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Abstract: The investigation of the reliability of long-life equipment is typically hindered by the lack
of experimental data, which makes accurate assessments challenging. To address this problem, a
bootstrap method based on the improved RBF (radial basis function) neural network is proposed.
This method utilizes the exponential function to modify the conventional empirical distribution
function and fit right-tailed data. In addition, it employs the RBF radial basis neural network to
obtain the distribution characteristics of the original samples and then constructs the neighborhood
function to generate the input network. The expanded sample is used to estimate the scale and
shape parameters of the Weibull distribution and obtain the estimated value of the MTBF (mean
time between failures). The bias correction method is then used to obtain the interval estimate for
the MTBF. Subsequently, a simulation experiment is conducted based on the failure data of a CNC
(computer numerical control) machine tool to verify the effect of this method. The results show that
the accuracy of the MTBF point estimation and interval estimation obtained using the proposed
method is superior to those of the original and conventional bootstrap methods, which is of major
significance to engineering applications.

Keywords: bootstrap; RBF neural network; reliability; parameter estimation; Weibull distribution

1. Introduction

Reliability refers to the ability of a product to fulfill a particular function within a
predetermined period and under specified conditions. It is an important index that is used
to determine the performance of a product. With the advancements in manufacturing
technology, the reliability of computer numerical control (CNC) machine tools and other
equipment is continuously improving, and failure data are scarce. Therefore, conventional
approaches based on large sample data have limited applicability in current reliability
research. The accurate estimation of the reliability index of a product using limited sample
data remains a key challenge in reliability research.

Currently, two main methods exist to address the problem of an insufficient sample
size in reliability assessment. The first approach uses information fusion methods to
fuse multiple sources of a priori information to increase the information available for
assessment, thereby achieving a higher parameter accuracy. The Bayes method is an
example and has been widely used in recent years for parameter estimation with the
Weibull distribution [1–3]. Although it yields accurate estimation results using fewer
samples, it requires a greater amount of a priori information and is affected by subjective
factors. The second approach expands small data samples into large data samples. This
method can also achieve accurate estimation results using fewer samples; however, the
a priori information requirements are higher, and the influence of subjective factors is
non-negligible. The bootstrap method is a typical example of this approach, and it is
favored by scholars due to its simplicity and convenience. However, it completely relies on
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the original samples, and, if these samples are not sufficiently informative, the estimation
results will have a large error. Therefore, several researchers have studied and improved
the bootstrap method, which was originally proposed by Efron [4]. This body of work
can be categorized into advancements in methodological accuracy, application to limited
datasets, and refinements for enhanced sample representation.

Firstly, concerning methodological accuracy, Picheny et al. [5] leveraged the bootstrap
method for reliability estimation and analyzed the relationship between estimation accu-
racy and confidence level. They established that the bootstrap method attains a higher
accuracy at the 95% confidence level. Building on the bootstrap’s foundational use, Amal-
nerkar et al. [6] integrated the bootstrap information criterion with bootstrap resampling to
estimate reliability from limited subsample data, demonstrating the method’s effectiveness
even with small subsamples.

Secondly, addressing the challenges of using the bootstrap method with limited data,
Zhang et al. [7] proposed an improved bootstrap approach that ensures that expanded
samples remain within the mean error of the original samples, thereby maintaining result
reliability without altering the probability distribution. Similarly, Sun et al. [8] developed
an enhanced Bayes bootstrap method that applies an interpolation method to construct a
neighborhood function, facilitating the expansion of the original sample size.

Lastly, on the front of sample representation refinement, Zhao et al. [9] tackled the
issue of large deviations between the empirical distribution function of original samples
and the actual distribution. They employed a B-spline function to derive an empirical
distribution more suited for sampling, which proved to meet the accuracy requirements
of engineering applications. Additionally, Tang et al. [10] introduced a bootstrap data
expansion technique using the radial basis neural network for assessing small-sample
reliability data, validating that the sample distribution characteristics closely mirror the
actual distribution.

The Weibull distribution has been demonstrated to effectively model lifetime distri-
butions in several practical engineering problems based on failure data for mechanical
components, electronic components, and biological tissues. It can also describe different
types of failure rate distributions, ranging from exponential to Rayleigh distributions. Due
to the well-characterized nature of the Weibull distribution, it is widely used and among
the most successful life models [11]. There is an extensive literature on the applications and
analytical methods of Weibull models, such as the recent studies by Thanh Thach et al. [12],
Piña Monarrez et al. [13], and Almarashi et al. [14].

This paper proposes an improved bootstrap method using the radial basis neural
network based on the research by Tang et al. [10]. Particularly, the exponential function
is used to modify the empirical distribution function, and a neighborhood function is
introduced to widen the range of values of the expansion samples. Moreover, the confidence
interval of the parameters of the Weibull life distribution is estimated using the bias
correction method. Finally, the proposed method is validated using failure data obtained
from CNC machine tools.

2. Weibull Distribution

The Weibull distribution is extensively used in the field of reliability engineering. It
applies to several types of atypical electronic products [15] and can adequately describe the
different cases of bathtub curves. Moreover, it can simplify the calculation steps using a
transformed functional form.

Several studies on the Weibull distribution have shown that, if a localized failure
results in the malfunctioning of the entire system, the life of such a system generally obeys
the Weibull distribution.

The probability density function (PDF) of the two-parameter Weibull distribution is
the following:

f (t) =
m
η

(
t
η

)m−1
exp

(
−
(

t
η

)m)
, (1)
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where m is the shape parameter, η is the scale parameter, and t is the time.
The cumulative distribution function is as follows:

F(t) = 1 − exp
(
−
(

t
η

)m)
. (2)

The reliability function is the following:

R(t) = 1 − F(t) = exp
(
−
(

t
η

)m)
. (3)

The lapse rate function is as follows:

λ(t) =
f (t)
R(t)

=
m
η

(
t
η

)m−1
. (4)

The shape parameter m has a strong influence on the Weibull distribution.
Specifically, when m < 1, the density function f (t) and the failure rate function λ(t)

are both decreasing functions, suggesting early failure.
When m = 1, the Weibull distribution is exponential.
Finally, when m > 1, the density function curve has a single peak, and, when m ≥ 3,

the density function curve has a single symmetrical peak, resembling a normal distribution.
The failure rate λ(t) is an increasing function, which suggests wear failure of the product.
The density functional curves for different shape parameters m(n fixed) are shown in
Figure 1.
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3. Bootstrap Methodology and Its Improvement
3.1. Bootstrap Approach

Let X = [x1, x2, . . . , xn] be a set of random variables with a joint distribution Fn. To
estimate the overall parameter θ, it is generally possible to obtain a sample-based estimate
θn. The basic concept underlying the bootstrap method is that, given X, one can construct
an estimate F̂n of Fn and then regenerate a set of random variables X∗ =

[
x∗1 , x∗2 , . . . , x∗n

]
from the distribution F̂n. If F̂n is the best estimate of Fn, then the relationship between X
and Fn is adequately represented by the relationship between X∗ and F̂n, where F̂n is called
the empirical distribution function of the bootstrap method. This step can be repeated
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several times to obtain multiple estimates from the reconstructed data according to an
estimation equation, as that for θn. The metrics for measuring the accuracy of the estimator
can then be obtained (e.g., using the Bayes method). The principle of the bootstrap method
is illustrated in Figure 2. and the procedure is as follows.
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The order statistics of the samples can be obtained by arranging the original samples
X = [x1, x2, ...,xn] in descending order, i.e., x(1), x(2), . . . , x(n), where x(1) = min

1≤i≤n
xi· · · and

x(n) = max
1≤i≤n

xi.

When the parameters of the estimated distribution F̂n are unknown and if the value of
the cumulative distribution function at xi is Fi =

i
n , then the empirical distribution function

of the original sample assuming equal probability sampling is

Fn(x) =


0 x < x(1)
k/n x(k) ≤ x ≤ x(k+1), k = 1, 2, . . . , n − 1
1 x > x(n)

. (5)

The simulation-based method for generating random samples that obey the empirical
distribution function Fn(x) is as follows:

1. Uniformly distributed pseudo-random numbers η in the interval [0, 1] are generated;
2. Let β = (n − 1)η, i = [β] + 1, where [β] is rounded down;

3. Let xF = x(i) + (β − i + 1)
(

x(i+1) − x(i)
)

, where xF is the desired random sample.

A review of existing studies and experimental simulations revealed that the resam-
pling of the data in the bootstrap method relies on the original samples. Therefore, the
random samples generated are typically not representative of the whole population, and
the estimates obtained may be biased. Moreover, the bootstrap method may not be robust
enough in terms of the margins (i.e., extremes) of the data distribution, because the ex-
tremes may be over-represented or under-represented in the generated random samples
generated. The bootstrap method is, therefore, not reasonable when processing small sub-
samples of data. There are two main reasons for this. First, when Fn(x) is used to generate
random samples, the sample values are extracted from the original sample with a medium
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probability to form an expanded sample. The resulting sample’s empirical function Fn(x),
which is used to fit the head and the tail samples, is inadequate. Consequently, the samples
generated according to Fn(x) are not satisfactorily random. Second, because the generated
random samples are limited by the minimum and maximum values [x(1), x(n)] [16] and
the values of random samples can only be extracted from the head and tail samples using
limited subsample data, the bootstrap method is ineffective.

Moreover, as the values of the random samples can only be obtained from the range of
the original samples, the samples are not adequately random [17,18]. Therefore, this paper
aims to address these two problems. For the first problem, the exponential distribution
function is used to perform the correction of the sample’s empirical function, as the life
of electronic products essentially obeys an exponential distribution [19]. For the second
problem, based on the corrected empirical distribution function, the radial basis function
(RBF) neural network is used to fit the original empirical distribution and obtain the
continuous distribution characteristics of the original sample. The input set of the RBF
neural network is then obtained using the neighborhood sampling method to ensure that
the expanded sample is not limited by the original data. Thus, the expanded sample
resembles the actual distribution of the original sample.

3.2. Modified Exponential Sample Empirical Function

For long-life devices such as electronic products, the failure rate rarely increases due
to fatigue or wear and tear. Therefore, the tail of the cumulative distribution function of
failure can be approximated by the exponential function, with a mean equal to the sample
mean [19–21]. In this study, the exponential distribution function is utilized to fit the
samples and correct the empirical distribution function Fn(x). The exponential distribution
function generally has a good fitting property, which can better estimate the unobserved
data points and reduce the influence of random errors on the results. The steps involved
are as follows.

1. A linear empirical distribution function is introduced for each segment before n − u
samples, where n is the total number of samples, and u is the number of tail samples.

2. The samples after n − u are fitted using an exponential distribution with the same
mean as the original sample. Considering integer values below five for u results in a
smaller variance in the right tail fit [22]. The modified empirical distribution function
for the samples is

Fn(x) =


0 x < x(1)
i
n +

x−x(i)
n(x(i+1)−x(i))

x(i) ≤ x ≤ x(i+1)
i = 1, . . . , n − u + 1

1 − u
n exp

(
− x−x(n−u)

θ

)
x(n−u) ≤ x

, (6)

where v = 1
u

[
x(n−u)

2 +
n
∑

i=n−u+1

(
x(i) − x(n−u)

)]
. The simulation-based method for

generating random samples that obey the modified empirical distribution function
Fn(x) involves the following steps:

1. Uniformly distributed pseudo-random numbers γ in the interval [0, 1] are
generated;

2. If η > 1 − u
n , then xF = x(n−u) − v ln

[
(1 − γ) n

u
]

is the desired random number;
otherwise, go to step (3);

3. Let β = (n − 1)γ, and i = [β] + 1; then,

xF = x(i) + (β − i + 1)
(

x(i+1) − x(i)
)

(7)

is the desired random number.
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3.3. Simulation Verification

Let the original sample dataset X = [x1, x2, . . . , x20] be generated using the exponential
distribution with a mean of 100, with a sample capacity of n = 30. The sample dataset is
summarized in Table 1, and its distribution is shown in Figure 3. Sampling is performed
N = 1000 times, and X is expanded into X∗, with a sample capacity of 1000 × 30. The
classical bootstrap method is used to obtain the expanded sample X∗

1 , and the improved
bootstrap method is used to obtain the expanded sample X∗

2 . Their distributions are
shown in Figure 4. The distribution characteristics of X∗ are analyzed, and the results are
as follows.
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Figure 4. Distribution of sample values for expansion. (a) Conventional bootstrap; (b) improved
bootstrap.

Table 1. Generated sample dataset.

Exponential Distribution Sample Dataset E(x) = 100, n = 30

51.67 64.43 85.08 102.42 151.11
52.27 68.97 88.70 113.02 152.14
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Table 1. Cont.

Exponential Distribution Sample Dataset E(x) = 100, n = 30

56.96 74.02 88.88 115.54 159.35
57.38 74.20 91.13 120.89 160.67
61.56 76.24 94.91 131.71 164.48
63.95 77.65 100.55 147.34 166.26

The original samples obey the exponential distribution, and expanded samples are
obtained using the bootstrap method by correcting the empirical distribution function
X∗. Evidently, compared to the conventional bootstrap method, the tails resulting from
the correction of the exponential function have an overall distribution that is more in line
with the characteristics of the original distribution. The range of the augmented samples
generated using the modified bootstrap method increases, which improves the randomness
of the augmented samples (Figure 4).

The distribution of the expanded samples in Figure 4, the parameter distribution of
the expanded samples in Figure 5, and the estimation of the parameter λ in Table 2 show
that the improved bootstrap method overestimates the sample parameter λ. There is an
insignificant difference in terms of the accuracy when compared with the conventional
method. However, the confidence interval generated by the improved method is markedly
narrower compared to that produced by the conventional method, thereby demonstrating
a significant superiority in the estimation of confidence intervals. Therefore, this study
uses the improved bootstrap method in conjunction with the RBF neural network for
sample expansion.
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Table 2. Parameter (λ) estimation table.

Parameter Point Estimate Estimation of Confidence Intervals

Expected Value Estimated Value Error Estimated Value Interval Length

Conventional bootstrap
100.4493

99.7526 0.6967 [99.1357, 100.6059] 1.4702

Improved bootstrap 101.1103 0.6610 [100.8831, 101.3135] 0.4304
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4. Improved Bootstrap Data Expansion Methodology Based on RBF Neural Network
and Reliability Assessment
4.1. RBF Neural Network

The RBF neural network is a three-layer feed-forward neural network in which the
links from the input layer to the hidden layer are typically fixed and not trained. However,
the links from the hidden layer to the output layer are trained. This is a simpler training
process than that of standard neural network models [23].

The structure of the RBF neural network is shown in Figure 6.
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Figure 6. Schematic of the RBF neural network.

In the RBF network structure, the input vector of the network is X = [x1, x2, . . . , xn]
T .

The radial basis vector of the RBF network is H =
[
h1, h2, . . . hj, . . . hm

]T , and the basis

width vector of the hidden nodes of the network is B =
[
b1, b2, . . . bj, . . . , bm

]T . Then, the
Gaussian basis function hj is

hj = exp

(
−
∥X − Cj∥

2b2
j

)
, (j = 1, 2, . . . , m), (8)

where Cj is the center vector of the jth hidden node of the network and is determined using
the k-means training algorithm [24], and bj is the base width parameter of node j.

The output of the RBF neural network y is

y = ω1h1 + ω2h2 + · · ·+ ωmhm, (9)

where W =
[
ω1, ω2, . . . ωj, . . . ωm

]T is the weight vector of the network and is determined
via least squares approximation learning.

4.2. Improved Bootstrap Data Expansion Method Based on RBF Neural Network

The methodology of the bootstrap data expansion method based on the RBF neural
network is depicted in Figure 7.
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Figure 7. Flowchart of the RBF + bootstrap approach.

First, the empirical distribution function expressed in Equation (5) is used to obtain
the original sample dataset X = [x1, x2, ...,xn]. The RBF neural network is trained based on
the original sample dataset X and the set of empirical distribution values F. Notably, the
effectiveness of this method has been demonstrated in [10]. Setting u = 5, the modified
empirical distribution function in Equation (6) is then used to generate a set of empirical
distributions based on the original sample dataset F′ = F′

n(x1), F′
n(x2), . . . , F′

n(xn). As the
RBF neural network produces more reliable outputs for inputs which are close to the
training samples [25], a neighborhood function Ri is introduced based on the input set.
The expanded sample dataset X∗ is then obtained using the input set Sj based on Ri. The
specific implementation steps are as follows.

1. The original samples X = [x1, x2, ...,xn] are sorted in descending order to obtain

the order statistic of the sample X′ =
[

x(1), x(2), . . . , x(n)
]
, where x(1) = min

1≤i≤n
xi, . . .,

x(n) = max
1≤i≤n

xi. Substituting X into Equation (5) yields the set of empirical distribution

values of X, F = [Fn(x1), Fn(x2), . . . , Fn(xn)].
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2. RBF neural network training: The RBF neural network is trained by considering
Fn(xi)(i = 1, 2, . . . , n) as the input and xi as the output of the network oj. The Gaussian
radial basis function is used in the network, as shown in Equation (8).

3. The neighborhood function Ri of the set of X empirical distributions F is intro-
duced. The input set S of the RBF neural network is then obtained, and X is sub-
stituted into Equation (6) to obtain the set of X-corrected empirical distribution val-
ues F′ = F′

n(x1), F′
n(x2), . . . , F′

n(xn). Let fi = F′
n

(
x(i)
)

, and the neighborhood function
Ri be 

R1 =
[

f1 − f2− f1
r , f1 +

f2− f1
r

]
Ri =

[
fi −

fi− fi−1
r , fi +

fi+1− fi
r

]
, i = 2, . . . , n − 1

Rn =
[

fn − fn− fn−1
r , fn +

fn− fn−1
r

] , (10)

where r is the neighborhood parameter (r ≥ 2). The input set S = [s1, s2, . . . sn] of the
RBF neural network is generated sequentially from the uniform distribution of each
neighborhood U[Ri], where sj ∼ U

[
Rj
]
.

4. The input set S is fed into the RBF neural network to obtain the expanded sample X∗.
The elements of S are input into the RBF neural network sequentially. When the input
is sj, the output is

oj = w1 · h1
(
sj
)
+ w2 · h2

(
sj
)
+ . . . + wm · hm

(
sj
)
. (11)

The set X∗ consisting of the RBF neural network outputs oj is the augmented sample
of X.

5. Steps (3) and (4) are repeated N times to obtain the expanded sample X∗(k) =[
x∗k1, x∗k2, . . . , x∗kn

]
, (k = 1, 2, . . . , N) of X.

4.3. Assessment of Reliability Indicators

After obtaining the expanded sample X∗(k) based on the maximum likelihood esti-
mation of the two parameters of the Weibull distribution, the likelihood function Lk for
the shape parameter m and the scale parameter η is calculated according to the PDF in
Equation (1), as follows:

Lk(η̂
∗
k , m̂∗

k ) =
n

∏
i=1

f (x∗ki; η̂∗
k , m̂∗

k ), (12)

where m̂∗
k and η̂∗

k are the shape parameter estimate and scale parameter estimate for the
first k entries of the expanded sample, respectively.

Applying the logarithmic function to Equation (12) yields the log-likelihood function.

l(η̂∗
k , m̂∗

k ) = ln L(η̂∗
k , m̂∗

k ) =
n
∑

i=1
ln f (x∗ki; η̂∗

k , m̂∗
k )

=
n
∑

i=1
ln m̂∗

k − ln η̂∗
k + (m̂∗

k − 1) ln x∗ki − (m̂∗
k − 1) ln η̂∗

k −
(

x∗ki
η̂∗k

)m̂∗
k

(13)

The partial derivatives of the parameters m̂∗
k and η̂∗

k in Equation (13) are equal to 0.
This results in two systems of equations, as follows.

∂l
∂η̂∗k

= − n
η̂∗k

+ m̂∗
k

n
∑

i=1

x∗ki
m̂∗

k

η̂∗k+1
k

= 0

∂l
∂m̂∗

k
= n

m̂∗
k
+

n
∑

i=1
lnx∗ki − n ln η̂∗

k −
n
∑

i=1

(
x∗ki
η̂∗k

)m̂∗
k ln x∗ki = 0

(14)

Solving this system of equations yields m̂∗
k and η̂∗

k . Then, the mean time between
failures (MTBF) is

MTBFk =
∫ ∞

0
t · f (t; η̂∗

k , m̂∗
k )dt. (15)
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Substituting Equation (1) into Equation (15) yields

MTBFk =
∫ ∞

0
t ·

m̂∗
k

η̂∗
k

(
t

η̂∗
k

)m−1
e−(t/η̂∗k )

m̂∗
k dt. (16)

Using variable substitution and the properties of the Gamma function, this integral
can be simplified. The Gamma function is defined as follows:

Γ(n) =
∫ ∞

0
xn−1e−xdx. (17)

Ultimately, the MTBF is

MTBFk = η̂∗
k Γ
(

1 +
1

m̂∗
k

)
. (18)

To ensure the accuracy of interval estimation, the method of bias correction is em-
ployed to estimate the confidence intervals. The center point of the confidence interval is
modified by calculating the deviation between the original and expanded samples.

The normal quantile corresponding to the position of the original sample in the
cumulative distribution function of the expanded sample distribution, z0, is calculated as

z0 = Φ−1

(
1
N

N

∑
k=1

I
(
θ̂∗k < θ̂

))
, (19)

where Φ−1 denotes the inverse function of the cumulative distribution function of the
standard normal distribution, i.e.,

Φ−1 =

(
1√
2π

∫ x

−∞
e−t2/2dt

)−1
; (20)

I denotes the indicator function; N denotes the number of expanded samples;
θ̂ = [η̂, m̂, MTBF] denotes the parameter estimates of the original sample; and θ̂∗k =[
η̂∗

k , m̂∗
k , MTBFk

]
denotes the parameter estimates of the kth expansion sample.

The values of the parameter distributions of the expanded samples may not only be
biased but also asymmetric, meaning that the width of the confidence intervals may need to
be skewed. The acceleration value a is used to modify the shape of the confidence interval
and ensure that it adequately covers the true parameter values. In this study, the jackknife
resampling method [26] is used to estimate the value of a, as follows:

a =

n
∑

i=1

(
θ̂(−i) − θ

)3

6
(

n
∑

i=1

(
θ̂(−i) − θ

)2
)3/2 , (21)

where n is the sample size of the original sample, θ̂(−i) is the parameter estimate of the
jackknife sample after excluding the ith observation, and θ is the average of the parameter
estimates of all the jackknife samples, i.e.,

θ =
1
n

n

∑
i=1

θ̂(−i). (22)

Using the bias correction z0 and the acceleration value a, the upper and lower corrected
quartiles of the confidence interval α1 and α2 are calculated as

α1 = Φ

z0 +
z0 + Φ−1

(a/2)

1 − a
(

z0 + Φ−1
(α/2)

)
α2 = Φ

z0 +
z0 + Φ−1

(1−a/2)

1 − a
(

z0 + Φ−1
(1−α/2)

)
, (23)
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where α is the level of significance and is assumed to be 0.05.
Then, the confidence interval is

CI =
(
percentile

(
θ̂∗, 100a1

)
, percentile

(
θ̂∗, 100a2

))
. (24)

5. Example Analysis

Retrieve the maintenance records for seven CNC machines (designated as K1, K2, . . .,
K7) operating under similar conditions within a single factory, spanning three years, to
acquire 61 instances of failure data for this specific model (Table 3).

Table 3. Equipment failure data.

Number Time between Failures (h)

K1 63.5 215.5 302 639.5 945.5 1264.25

2332.5 2591.5 2894

K2 178 318.08 374.5 645.5 1240.42 1246.58

1337 1419.5 2154

K3 215.3 230.17 837.33 838.67 1017.27 1486

2491.17 2842.33

K4 537.25 862.38 953.67 1027.67 1045.5 1274

1584 2449.25 3062.08

K5 194 271.5 399 913 1040 1873.5

2304.5 3062.5

K6 141.5 239.5 241.83 397.67 454.5 1382.5

2027.5 2312 2591.83

K7 153.5 184 186 409 639 655.5

686 1037 1375

Point and interval estimation of the shape and scale parameters are performed using
the maximum likelihood estimation method, bootstrap method, RBF + bootstrap method,
and modified RBF + bootstrap method.

1. Using the maximum likelihood estimation to estimate the parameters of the Weibull
distribution for the original data yields m̂ = 1.2694 and η̂ = 1204.7, and the reliability
function is as follows:

R(t) = exp

[
−
(

t
1204.7

)1.2694
]

. (25)

Then, MTBF is

MTBF =
∫ ∞

0
R(t)dt =

∫ ∞

0
exp

[
−
(

t
1204.7

)1.2694
]

dt = 1118.20 h. (26)

2. The conventional bootstrap method is used to expand the original data, and sampling
is performed 1000 times, resulting in the expanded samples X∗(k) =

[
x∗k1, x∗k2, . . . , x∗k61

]
,

(k = 1, 2, . . . , 1000). The overall distribution of X∗ is shown in Figure 8a.

Solving Equation (14) yields
[
m̂∗

k , η̂∗
k
]
, k = 1, 2, . . . , 1000, and the average estimate is

the following: 
m∗ = 1

1000

1000
∑

k=1
m̂∗

k = 1.3199

η∗ = 1
1000

1000
∑

k=1
η̂∗

k = 1208.4
(27)
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The parameter distribution obtained by solving Equation (18) for MTBFk is shown in
Figure 8b.

A mean value of MTBFmean = 1114.97 h is obtained, and the 95% confidence interval
of MTBF is (1099.51, 1130.47), using the bias correction method.
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3. The original data are expanded using the conventional bootstrap method and the
improved bootstrap combined with the RBF neural network method. The “newrb”
function in MATLAB (v2018b, MathWorks, Inc., Natick, MA, USA) is used to construct
the RBF radial basis neural network. The network performance targets, expansion con-
stants, and number of neurons, respectively, are set as [goal, spread,maxNeuron] =
[0, 1, 25]. The calculation process is shown in Figure 7, and the results converge to
yield the expanded samples of X, X∗(k) =

[
x∗k1, x∗k2, . . . , x∗k61

]
, and (k = 1, 2, . . . , 1000).

The average estimates of the Weibull parameters obtained using the conventional
bootstrap method + RBF neural network are [mTBR∗, ηTBR∗] = [1.2773, 1206.5], with
MTBFTBR = 1118.32 h. The 95% confidence interval of MTBFTBR is (1114.37, 1121.86),
using the bias correction method. The average estimates of the Weibull param-
eters obtained using the improved bootstrap method + RBF neural network are
[mBR∗, ηBR∗] = [1.2742, 1168.2], with MTBFBR = 1083.41 h. The 95% confidence in-
terval of the MTBFBR obtained using the bias correction method is (1080.13, 1089.15).
The overall distribution of MTBFTBR is shown in Figure 9a, and the parameter distri-
bution of XTBR∗ is shown in Figure 9b. The overall distribution of XBR∗ is shown in
Figure 10a, and the parameter distribution of MTBFBR is shown in Figure 10b.
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The cumulative distribution function (CDF) and probability density function (PDF)
are obtained using Equations (1) and (2), as shown in Figure 11.
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As illustrated in Figure 11, the probability density function (PDF) of the Weibull
life distribution, obtained using the RBF plus the enhanced Bootstrap method, exhibits a
peak value that is comparatively higher than those obtained through other methods. This
observation can be interpreted as follows:

1. A higher peak value indicates that the life data are more concentrated around a specific
time period. This suggests that the majority of components or systems are likely to
fail around this point in time, demonstrating a lower variability in life spans. In other
words, the lifespans of most components are expected to be relatively similar, leading
to reduced uncertainty in life expectancy predictions.

2. Additionally, a higher peak value implies more accurate reliability predictions at this
specific time point. Since failure events are more likely to occur near the peak, this
facilitates more precise planning for maintenance, replacement cycles, and inventory
management.

A comparison of the MTBF estimates obtained from the aforementioned methods
with the manufacturer-rated MTBF = 1000 h and the corresponding errors are presented in
Table 4.
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Table 4. Comparison of reliability assessment results based on MTBF obtained using the different
methods.

Point
Estimates (h)

Rated
Value (h)

Absolute
Error (h)

Relative
Error (%)

Confidence
Interval

Interval
Length

Maximum likelihood method 1118.20

1000

118.20 11.82 \ \
Bootstrap 1114.97 114.97 11.50 (1099.51, 1130.47) 30.96

RBF + conventional bootstrap 1118.32 118.32 11.83 (1114.37, 1121.86) 7.49
RBF +improved bootstrap 1083.41 83.41 8.34 (1080.13, 1089.15) 9.02

As shown in Table 4, the estimated value of the MTBF obtained using the maximum
likelihood estimation method is 1118.20 h, compared with the nominal value of 1000 h,
resulting in a relative error of 11.82%. The relative error of the RBF + conventional bootstrap
method is 11.83%, which is almost equal to that of the maximum likelihood estimation
method, indicating that the expanded samples obtained using the RBF + conventional
bootstrap method are overfitted and not sufficiently random for the bootstrap method.
The analysis results presented in Figures 9a and 10a reveal that correcting the tail of the
empirical distribution function using an exponential distribution attenuates the proportion
of large values and makes the distribution more dispersed, which is consistent with the
actual life distribution of the equipment. In addition, the relative error for MTBF is reduced
to 8.34% from 11.50%, indicating that the proposed data expansion method improves the
conventional bootstrap method.

In this study, the confidence interval estimates for the different methods are obtained
by combining bias correction methods. As shown in Table 4, the bootstrap method com-
bined with the RBF neural network significantly reduces the length of the confidence
intervals and improves the accuracy of the estimates. This demonstrates the effectiveness
of combining RBF neural networks with the bootstrap method.

6. Conclusions

The estimation of equipment MTBF is crucial for reliability assessment and analysis.
However, when the number of samples is limited, relying on traditional parameter esti-
mation methods simulations is inadequate. Moreover, conventional parameter estimation
methods such as maximum likelihood estimation typically fail to estimate the confidence
intervals of the parameters.

This paper proposes the use of the bootstrap method for data expansion and reliability
assessment. An exponential distribution is utilized to fit right-tailed data and modify
the empirical distribution function. The simulation results indicate that the range of the
expanded samples generated via the modified bootstrap method increases. The randomness
of the expanded samples also increases, and the accuracy of interval estimation improves. In
addition, a novel data expansion method is proposed by combining the modified bootstrap
method with the RBF neural network. The bias correction method is then used to estimate
confidence intervals for the expanded data and improve the estimation accuracy. Through
our analysis of the results, this paper proposes that the method of tail data correction
using an exponential function effectively enhances the original failure data by moderately
incorporating additional information on the product’s reliability characteristics, based on
its failure properties. This approach optimizes the raw data. Furthermore, employing the
radial basis function (RBF) neural network essentially achieves a better fit of the failure
data, thereby improving the accuracy of parameter estimation.

Finally, the proposed method is employed for the reliability assessment of a CNC
machine tool. The shape and scale parameters of the corresponding Weibull distribution
are estimated to determine the MTBF of the equipment. Simulation experiments show that
the proposed method offers a greater improvement in the accuracy of point estimation
and interval estimation than the original bootstrap and conventional parameter estimation
methods. Therefore, this method has excellent applicability in engineering practice. Despite
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our research’s contributions, our work is not without limitations. The collection of CNC
failure data presents significant challenges, notably due to the scarcity of available data.
We compiled data from seven machines operating under ostensibly similar conditions,
operating on the assumption that these conditions were identical. However, in reality,
variances in operating conditions do exist. Addressing how to effectively integrate data
across varying conditions represents a key area for our future investigations.
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