification network determines whether a data point is a normal or extreme
fluctuation, giving probabilities Pnorm and Pext.

Pnorm(X), Pext(X) = C(F(X)) (4)

Then, based on the output of the classification network, the appropriate prediction
model is selected as follows:

Y = P(X) = Pnorm(X)·Fnorm(F(X)) + Pext(X)·Fext(F(X)) (5)

Ultimately, the output of the model Y is a weighted sum of the outputs of the two models.
In the above mathematical framework, model F is able to adaptively predict both ex-

treme and normal values. In predicting loads, the model not only captures daily fluctuation
patterns, but also reacts to sudden extremes, thus enabling efficient adaptation to uncertain
environments. This flexibility comes from the integrated design of the classification net-
work C, Fext, and Fnorm, which allows the model to dynamically adjust the strength of its
response to different load characteristics when making predictions. The fully connected
layer downscales the data to integrate the information, and the Sigmoid activation function
converts the classification result to a value between 0 and 1 for binary evaluation.

3.3. Evaluation Indicators

In this study, in order to evaluate the performance of the proposed ExtremoNet model
in predicting the CPU load, we choose the following three commonly used evaluation
metrics: the mean squared error (MSE), mean absolute error (MAE), and coefficient of
determination (R2). These metrics provide a comprehensive picture of the accuracy and
stability of the model in predicting loads.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (7)

Appl. Sci. 2024, 14, 2911 6 of 12

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

where yi is the true value, ŷi is the predicted value, and n is the total number of samples.
By calculating these evaluation metrics in our experiments, we can fully evaluate the

prediction performance of the proposed ExtremoNet model and compare it with other
models. We hope to select the model with the best performance in predicting the CPU load
by using these metrics.

4. Experimental Results and Analysis
4.1. Experimental Environment

In this study, the experimental environment was the Pytorch 1.7.1 framework, the
operating system was the CentOS 7 system, Python version 3.8 was used, the system had
32 GB of memory and an NVIDIA Tesla T4 GPU, and the cudatoolkit version 11.3 was
employed.

In this experiment, the batch_size, number of TCN channels, learning rate, and opti-
mizer were set as described below. In order to ensure the optimal choice of hyperparameters
for the algorithm, this study utilized the Optuna hyperparameter optimization framework
to tune the model, where 80% of the data from each container was used as the training set
and the remaining 20% as the test set. A wide range of hyperparameters, including the
batch_size, number of TCN channels, and learning rate and optimizer, were searched for
by Optuna. Using this method, the best combination of hyperparameters can be found
automatically in a wide range of parameter spaces. The optimized parameters are as
follows: the batch_size is 256, the number of TCN channels is [64,64,64], the learning rate is
0.0069, the MSE is used as the loss function, and Adam is chosen as the optimizer with an
epoch of 100.

4.2. Experimental Data

The dataset for this experiment is from the AliCloud Platform trace dataset released
in 2018.

The Cluster-trace-v2018 dataset [24], released by AliCloud Platform, provides trace
data for about 4000 machines over 8 consecutive days. The dataset covers the partial
workloads of these machines and the workloads of the entire cluster. All machines in the
cluster run online tasks along with batch tasks. The dataset contains six types of tables,
namely, machine_meta.csv, machine_usage.csv, container_meta.csv, container_usage.csv,
batch_instance (batch_instance.csv), and batch_task.csv. In this paper, we mainly used the
container utilization table and randomly extracted resource utilization data from 100 con-
tainers on day 4. The dataset field descriptions are shown in Table 1.

Table 1. AliCloud dataset field description table.

Field Type Note

cpu_util_percent BIGINT The current CPU utilization of the container
mem_util_percent BIGINT The current memory utilization of the container

cpi DOUBLE Number of cycles per instruction
mem_gps DOUBLE Memory bandwidth utilization

mpki BIGINT Number of out-of-page interrupts per thousand instructions
net_in DOUBLE Percentage of network inbound traffic utilization

net_out DOUBLE Percentage of network outgoing traffic utilization
disk_io_percent DOUBLE IO usage of the disk

Figures 2 and 3 reveal the key features of the CPU utilization time series data from the
AliCloud dataset. From Figure 2, it can be observed that there is significant volatility in the
CPU utilization, with no shortage of spike–peak phenomena. This finding suggests that the
system may have experienced a sudden increase in resource demand at certain moments.

Appl. Sci. 2024, 14, 2911 7 of 12

In addition, the irregularity of the utilization fluctuation implies the dynamically changing
nature of the load. In the histogram depicting the CPU utilization distribution, shown in
Figure 3, the data clearly show a right-skewed distribution, where the high frequency of
low-utilization intervals reflects that the system is under a lower load most of the time.
However, the extension of the long tail in the graph indicates that high utilization extreme
values, though rare, do exist and can have a significant impact on the operational stability
of the system and resource scheduling strategies. Correctly predicting these extreme
values is critical to the efficiency and reliability of cloud resource management systems.
Therefore, the data characteristics presented in Figures 2 and 3 provide important guidance
for predictive model design.

Appl. Sci. 2024, 14, 2911 7 of 13

Table 1. AliCloud dataset field description table.

Field Type Note
cpu_util_percent BIGINT The current CPU utilization of the container

mem_util_percent BIGINT The current memory utilization of the container
cpi DOUBLE Number of cycles per instruction

mem_gps DOUBLE Memory bandwidth utilization

mpki BIGINT Number of out-of-page interrupts per thousand in-
structions

net_in DOUBLE Percentage of network inbound traffic utilization
net_out DOUBLE Percentage of network outgoing traffic utilization

disk_io_percent DOUBLE IO usage of the disk

Figures 2 and 3 reveal the key features of the CPU utilization time series data from
the AliCloud dataset. From Figure 2, it can be observed that there is significant volatility
in the CPU utilization, with no shortage of spike–peak phenomena. This finding suggests
that the system may have experienced a sudden increase in resource demand at certain
moments. In addition, the irregularity of the utilization fluctuation implies the dynami-
cally changing nature of the load. In the histogram depicting the CPU utilization distribu-
tion, shown in Figure 3, the data clearly show a right-skewed distribution, where the high
frequency of low-utilization intervals reflects that the system is under a lower load most
of the time. However, the extension of the long tail in the graph indicates that high utili-
zation extreme values, though rare, do exist and can have a significant impact on the op-
erational stability of the system and resource scheduling strategies. Correctly predicting
these extreme values is critical to the efficiency and reliability of cloud resource manage-
ment systems. Therefore, the data characteristics presented in Figures 2 and 3 provide
important guidance for predictive model design.

Figure 2. AliCloud dataset CPU utilization.

Figure 2. AliCloud dataset CPU utilization.

Appl. Sci. 2024, 14, 2911 8 of 13

Figure 3. Frequency distribution of CPU utilization in AliCloud datasets.

4.3. Data Processing
Prior to further data processing, this study conducted a thorough quality assessment

of the original AliCloud dataset to identify and correct potential data issues. Upon close
inspection, the dataset was found to have missing data. To address the missing data and
other problems in the dataset, we performed the following steps:

(1) Missing value treatment: To ensure data integrity, the Lagrange interpolation [25]
was used in this study to supplement the missing values. The Lagrange interpolation uti-
lizes all known data points to construct the interpolation polynomial, ensuring that the
polynomial passes through every known data point. This global property makes it possi-
ble to capture the overall trend of the data series, not just the localized changes.

(2) Normalization: For preprocessing, MinMaxScaler was used to perform the feature
normalization to eliminate the influence of the magnitude between different features in
the data and to improve the model training effect. MinMaxScaler can scale the feature
values to a specified range, such as between 0 and 1, and its formula is expressed as 𝑋௦௖௔௟௘ௗ = 𝑋 − 𝑋௠௜௡𝑋௠௔௫ − 𝑋௠௜௡ (9)

where 𝑋 represents the input feature vector and 𝑋௠௜௡ and 𝑋௠௔௫ represent the minimum
and maximum values in the feature vector, respectively. After MinMaxScaler processing,
the data features will be in the range from 0 to 1, which is conducive to model training
and optimization.

(3) Extreme value determination: In order to determine whether a data point is an
extreme value when training the model, the isolated forest algorithm is used to determine
data points belonging to extreme values.

Figure 4 shows the outlier detection results in the CPU utilization data using the iso-
lated forest algorithm. Each point in the figure represents an observation in the dataset,
where the horizontal coordinate represents the index of the data point, and the vertical
coordinate represents the corresponding CPU utilization rate.

Figure 3. Frequency distribution of CPU utilization in AliCloud datasets.

4.3. Data Processing

Prior to further data processing, this study conducted a thorough quality assessment
of the original AliCloud dataset to identify and correct potential data issues. Upon close
inspection, the dataset was found to have missing data. To address the missing data and
other problems in the dataset, we performed the following steps:

(1) Missing value treatment: To ensure data integrity, the Lagrange interpolation [25]
was used in this study to supplement the missing values. The Lagrange interpolation
utilizes all known data points to construct the interpolation polynomial, ensuring that the
polynomial passes through every known data point. This global property makes it possible
to capture the overall trend of the data series, not just the localized changes.

(2) Normalization: For preprocessing, MinMaxScaler was used to perform the feature
normalization to eliminate the influence of the magnitude between different features in the

Appl. Sci. 2024, 14, 2911 8 of 12

data and to improve the model training effect. MinMaxScaler can scale the feature values
to a specified range, such as between 0 and 1, and its formula is expressed as

Xscaled =
X − Xmin

Xmax − Xmin
(9)

where X represents the input feature vector and Xmin and Xmax represent the minimum
and maximum values in the feature vector, respectively. After MinMaxScaler processing,
the data features will be in the range from 0 to 1, which is conducive to model training and
optimization.

(3) Extreme value determination: In order to determine whether a data point is an
extreme value when training the model, the isolated forest algorithm is used to determine
data points belonging to extreme values.

Figure 4 shows the outlier detection results in the CPU utilization data using the
isolated forest algorithm. Each point in the figure represents an observation in the dataset,
where the horizontal coordinate represents the index of the data point, and the vertical
coordinate represents the corresponding CPU utilization rate.

Appl. Sci. 2024, 14, 2911 9 of 13

Figure 4. Detection of CPU utilization outliers based on the isolated forest algorithm.

The blue points in Figure 4 represent data points recognized as normal by the isolated
forest algorithm. The CPU usage of these points is similar to the majority of the data
points, indicating that their behavior is consistent with the overall distribution pattern of
the dataset. The red points represent data points that are recognized as abnormal by the
isolated forest algorithm. They are significantly different from the other data points in
terms of CPU utilization and are therefore considered extreme values by the algorithm.
These extreme values may indicate unusual or atypical behavior in the data.

(4) Feature Selection: In order to effectively select the features to be used for predict-
ing the target variable cpu_usage, this paper uses the Pearson correlation coefficient. This
method identifies the features that have the most influence on the prediction results by
calculating the degree of linear correlation between each feature and the target variable.

Figure 5 shows the correlation coefficients of each feature with CPU_USAGE, and the
importance of each feature is assessed based on the magnitude of the absolute value of
these coefficients. Features with high correlation coefficients indicate a strong linear asso-
ciation with the target variable. Using this method, the most useful features for predicting
CPU_USAGE are filtered from multiple features. From the above results, we can see that
mem_gps has a low correlation coefficient, so we remove the mem_gps features from the
data and all other features can be used for CPU utilization prediction.

Figure 5. Correlation coefficients between different features in the dataset and the target feature.

Figure 4. Detection of CPU utilization outliers based on the isolated forest algorithm.

The blue points in Figure 4 represent data points recognized as normal by the isolated
forest algorithm. The CPU usage of these points is similar to the majority of the data
points, indicating that their behavior is consistent with the overall distribution pattern of
the dataset. The red points represent data points that are recognized as abnormal by the
isolated forest algorithm. They are significantly different from the other data points in
terms of CPU utilization and are therefore considered extreme values by the algorithm.
These extreme values may indicate unusual or atypical behavior in the data.

(4) Feature Selection: In order to effectively select the features to be used for predicting
the target variable cpu_usage, this paper uses the Pearson correlation coefficient. This
method identifies the features that have the most influence on the prediction results by
calculating the degree of linear correlation between each feature and the target variable.

Figure 5 shows the correlation coefficients of each feature with CPU_USAGE, and
the importance of each feature is assessed based on the magnitude of the absolute value
of these coefficients. Features with high correlation coefficients indicate a strong linear
association with the target variable. Using this method, the most useful features for
predicting CPU_USAGE are filtered from multiple features. From the above results, we can
see that mem_gps has a low correlation coefficient, so we remove the mem_gps features
from the data and all other features can be used for CPU utilization prediction.

Appl. Sci. 2024, 14, 2911 9 of 12

Appl. Sci. 2024, 14, 2911 9 of 13

Figure 4. Detection of CPU utilization outliers based on the isolated forest algorithm.

The blue points in Figure 4 represent data points recognized as normal by the isolated
forest algorithm. The CPU usage of these points is similar to the majority of the data
points, indicating that their behavior is consistent with the overall distribution pattern of
the dataset. The red points represent data points that are recognized as abnormal by the
isolated forest algorithm. They are significantly different from the other data points in
terms of CPU utilization and are therefore considered extreme values by the algorithm.
These extreme values may indicate unusual or atypical behavior in the data.

(4) Feature Selection: In order to effectively select the features to be used for predict-
ing the target variable cpu_usage, this paper uses the Pearson correlation coefficient. This
method identifies the features that have the most influence on the prediction results by
calculating the degree of linear correlation between each feature and the target variable.

Figure 5 shows the correlation coefficients of each feature with CPU_USAGE, and the
importance of each feature is assessed based on the magnitude of the absolute value of
these coefficients. Features with high correlation coefficients indicate a strong linear asso-
ciation with the target variable. Using this method, the most useful features for predicting
CPU_USAGE are filtered from multiple features. From the above results, we can see that
mem_gps has a low correlation coefficient, so we remove the mem_gps features from the
data and all other features can be used for CPU utilization prediction.

Figure 5. Correlation coefficients between different features in the dataset and the target feature.

Figure 5. Correlation coefficients between different features in the dataset and the target feature.

4.4. Comparison Experiment

In the experiments, the time step is set to {2, 6, 12, 24} time units, i.e., cloud load data
from the past {2, 6, 12, 24} time units are used as input features. Based on these input
features, the model will predict the cloud loading scenarios, while three evaluation metrics,
namely, the MSE, MAE, as well as R-squared values, are used to evaluate the model’s
performance.

Table 2 and Figure 6 clearly show the performance of each model on the AliCloud test
dataset. ExtremoNet performs best compared to a single model. The experimental results
show that the ExtremoNet model achieves the best performance on the AliCloud dataset.
The MSE of the model is 7.79 and the R2 is 96.51%.

Table 2. Experimental results for Alibaba Cloud dataset.

Model Step 2 6 12 24

ExtremoNet
MSE 9.23 8.62 7.79 8.53
MAE 1.53 1.66 1.44 1.48
R2(%) 94.10 94.75 96.51 95.89

ARIMA
MSE 22.21 19.17 16.07 15.13
MAE 2.88 2.40 2.31 2.19
R2(%) 84.93 85.01 87.82 88.01

TCN
MSE 20.15 13.20 12.94 12.46
MAE 2.70 1.91 1.88 1.85
R2(%) 85.33 90.43 90.64 90.83

LSTM
MSE 19.38 14.15 13.93 13.17
MAE 2.49 2.07 2.21 2.17
R2(%) 85.89 89.74 89.92 90.21

GRU
MSE 16.32 16.44 13.79 12.57
MAE 2.37 2.2 1.94 1.84
R2(%) 88.12 88.11 90.00 90.46

In this paper, the proposed model is compared with the GRU-LSTM model proposed
in [22], the pCNN-LSTM model proposed in [13], and the CNN-BiGRU-Attention model
proposed in [14]. The prediction results are shown in Figure 7, and the results of the
evaluation metrics are shown in Table 3.

On the AliCloud dataset, the ExtremoNet model significantly outperforms the other
models. For a 12-step length, the MSE of ExtremoNet is 7.79, while the MSEs of GRU-LSTM,
pCNN-LSTM, and CNN-BiGRU-Attention are 14.82, 11.85, and 15.54, respectively. Com-
pared to GRU-LSTM, pCNN-LSTM, and CNN-BiGRU-Attention, the MSE of ExtremoNet
is reduced by 47.44%, 34.26%, and 49.87%. Similarly, ExtremoNet performs better in the

Appl. Sci. 2024, 14, 2911 10 of 12

MAE metric, which is reduced by 23.40%, 24.21%, and 21.74% compared to GRU-LSTM,
pCNN-LSTM, and CNN-BiGRU-Attention, respectively.

Appl. Sci. 2024, 14, 2911 10 of 13

4.4. Comparison Experiment
In the experiments, the time step is set to {2, 6, 12, 24} time units, i.e., cloud load data

from the past {2, 6, 12, 24} time units are used as input features. Based on these input
features, the model will predict the cloud loading scenarios, while three evaluation met-
rics, namely, the MSE, MAE, as well as R-squared values, are used to evaluate the model’s
performance.

Table 2 and Figure 6 clearly show the performance of each model on the AliCloud
test dataset. ExtremoNet performs best compared to a single model. The experimental
results show that the ExtremoNet model achieves the best performance on the AliCloud
dataset. The MSE of the model is 7.79 and the R2 is 96.51%.

Table 2. Experimental results for Alibaba Cloud dataset.

Model Step 2 6 12 24

ExtremoNet
MSE 9.23 8.62 7.79 8.53
MAE 1.53 1.66 1.44 1.48
R2(%) 94.10 94.75 96.51 95.89

ARIMA
MSE 22.21 19.17 16.07 15.13
MAE 2.88 2.40 2.31 2.19
R2(%) 84.93 85.01 87.82 88.01

TCN
MSE 20.15 13.20 12.94 12.46
MAE 2.70 1.91 1.88 1.85
R2(%) 85.33 90.43 90.64 90.83

LSTM
MSE 19.38 14.15 13.93 13.17
MAE 2.49 2.07 2.21 2.17
R2(%) 85.89 89.74 89.92 90.21

GRU
MSE 16.32 16.44 13.79 12.57
MAE 2.37 2.2 1.94 1.84
R2(%) 88.12 88.11 90.00 90.46

Figure 6. Predicted results on the Alibaba Cloud dataset.

In this paper, the proposed model is compared with the GRU-LSTM model proposed
in [22], the pCNN-LSTM model proposed in [13], and the CNN-BiGRU-Attention model
proposed in [14]. The prediction results are shown in Figure 7, and the results of the eval-
uation metrics are shown in Table 3.

Figure 6. Predicted results on the Alibaba Cloud dataset.

Appl. Sci. 2024, 14, 2911 11 of 13

Table 3. Comparison of the experimental results of the AliCloud dataset with recent methods.

Model Step 2 6 12 24

ExtremoNet MSE 9.23 8.62 7.79 8.53
MAE 1.53 1.66 1.44 1.48

 R2(%) 94.10 94.75 96.51 95.89

GRU-LSTM
MSE 17.24 13.42 14.82 13.21
MAE 2.13 2.01 1.88 1.71
R2(%) 87.45 90.05 89.28 90.32

pCNN-LSTM
MSE 10.54 12.84 11.85 11.54
MAE 1.86 1.94 1.90 1.86
R2(%) 92.35 90.69 91.42 91.69

CNN-BiGRU-Attention
MSE 15.60 14.89 15.54 14.92
MAE 2.09 1.82 1.84 1.82
R2(%) 87.89 89.24 88.64 88.52

Figure 7. Plot comparing model prediction results.

On the AliCloud dataset, the ExtremoNet model significantly outperforms the other
models. For a 12-step length, the MSE of ExtremoNet is 7.79, while the MSEs of GRU-
LSTM, pCNN-LSTM, and CNN-BiGRU-Attention are 14.82, 11.85, and 15.54, respectively.
Compared to GRU-LSTM, pCNN-LSTM, and CNN-BiGRU-Attention, the MSE of Ex-
tremoNet is reduced by 47.44%, 34.26%, and 49.87%. Similarly, ExtremoNet performs bet-
ter in the MAE metric, which is reduced by 23.40%, 24.21%, and 21.74% compared to GRU-
LSTM, pCNN-LSTM, and CNN-BiGRU-Attention, respectively.

5. Conclusions
Given the limited ability of existing CPU resource prediction methods to deal with

extreme CPU utilization values in cloud platforms, this study proposes an ExtremoNet
model that incorporates the isolated forest algorithm and classification sub-models. The
model utilizes the isolated forest algorithm to identify and quantify extreme values and
integrates the classification sub-model to further improve the model’s ability to distin-
guish between normal and extreme fluctuations. Experiments conducted on the AliCloud
dataset confirmed the effectiveness of our model, and it was compared with existing meth-
ods. The results show that ExtremoNet has significant advantages in its ability to recog-
nize and predict extreme fluctuations, providing reliable support for container resource
scheduling and decision making. It successfully bridges the gap of a single model in deal-
ing with anomalous data, demonstrating efficiency and reliability in real-world applica-
tions.

Figure 7. Plot comparing model prediction results.

Table 3. Comparison of the experimental results of the AliCloud dataset with recent methods.

Model Step 2 6 12 24

ExtremoNet
MSE 9.23 8.62 7.79 8.53
MAE 1.53 1.66 1.44 1.48
R2(%) 94.10 94.75 96.51 95.89

GRU-LSTM
MSE 17.24 13.42 14.82 13.21
MAE 2.13 2.01 1.88 1.71
R2(%) 87.45 90.05 89.28 90.32

pCNN-LSTM
MSE 10.54 12.84 11.85 11.54
MAE 1.86 1.94 1.90 1.86
R2(%) 92.35 90.69 91.42 91.69

CNN-BiGRU-Attention
MSE 15.60 14.89 15.54 14.92
MAE 2.09 1.82 1.84 1.82
R2(%) 87.89 89.24 88.64 88.52

5. Conclusions

Given the limited ability of existing CPU resource prediction methods to deal with
extreme CPU utilization values in cloud platforms, this study proposes an ExtremoNet
model that incorporates the isolated forest algorithm and classification sub-models. The

Appl. Sci. 2024, 14, 2911 11 of 12

model utilizes the isolated forest algorithm to identify and quantify extreme values and
integrates the classification sub-model to further improve the model’s ability to distinguish
between normal and extreme fluctuations. Experiments conducted on the AliCloud dataset
confirmed the effectiveness of our model, and it was compared with existing methods. The
results show that ExtremoNet has significant advantages in its ability to recognize and
predict extreme fluctuations, providing reliable support for container resource scheduling
and decision making. It successfully bridges the gap of a single model in dealing with
anomalous data, demonstrating efficiency and reliability in real-world applications.

Despite ExtremoNet’s excellent prediction accuracy, there are still some challenges
to be overcome. Due to the highly integrated structure of the model, its computational
requirements are high, which may affect the responsiveness of the model in real-time
prediction scenarios. In future work, we plan to explore ways to classify prediction intervals
to further refine the prediction accuracy, and to consider more advanced techniques to
reduce the computational burden of the model to ensure that it maintains its efficiency and
accuracy in rapidly changing cloud computing environments.

Author Contributions: Conceptualization, C.W.; methodology, Z.W.; validation, Z.W.; investigation,
Z.W.; data curation, Z.W.; writing—original draft preparation, Z.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.62072363)
and the Natural Science Foundation of Shaanxi Province (No. 2019JM-167).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are available at (https://github.com/
alibaba/clusterdata/blob/master/cluster-trace-v2018, accessed on 27 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gong, C.; Liu, J.; Zhang, Q.; Chen, H.; Chen, H. The Characteristics of Cloud Computing. In Proceedings of the 2010 39th

International Conference on Parallel Processing Workshops, San Diego, CA, USA, 13–16 September 2010; IEEE: New York, NY,
USA, 2010; pp. 275–279.

2. Sedghpour, M.R.S.; Townend, P. Service Mesh and eBPF-Powered Microservices: A Survey and Future Directions. In Proceedings
of the 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE), Newark, CA, USA, 15–18 August
2022; IEEE: New York, NY, USA, 2022; pp. 176–184.

3. Duggan, M.; Shaw, R.; Duggan, J.; Howley, E.; Barrett, E. A multitime-steps-ahead prediction approach for scheduling live
migration in cloud data centers. Softw. Pract. Exp. 2019, 49, 617–639. [CrossRef]

4. Hamzaoui, I.; Duthil, B.; Courboulay, V.; Medromi, H. A survey on the current challenges of energy-efficient cloud resources
management. SN Comput. Sci. 2020, 1, 73. [CrossRef]

5. Xie, X.; Govardhan, S.S. A Service Mesh-Based Load Balancing and Task Scheduling System for Deep Learning Applications.
In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID),
Melbourne, Australia, 11–14 May 2020; IEEE: New York, NY, USA, 2020; pp. 843–849.

6. Kaur, K.; Garg, S.; Kaddoum, G.; Gagnon, F.; Jayakody, D.N.K. Enlob: Energy and load balancing-driven container placement
strategy for data centers. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December
2019; IEEE: New York, NY, USA, 2019; pp. 1–6.

7. Maenhaut, P.J.; Volckaert, B.; Ongenae, V.; De Turck, F. Resource management in a containerized cloud: Status and challenges.
J. Netw. Syst. Manag. 2020, 28, 197–246. [CrossRef]

8. Xie, Y.; Jin, M.; Zou, Z.; Xu, G.; Feng, D.; Liu, W.; Long, D. Real-Time Prediction of Docker Container Resource Load Based on a
Hybrid Model of ARIMA and Triple Exponential Smoothing. IEEE Trans. Cloud Comput. 2022, 10, 1386–1401. [CrossRef]

9. Joshi, N.S.; Raghuwanshi, R.; Agarwal, Y.M.; Annappa, B.; Sachin, D. ARIMA-PID: Container auto scaling based on predictive
analysis and control theory. Multimed. Tools Appl. 2023, 83, 26369–26386. [CrossRef]

10. Shyam, G.K.; Manvi, S.S. Virtual resource prediction in cloud environment: A Bayesian approach. J. Netw. Comput. Appl. 2016, 65,
144–154. [CrossRef]

11. Hu, R.; Jiang, J.; Liu, G.; Wang, L. CPU Load Prediction Using Support Vector Regression and Kalman Smoother for Cloud. In
Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops, Philadelphia, PA,
USA, 8–11 July 2013; IEEE: New York, NY, USA, 2013; pp. 88–92.

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018
https://doi.org/10.1002/spe.2635
https://doi.org/10.1007/s42979-020-0078-9
https://doi.org/10.1007/s10922-019-09504-0
https://doi.org/10.1109/TCC.2020.2989631
https://doi.org/10.1007/s11042-023-16587-0
https://doi.org/10.1016/j.jnca.2016.03.002

Appl. Sci. 2024, 14, 2911 12 of 12

12. Zhong, W.; Zhuang, Y.; Sun, J.; Gu, J. A load prediction model for cloud computing using PSO-based weighted wavelet support
vector machine. Appl. Intell. 2018, 48, 4072–4083. [CrossRef]

13. Patel, E.; Kushwaha, D.S. A hybrid CNN-LSTM model for predicting server load in cloud computing. J. Supercomput. 2022, 78,
1–30. [CrossRef]

14. Dogani, J.; Khunjush, F.; Seydali, M. Host load prediction in cloud computing with Dis-crete Wavelet Transformation (DWT) and
Bidirectional Gated Recurrent Unit (BiGRU) network. Comput. Commun. 2023, 198, 157–174. [CrossRef]

15. Devi, K.L.; Valli, S. Time series-based workload prediction using the statistical hybrid model for the cloud environment. Computing
2023, 105, 353–374. [CrossRef]

16. Wang, Y.; Yu, L.; Teng, F.; Song, J.; Yuan, Y. Resource load prediction model based on long-short time series feature fusion.
J. Comput. Appl. 2022, 42, 1508–1515.

17. Malik, S.; Tahir, M.; Sardaraz, M.; Alourani, A. A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary
Algo-rithms and Machine Learning Techniques. Appl. Sci. 2022, 12, 2160. [CrossRef]

18. Li, X.; Wang, H.; Xiu, P.; Zhou, X.; Meng, F. Resource Usage Prediction Based on BILSTM-GRU Combination Model. In
Proceedings of the 2022 IEEE International Conference on Joint Cloud Computing (JCC), Fremont, CA, USA, 15–18 August 2022;
IEEE: New York, NY, USA, 2022; pp. 9–16.

19. Wang, L.; Guo, S.; Zhang, P.; Yue, H.; Li, Y.; Wang, C.; Cao, Z.; Cui, D. An Efficient Load Prediction-Driven Scheduling Strategy
Model in Container Cloud. Int. J. Intell. Syst. 2023, 2023, 25. [CrossRef]

20. Wang, E.; Wang, X.; Zhang, K.; Zhang, D. Cloud computing load forecasting algorithm based on dual attention mechanism.
Comput. Eng. 2023, 49, 40–48. [CrossRef]

21. Cao, Z.; Deng, L.; Xie, T.; Liang, C. Cloud Platform Task CPU Load Prediction Method Using n-LSTM. J. Chin. Comput. Syst. 2024,
45, 75–83. [CrossRef]

22. He, X.; Xu, J.; Wang, B.; Wu, H.; Zhang, B. Research on Cloud Computing Resource Load Forecasting Based on GRU-LSTM
Combination Model. Comput. Eng. 2022, 48, 11–17. [CrossRef]

23. Li, H.; He, X.; Wang, B.; Wu, H.; You, Q. Cloud Computing Resource Load Prediction Based on Improved Informer. Comput. Eng.
2024, 50, 43–50. [CrossRef]

24. Available online: https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md (accessed on 3 May
2023).

25. Berrut, J.-P.; Trefethen, L.N. Barycentric Lagrange interpolation. SIAM Rev. 2004, 46, 501–517. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10489-018-1194-2
https://doi.org/10.1007/s11227-021-04234-0
https://doi.org/10.1016/j.comcom.2022.11.018
https://doi.org/10.1007/s00607-022-01129-7
https://doi.org/10.3390/app12042160
https://doi.org/10.1155/2023/5959223
https://doi.org/10.19678/j.issn.1000-3428.0066255
https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0374
https://doi.org/10.19678/j.issn.1000-3428.0062452
https://doi.org/10.19678/j.issn.1000-3428.0066399
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://doi.org/10.1137/S0036144502417715

	Introduction
	Related Work
	Load Prediction Model
	Description of the Problem
	Load Prediction Model Based on Isolated Forest
	Evaluation Indicators

	Experimental Results and Analysis
	Experimental Environment
	Experimental Data
	Data Processing
	Comparison Experiment

	Conclusions
	References

