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Abstract: Conventional beamforming methods for reconfigurable reflector antennas assume full
control over the amplitude and phase of the reflected field. Here, we develop a novel beamforming
methodology for reflecting Programmable Metasurfaces (PMS) with capacitive memory. Although
utilizing such fully reactive PMS simplifies antenna design and reduces energy consumption, the
PMS reflection magnitude is unity and thus a global optimization of the reflection phases over the
PMS unit cells is required in each beamforming scenario. We propose an implementation of such an
optimization method rooted in the traditional Fourier transform-based beamforming and evaluate its
performance. Additionally, we show that a pair of trained feed-forward neural networks (FFNN)
with one input, one hidden, and one output layer can replace time-consuming global optimizations
in the case of a PMS comprising 3 × 10 unit cells. We train the FFNNs on a dataset obtained
for typical single- and dual-beam beamforming scenarios. After training, the FFNNs perform
requested beamforming tasks within a fraction of second and with about the same accuracy as the
original optimization algorithm. The proposed methodology may find applications in future mobile
telecommunication systems that require real-time beamforming on low-end hardware. The same
beamforming methodology can be also employed in short-range wireless power transfer systems.

Keywords: metasurface; Fourier transform-based beamforming; optimization; neural networks

1. Introduction

Antennas and telecommunication systems play a critical role in present-day societies.
Nowadays, mobile wireless communication and data access networks are available practi-
cally everywhere around the globe. Rapid worldwide development in wireless systems
has promoted a transition from the older generations to 4G+ and 5G networks. Currently,
sixth-generation (6G) systems are under development to guarantee the high-speed, high-
capacity, and high-quality communications dictated by the social and industrial demands
of the new millennium.

Nevertheless, even with the available advanced telecommunication technologies,
wireless communications continue to suffer from disturbances caused by attenuation,
scattering, and diffraction of electromagnetic (EM) waves. Such unwanted phenomena
occur on the signal propagation path from a transmitter (TX) to a receiver (RX). From
this point of view, it is clear that achieving maximal the signal-to-noise ratio (SNR) in the
propagation path between the communicating devices is essential. One of the possible
methods to increase the SNR is to decrease the path loss between the TX and the RX by
proactively optimizing multipath wave propagation scenarios in a dynamic environment.
In particular, smart beamforming is a promising solution to guarantee wireless connectivity
between the TX and RX in complex environments and achieve the best SNR.

Beamforming can be achieved with antenna systems comprising various configura-
tions. In present-day Base Transceiver Station (BTS) systems, as well as in mobile devices,
there is a tendency to employ Multiple-Input Multiple-Output (MIMO) antennas to achieve
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channel diversity [1–6]. Usually, elementary antennas in such MIMO systems (or antenna
arrays) can be realized with inexpensive Printed Circuit Board (PCB)-based techniques
(e.g., microstrip or coplanar) and can be used for transmitting and receiving all kinds of
information [7–14].

Several methods exist to create and steer antenna array beams, ranging from the clas-
sical Butler matrix approach to the actively developed smart and reconfigurable antenna
concepts. In 1961, Butler and Lowe proposed their methodology for passive beamform-
ing [15,16]; this was a development of an earlier work by Blass [17]. Butler matrices
are commonly used for feeding various antenna arrays with wide angular coverage [18].
A typical system may comprise an N × N matrix of fixed-value phase shifters and hybrid
couplers, where N is a power of 2. An antenna array equipped with such a matrix may
have N input ports (the beam ports) to which power is applied and N output ports (the
element ports) to which N antennas are connected. The Butler matrix provides power to the
elements with a progressive phase difference between the elements such that the antenna
main beam points in a selected direction. The beam direction is controlled by switching the
input power between the beam ports. More than one beam or even all N of them can be
activated simultaneously.

Since Butler’s matrix can be realized with microstrip lines, it is a cost-effective solution
for achieving directional beam control without the need to deploy an array of expensive
active phase shifters. Hence, its fabrication cost can be just a small fraction of the cost of
a full-fledged antenna array feeding network. However, its relative hardware simplicity
comes at the cost of having to deal with a bulky structure and a fixed set of predefined
beam directions. Indeed, Figure 1 depicts a Butler matrix-based beamforming system [18]
comprising eight input ports and eight antenna ports. This system is able to produce up
to eight fixed beams with inclinations in the range of about ±55◦. Per antenna element,
this design requires one input feed, one phase shifter, and one and a half hybrid couplers.
In typical designs, the 90-degree hybrid couplers are formed by four segments of quarter-
wavelength microstrip lines. Therefore, at the operating frequency of 5 GHz, each coupler
may occupy an area of about 1 cm2. Moreover, additional phase compensation lines are
required to obtain the necessary phase shifts within the Butler matrix [18]. Thus, integrating
the Butler network on the same PCB with antenna array elements may impose limits on
the element placement density, especially when the number of input ports approaches the
number of elements.
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Figure 1. Schematic of an 8 × 8 Butler matrix comprising 8 phase shifters and 12 hybrid couplers [18].
The eight input ports are denoted as 1L–4L and 1R–4R. The eight output ports are marked as 1–8.

On the other hand, among the more expensive actively controlled antenna systems,
there are electronically/digitally controlled phased array antennas of various kinds, which
can be assembled in linear, planar, or conformal configurations [19–23]. Such antennas can
provide flexible electronic beam steering in less than milliseconds, eliminating any need
for mechanical steering. They may produce multiple beams simultaneously and perform
multifunction operations with independent beam control. Unlike passive phased array
antennas, the active ones can also simultaneously emit and receive multiple radio signals
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at multiple frequencies in different directions, which is used for surveillance and tracking
in radar applications. Although highly reconfigurable, these devices may also suffer from
drawbacks such as limited coverage in both the azimuth and elevation planes (with a linear
array, beam deflection is only possible in a single plane). Moreover, active phased array
networks are very complex and require elements with sophisticated electronic controls that
are available at a high cost, although their frequency agility can be limited [24–26].

During the last decade, an alternative concept that combines the advantages of the pas-
sive systems (e.g., low energy consumption and cost) and the active systems (e.g., flexible
reconfigurability) has emerged: the concept of Programmable Metasurfaces (PMS) [27–29].
In recent years, PMS have been under active investigation. In particular, it has been demon-
strated that PMS or Reflecting Intelligent Surfaces (RIS) can be used to adjust channel
propagation conditions [30,31]. In PMS-enhanced systems, the TX and RX antenna ra-
diation patterns can be dynamically controlled to facilitate wireless communications in
varying propagation environments.

Indeed, it is known that microwave or optical metasurfaces (MS) can alter the propa-
gation direction of the EM waves by creating phase gradients along their surface [32,33].
In particular, the PMS may act as mirrors in reconfigurable reflector antennas. In such
antennas, versatile beamforming can be achieved by controlling both the phase and ampli-
tude of wavefronts reflected from an MS [34–37]. However, in order to freely control the
reflection amplitude at MS unit cells, active components (such as amplifiers or impedance
inverters, etc.) may be needed. In this case, the effective surface impedance of the MS
becomes complex. The sign of the real part of the surface impedance determines if there is
attenuation or amplification of the signal locally reflected at that point. On the other hand,
if the reflection amplitude control is not required, then the MS can be completely passive
(reactive). Some form of amplitude control can be achieved even in purely reactive MS,
e.g., by an approach that one may call “surface mode engineering”, when the surface mode
resonances supported by the MS are tuned in a way to redistribute the reactive power
(i.e., power of local oscillations) along the MS.

When comparing the PMS-based systems with the Butler matrix-based ones, one may
notice that, per unit cell, the PMS-based systems typically need just a few Surface-Mounted
(SMT) components with dimensions on the order of 1 mm or less, whilst Butler matrices
require a network of hybrid couplers and phase shifters realized with microstrip lines
whose dimensions are mandated by the operation wavelength and the power handling
requirements. Therefore, in PMS-based systems, the unit cell size is not as restricted
by the size of the auxiliary (i.e., control) components. At microwave frequencies, this
enables realizations with unit cell dimensions significantly smaller than the wavelength
(e.g., from 1/10 to 1/5 of the wavelength). Having smaller unit cells is important in complex
beamforming scenarios as it improves accuracy of the aperture field representation.

For example, a single-layer passive MS is proposed in [38,39] to control the phase and
amplitude of the EM field in an antenna aperture plane. The MS is intended to transform a
cylindrical incident wave into a directive far-field pattern with the main beam inclined by
30◦ with respect to the MS normal. A fully reactive MS has been attained by applying an
optimization algorithm to generate the desired near and far fields. In their method, the MS
surface impedance as a function of location is initially obtained from the desired aperture
field distribution. However, the impedance found in this way is complex with the real part
changing sign at different locations on the MS. Next, the real part is made negligible by
applying a global optimization to the surface impedance distribution with a goal to obtain
a merely reactive MS, while keeping the same far-field radiation pattern. In a nutshell, such
optimization adjusts the MS surface reactance at different locations in order to generate a
proper evanescent wave spectrum near the MS and maintain the surface waves needed to
redistribute the reactive power on the MS and produce the desired far-field pattern.

Metaheuristic optimization and Artificial Intelligence (AI) algorithms such as Parti-
cle Swarm Optimization (PSO), Genetic Algorithms (GA), and various Artificial Neural
Network (ANN) algorithms have been employed in the design of metasurfaces for various
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applications [40–42]. In particular, Machine Learning (ML) and ANN approaches have
gained massive attention in recent years. Indeed, ML concepts have already helped to solve
many practical problems and demonstrated promising results in optimization, identifica-
tion, and prediction problems in systems that exhibit nonlinear, dynamic, and complex
behaviors. We believe that Feed-Forward Neural Networks (FFNN) can open new research
venues in beamforming and highly efficient wave manipulation [42–44], because FFNN are
able to model complex nonlinear systems with only a limited set of input parameters after
suitable training is performed.

In this article, we supersede the traditional Fourier transform-based (FT-based) beam-
forming methods that rely on the well-known link between the far-field pattern and the
antenna aperture field by proposing a Fourier transform-based beamforming enhanced
with a pretrained FFNN. Indeed, in many works on reconfigurable beamforming MS, it
is assumed that the required phase distribution on the MS aperture is determined by the
Fourier transform of the far-field radiation pattern. However, additional steps are necessary
in order to increase beamforming accuracy. Preliminary concepts of how FFNN could be
used to implement these steps were introduced in [45,46].

As was discussed earlier, although simultaneous amplitude and phase control of the
aperture field is, in principle, possible with active PMS, it leads to increased complexity
and fabrication costs. As a measure of complexity, one can use the number of controllable
elements and other electronic components per unit cell in a given design. For example,
the RIS described in [47] uses only two pin diodes per unit cell to adjust the reflection
phase. However, it requires complicated electronics with many digital Integrated Circuits
(ICs) to realize reconfigurability. As is seen in Figure 3 from [47], the number of ICs
at the back side of the RIS is greater than the number of unit cells. As was reported
in [47], the fabricated 10 × 10 cm2 RIS sample consumed 8 W of dc power. In [48], which
describes a non-reciprocal transmitting PMS (“meta-prism”), each unit cell comprises two
antenna elements on the opposite sides of the PMS, two variable gain amplifiers, and an
electronically tunable phase shifter. Although such a “meta-prism” allows for independent
control of the signal amplitude and phase, such functionality was achieved with the cost of
increased complexity.

Conventional beamforming methods assume full control over the amplitude and
phase distributions over the antenna aperture. On the other hand, our fully reactive PMS
design [28,46] achieves full 360◦ reflection phase control, albeit with a fixed reflection mag-
nitude. On the hardware level, this allows us to eliminate active components and reduce
the PMS cost and complexity; however, it complicates the relation between the desired
radiation pattern and the aperture phase distribution. Therefore, in the beamforming
methodology that is developed next, we apply optimization methods (e.g., Nelder–Mead,
PSO, pattern search [49–51]) to fine-tune the initial Fourier transform-based aperture phases
and attain the desired far-field pattern.

With the optimization framework developed in this paper, we define and minimize
a constrained nonlinear multivariable cost function that encodes the desired multi-beam
radiation pattern. The required aperture phase distribution is obtained iteratively after
many rounds of cost function minimization steps. Finally, we apply AI methods such as
trained ANN to sidestep the time-consuming numerical optimization techniques and pave
the way to real-time beamforming on inexpensive hardware. Figure 2 shows a conceptual
diagram of our methodology. Here, we use FFNN to predict phase distributions and
control voltages for an electronically controlled PMS that we have designed earlier [28,29].
Two different types of ANN are proposed based on the FFNN model. The first trained
ANN, Beamforming Neural Network (BFNN), relates the desired main beam characteristics
to the required phase distribution over the MS. Consequently, the second ANN formed
by Controlling Neural Network (CTRLNN) blocks, relates the phase distribution to the
necessary control voltages applied to the cells of the MS. We train the FFNN on a dataset
obtained for typical beamforming scenarios by using the optimization methodology out-
lined above. After training, the FFNN is able to perform beamforming tasks with about the
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same accuracy as the original optimization algorithm. Because trained ANNs can produce
results in a much shorter time [40] compared to time-consuming global optimizations, this
approach is beneficial for real-time beamforming.

Reflection Phase 

Distribution

Numerical OptimizationDFT of

Project Pattern

Real-Time

Beamforming
FFNN Training

Beamforming

PMS

Desired Radiation 

Pattern

π

0

−π

Figure 2. Conceptual diagram of numerically optimized FT-based beamforming accelerated by FFNN.

2. FT-Based Beamforming Methodology for Reflecting PMS

We consider a PMS-based beamforming antenna with separately controllable N × M
reflecting elements, which are the unit cells of the PMS. Here, N and M are the numbers
of rows and columns of the PMS elements, respectively. Moreover, we suppose that the
antenna operates at either f1 = 5 GHz or f2 = 10 GHz. These two frequencies will be used
to conduct simulations and numerical studies of the proposed PMS and the beamforming
methodology. The period of the PMS structure, which is also the distance between the
element centers along x and y directions, is d = 6.8 mm, which is about λ1/9 = λ2/4.5,
where λ1 and λ2 are the free-space wavelengths at the two considered frequencies. A feed
antenna with low directivity illuminates the PMS, Figure 3a, and the far-field radiation
pattern is formed after the PMS reflects the illuminating field, Figure 3b. In Figure 3a,
R f is the distance from the feed antenna to the PMS plane (the focal distance) and Rmn
(denoted as R(m, n) in the figure) is the radial distance from the same antenna to the
(m, n)-th element of the PMS, Equation (1):

Rmn =

√
R2

f +

((
m − M−1

2

)2
+
(

n − N−1
2

)2
)

d2. (1)

(a) (b)

Figure 3. Reconfigurable MS-based reflect array antenna. (a) Illuminating a reconfigurable MS-based
reflect array antenna by a source antenna. (b) Reflected beam at the prescribed direction produced by
a reconfigurable MS-based reflect array antenna.

Radiation patterns are typically expressed in the spherical coordinate system. How-
ever, for us it will be more convenient to specify the antenna patterns in the (u, v)-space
with the orthogonal coordinates u and v that are related to the spherical angles θ and φ
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as follows: u = k0d sin θ cos φ, v = k0d sin θ sin φ, where k0 is the free-space wavenumber,
which equals either 2π/λ1 or 2π/λ2, according to the selected operating wavelength.

It makes sense to consider a set of aperture patterns, Fa(u, v), represented by superpo-
sitions of sinc -like terms, where sinc x = sin πx

πx , Equation (2),

Fa(u, v) =
L

∑
i=1

ai sinc
sx(u − u0,i)

2π
sinc

sy(v − v0,i)

2π
, (2)

as these are good approximations for the elementary patterns of a rectangular aperture
of sxd by syd size. Here, sx and sy are aperture dimensions (along the x- and y-axes)
normalized to the PMS period d. In this study, sx = M and sy = N. Increasing or decreasing
the aperture sizes makes the beams narrower or wider, respectively. The amplitude factors
ai are set to unity in this study for simplicity. However, as is explained in Section 3.2, each
beam can have a separate scale factor assigned to it during the aperture phase optimization
process. Physically, Fa(u, v) represents an approximation of the radiation pattern of a dense
array of isotropic emitters. The pattern has L main beams pointing at the directions in the
(u, v)-space defined by vectors (u0,i, v0,i) = (k0d sin θi cos φi, k0d sin θi sin φi), where θi and
φi are the spherical angles corresponding to the i-th beam direction.

Due to vectorial nature of the EM fields, the radiation pattern of a reflecting PMS
must include a correction that takes into account the direction of the surface electric
currents induced on the PMS. This is determined by the incident electric field polarization
produced by the feed antenna. In what follows, we assume that the incident electric field
is linearly polarized along the x-axis, and, therefore, the induced currents on the PMS are
also dominantly x-polarized. It can be shown that in this case we must define a set of
polarization-corrected project patterns, F(u, v), as

F(u, v) =

√
1 −

(
u

k0d

)2
Fa(u, v). (3)

Note that by using the terminology of phased array antennas, Fa(u, v) can be regarded
as the array factor and the square root term in front of it can be regarded as the radiation
pattern of a single element of the array.

Instead of using F(u, v) as a continuous function of two variables, let us take discrete
samples of it, Fkl , obtained as follows:

Fkl = F

(
2π(k − M−1

2 )

M − 1
,

2π(l − N−1
2 )

N − 1

)
. (4)

Here, the indices k ∈ [0; M − 1] and l ∈ [0; N − 1] label the (k, l)-th sample of the
radiation pattern in the (u, v)-space. Consequently, the necessary amplitude and phase
distribution on the PMS aperture can be found by applying a discrete Fourier transform
to the discretized project pattern, since, as is well known, the far-field radiation pattern
of a rectangular aperture in such coordinates is equivalent to the Fourier transform of the
aperture wave field. As was mentioned in the introduction, we neglect the amplitude of
the Fourier-transformed pattern and just consider its phase.

In addition to the aperture phase distribution dictated by the Fourier-transformed
project pattern, in order to find the actual aperture field phase, Φmn, at a given PMS element,
we must compensate for the varying delay acquired by the incident field when propagating
from the feed antenna to the given element. Hence, by using the two-dimensional discrete
Fourier transform, the aperture phase can be expressed as in Equation (5):

Φmn = k0Rmn +∠
M−1

∑
k=0

N−1

∑
l=0

Fkle
−2πi

(
(m− M−1

2 )(k− M−1
2 )

M +
(n− N−1

2 )(l− N−1
2 )

N

)
, (5)
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where we have used the notation ∠z ≡ arg z. Next, the phase Φmn is used to obtain
the complex phasor Ωmn = amneiΦmn , with the amplitude factor amn set to unity for all
unit cells.

Finally, the actual far-field electric field pattern (here we are interested in unnormalized
magnitude pattern) produced by the PMS is expressed as follows:

|E(u, v)| ∝

√
1 −

(
u

k0d

)2 M−1

∑
m=0

N−1

∑
n=0

Ωmnei(m− M−1
2 )u+i(n− N−1

2 )v−ik0Rmn

Rmn
. (6)

This expression includes the spherical wave amplitude factor 1/Rmn to account for
the incident field propagation decay.

When the actual pattern given by Equation (6) is compared with the project pattern,
Equation (3), we have noticed that, despite fixing the magnitude to unity and keeping
only the aperture phase information, the project pattern is accurately regenerated with
acceptable sidelobe levels for some single-beam cases. However, in many other cases, the
reconstructed pattern has multiple sidelobes with unacceptably high levels. Moreover, a
shift may occur in the direction of the main beam.

For instance, the project pattern and the reconstructed electric field pattern in the
(u, v)-space created by a 10 × 3 PMS with 50 cm focal distance that operates at 5 GHz and
produces a single-beam directed at (u0,1, v0,1) = (−0.47,−0.41) are depicted in Figure 4a,b.
In these figures, the green circle represents the beam visibility range

√
u2 + v2 ≤ k0d.

The red oval depicts the protected area range, the meaning of which will be explained
in Section 3.1. One can see that in this case the reconstructed main beam is wider than
the project pattern main beam. In addition, the main beam is displaced from the original
position and there are strong secondary maxima outside the visibility range.

The situation becomes more complex for multi-beam radiation patterns, in which the
direction shift and the sidelobe levels may become even larger. For example, the project pattern
and the reconstructed electric field pattern created by the same PMS operating at 10 GHz
with two main beams directed at (u0,1, v0,1) = (0.51, 0.51) and (u0,2, v0,2) = (−0.51,−0.51)
are shown in Figure 4c,d. These figures demonstrate that the two main beams in the
reconstructed pattern merge under these conditions. This is even better seen in Figure 5a,b,
which depict the patterns as surfaces in the real three-dimensional (3D) space (x, y, z). In
this representation, which is limited to the visible range only, the far-field magnitude in
a given direction in the 3D space is proportional to the distance from the origin to the
corresponding point on the plot surface.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Normalized project pattern and reconstructed electric field pattern for the single-beam
(a,b) and the dual-beam (c,d) cases in the (u, v)-space, as produced by a 10 × 3 PMS. (a) Normalized
project pattern at 5 GHz, single-beam at (θ01 , φ01 ) = (60.2◦, 221.1◦). (b) Normalized reconstructed
electric field pattern at 5 GHz, with (θ01 , φ01 ) = (60.2◦, 221.1◦). (c) Normalized project pattern at
10 GHz, dual-beam at (θ01 , φ01 ) = (30◦, 45◦) and (θ02 , φ02 ) = (30◦, 225◦). (d) Normalized recon-
structed electric field pattern at 10 GHz, with (θ01 , φ01 ) = (30◦, 45◦) and (θ02 , φ02 ) = (30◦, 225◦).

(a) (b)

Figure 5. Normalized project pattern and reconstructed electric field pattern at 10 GHz for the
dual-beam case in the spherical coordinates, as generated by a 10 × 3 PMS. (a) Normalized project
pattern, (θ01 , φ01 ) = (30◦, 45◦) and (θ02 , φ02 ) = (30◦, 225◦). (b) Normalized reconstructed electric
field pattern, (θ01 , φ01 ) = (30◦, 45◦) and (θ02 , φ02 ) = (30◦, 225◦).

Consequently, we may conclude that using the FT-based beamforming alone may
lead to large inaccuracies in the reproduced radiation patterns. Therefore, applying an
optimization to the Fourier transform-based initial phases is necessary in order to suppress
unwanted sidelobes and achieve a reasonable accuracy. However, we have to note here
that involving optimization algorithms is time-consuming, which in many cases forbids
real-time beamforming, especially on inexpensive hardware. Therefore, in Section 5 we will
discuss how the optimized phase data can be used to train an ANN and how the trained
ANN can be utilized to achieve beamforming in real time.

3. Algorithms for Phase Distribution Optimization

As mentioned above, the sidelobe levels increase when considering the phase in-
formation and neglecting the magnitude information on the PMS aperture. Indeed, the
considered PMS only controls the phase of the reflected field and the magnitude infor-
mation of the aperture field is lost. Therefore, the bare FT-based beamforming method
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needs to be complemented by a numerical optimization step that adjusts the aperture phase
distribution in order to overcome this shortcoming.

3.1. Clustering of (u, v)-Space during Optimization

To produce an efficient algorithm for optimization of the phase distribution, one should
create a suitable cost function related to the reconstructed electric field pattern. Then, the
desired pattern characteristics can be improved by manipulating the phase distribution
over the PMS aperture. In particular, the cost function should be defined in such a way that
the optimization leads to an increase in the main beam’s amplitude and suppression of the
sidelobes. For this goal, the whole area in (u, v)-space is clustered into three sections, as
explained next.

According to the operating frequency and the PMS physical size, there are regions
of the (u, v)-space that correspond to the propagating waves, for which the normalized
propagation constant kzd ≡

√
(k0d)2 − u2 − v2 is purely real, and to the evanescent waves

with imaginary propagation constant along the z-axis. We call the region that corresponds
to the evanescent waves the Invisible Area (IA). This region does not affect the main lobe
or the sidelobes located in the physical region of propagating waves.

Correspondingly, the Visible Area (VA) corresponds to the part of the (u, v)-space that
is characterized with the real-valued propagation constants, and any changes to the phase
distribution that affect this area will affect the main lobe and the sidelobes. It is evident
from the above that the VA is a disk centered at the point (0, 0) in the (u, v)-space with the
radius equal to k0d.

The third cluster that we consider is formed by the oval-shaped Protected Areas (PAs)
defined around the main beams. The primary purpose of specifying PAs is to avoid a
decrease in the main beam magnitude during the optimization process due to the phase
distribution manipulation over the MS. The centers of the PAs are positioned at the locations
of the main beams, (u0,i, v0,i), in the (u, v)-space. In some situations, PAs intersect with the
IA, which depends on the beams’ direction/location and the selected PAs radii. However,
locating these areas inside the visible area is more beneficial and helps to obtain the highest
possible PMS performance.

The radii of the PAs are determined by solving Equations (7) and (8) and multiplying
the results by 2π/sx and 2π/sy, respectively:

sinc (u) = 1/p ⇒ root u′ > 0
scaling−−−→ u′′ =

2πu′

sx
, (7)

sinc (v) = 1/q ⇒ root v′ > 0
scaling−−−→ v′′ =

2πv′

sy
. (8)

Therefore, each PA corresponds to the interior part of an ellipse as given by

(u − u0,i)
2

u′′2 +
(v − v0,i)

2

v′′2
= 1.

Increasing or decreasing the values of the parameters 1 < p ≤ 4, 1 < q ≤ 4 increases or
decreases the radii of PAs. Therefore, to cover at least the Half-Power Beam Width (HPBW)
of the main beams, the values of p and q should be adjusted considering the operating
frequency, the number of MS elements, etc.

Consequently, every point (u, v) that satisfies the following inequality [Equation (9)]
belongs to the corresponding PA:

PAi : ∀(u, v),
(u − u0,i)

2

u′′2 +
(v − v0,i)

2

v′′2
− 1 < 0. (9)
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3.2. Definition of Cost Function and Sampling Method

The optimization process strongly depends on the selection of the cost function ex-
pressed in terms of the electric field radiation pattern, |E(u, v)|. Due to the aforementioned
reasons, the cost function should include two terms to divide the radiation pattern domain
into two regions. The first term should cover the PAs. The second term covers the domains
that do not fit into PAs, i.e., the Unprotected Area (UA). Therefore, the cost function Ψ can
be defined as follows:

Ψ = C1ΨPA + C2ΨUA. (10)

The optimization goal should be defined so as to minimize the cost function and
acquire the desired pattern. Reaching this goal depends on the coefficients C1 > 0 and
C2 > 0 in Equation (10), which are weights that specify the importance of each region and
its influence on the cost function.

In a practical realization of the optimization algorithm, samples are taken from the
electric field pattern to find the radiated power magnitude at every point in the (u, v)-space.
The cost function values for each area are calculated using the acquired power samples, as
in Equations (11) and (12):

ΨUA =
p

∑
k=1

|E(uk, vk)|2, (11)

where k and p are the index and the number of sample points outside the PA, respectively.
Here, |E(uk, vk)| is the PMS-generated far-zone electric field taken at the k-th sample point
outside the PA [Equation (6)]. On the other hand, within the PA,

ΨPA =
L

∑
i=1

q

∑
j=1

∣∣∣|E(uij, vij)| − αiβ|F(uij, vij)|
∣∣∣t, (12)

where the index i iterates over L main beams and j and q are the index and the number of
sample points inside the i-th protected area, respectively. Here, |E(uij, vij)| is the far-zone
electric field updated at every cost function evaluation, and |F(uij, vij)| is the magnitude
of the project pattern defined by Equation (3). Both quantities are evaluated at the points
(uij, vij) inside the i-th protected area. In total, p + L × q points are sampled to evaluate
the final cost function, Equation (10). In Figure 6, examples of the sampling of |E(u, v)| are
shown for a couple of considered scenarios.

(a) (b)

Figure 6. Sampling of the reconstructed electric field pattern for the single-beam and dual-beam
cases corresponding to a 10 × 3 PMS. The green circles delineate the VAs and the red ovals mark
the PAs. The background colors represent |E(u, v)| values before optimization. (a) Single-beam
scenario for (θ01 , φ01 ) = (60.2◦, 221.1◦). (b) Dual-beam scenario for (θ01 , φ01 ) = (60.2◦, 45◦) and
(θ02 , φ02 ) = (30◦, 225◦).
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Furthermore, in Equation (12), αi > 0 is a controlling factor that can manipulate the
magnitude of a specific main beam in multi-beam scenarios and serve as a scale factor per
each beam. Additionally, the quantity β > 0 must be selected properly to adjust for the
difference in scales of the values given by Equations (3) and (6). The gain in the main beams
should increase after applying phase distribution optimization due to the law of energy
conservation because such optimization leads to a decrease in the overall sidelobe level.
This allows the algorithm to properly suppress the sidelobes and increase the main beams’
gain at the same time. Finally, the exponent t > 0 can be used to adjust the convergence
rate of the optimization algorithm.

3.3. Applying Filtering on Protected Areas

As mentioned before, the (u, v) domain is split into two main areas: VA and IA, as
mandated by the PMS structure dimensions and operating frequency. The regions inside
the IA have no immediate effect on the main beams. In contrast, the VA region has a
pronounced effect and is subdivided further into the protected and unprotected areas (PAs
and UA). One may argue that the significance of points inside PAs decreases when moving
away from the PAs centers. To account for this, one can apply a Gaussian filter centered at
(u0,i, v0,i) with the magnitude of unity and the standard deviation σ = k0d. Thus, the main
beams can be multiplied by such filter, Equation (13), before constructing the cost function
to speed up the optimization process:

Gi(u, v) = e−
(u−u0,i)

2+(v−v0,i)
2

2σ2 . (13)

where i denotes the beam index. When using such Gaussian filtering, a common multiplier
Gi(uij, vij) is included into Equation (12) under the double summation sign.

3.4. Evaluating Optimization Methods

In this section, we discuss how optimization algorithms could be implemented in
order to decrease the sidelobe levels in a beamforming system equipped with the reflect-
ing PMS introduced previously. For this purpose, several optimization algorithms have
been employed to conduct simulations and control the phase distribution over the MS to
diminish the sidelobe levels. By decreasing sidelobe levels, the gain of the main beams
should increase due to the law of energy conservation. Optimization algorithms such as
Nelder–Mead, PSO, as well as other methods to a find a minimum of (possibly constrained)
nonlinear multivariable function (e.g., patternsearch, fmincon from MATLAB) have
been tested.

We have discovered that straightforward algorithms such as Nelder–Mead could not
converge to a stable value of the cost function, and the generated results oscillated around
the initial values. In contrast, the PSO algorithm produced better results when starting
optimization process with the initial phase distribution obtained by the Fourier transform
method. We observed that in most cases this algorithm gradually converges to a stable
minimal value of the cost function.

We have observed that optimization using a pattern search algorithm patternsearch
also converged, but rather slowly. Finally, an optimization method that searches for
a minimum of a constrained nonlinear multivariable function, fmincon, was selected
as producing the most reliable results. By default, this optimization method uses an
interior-point algorithm to reduce the cost function. The employed algorithm converges
to the final result faster than other tested algorithms when starting from the initial phase
distributions obtained from the Fourier transform. Moreover, this method has the ability to
be combined with other optimization algorithms to obtain even faster convergence. Some
results illustrating the convergence rate and the achievable minimal cost function value are
presented in Figure 7.
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Figure 7. Evaluation of optimization process performance for single-beam and dual-beam patterns
generated by a 10 × 3 PMS. The plots show evolution of the cost function values, step size, and
optimality vs. number of iterations. (a) Single-beam scenario. (b) Dual-beam scenario.

4. Optimization Results for Single-Beam and Dual-Beam Cases

To suppress sidelobes and adjust the main beams to realize the target pattern with
a higher accuracy, an optimization algorithm, fmincom, which finds a minimum of con-
strained nonlinear multivariable function, was employed. When evaluating the cost func-
tion from Section 3.2, the parameters C1, C2, and t were set to 10, 1, and 1.3, respectively, in
order to increase the convergence rate and enhance the optimization results. These values
have been obtained by a “trial and error” method by running several test optimizations
and evaluating their outputs.

The coefficients αi have been set to 1/ max |F(u, v)|PA within each PA, since our objec-
tive is to recover all beams with the same magnitude. The coefficient β was determined
based on the estimated attainable maximum of |E(u, v)| within the VA: β ≈ max |E(u, v)|VA.
This value can be determined only after a few trial optimizations. As an initial guess, one
can use the value obtained with unoptimized electric field pattern. The optimal value of β
is larger than that. In some cases that we have considered, the optimal value was found to
be about five times greater than the initial guess value.

To test the proposed optimization approach, we have performed a number of numeri-
cal simulations. In Figure 8, we show a couple of example phase distributions over the PMS
before and after applying the optimization process for single- and dual-beam scenarios for
a PMS composed of 10 × 3 unit cells. Despite the fact that the initial phase distributions
[Figure 8a,c] show irregular patterns, the optimization process recovers the expected phase
gradients over the PMS surface in the two considered scenarios [Figure 8b,d].

(a) (b)

(c) (d)

Figure 8. Phase distributions over a 10 × 3 PMS in the single-beam and dual-beam scenarios.
(a) Single-beam scenario before applying optimization. (b) Single-beam scenario after applying
optimization. (c) Dual-beam scenario before applying optimization. (d) Dual-beam scenario after
applying optimization.
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Figure 9 shows the optimized normalized electric field pattern in the same two scenar-
ios, depicted in the (u, v)-space [Figure 9a,c] and in the spherical coordinates in 3D space
corresponding to the VA [Figure 9b,d]. In the single-beam scenario, tilting of the main
beam in the xz-plane with respect to the normal to the PMS (the z-axis) is clearly visible.
Inclination of the beam in yz-plane is also recognizable; however, because the PMS size
along the y direction is smaller, the beam directivity in this plane is poor. In the realized
dual-beam scenario shown in Figure 9b,d, the two beams have symmetric inclinations with
respect to the PMS normal. The optimization process was able to recover the two main
beams, despite the fact that the initial aperture phase data, if used directly, would result in
a merged beam like that shown in Figure 5b.

(a) (b)

(c) (d)

Figure 9. Regenerated optimized electric field patterns in the (u, v) space and in spherical coor-
dinates, as produced by a 10 × 3 PMS. (a) Single-beam scenario in (u, v)-space. (b) Single-beam
scenario in spherical coordinates. (c) Dual-beam scenario in (u, v)-space. (d) Dual-beam scenario in
spherical coordinates.

Finally, Figure 10 shows the project pattern, the electric field pattern before optimization,
and the electric field pattern after optimization in xz- and yz-planes depicted in polar coordinates.
As is evident from Figure 10a–e, omitting the amplitude information produces suboptimal
radiation patterns (pink dotted curves). However, by applying the proposed optimization
strategy, the project patterns (black dashed curves) are recovered with a high precision (blue
solid curves). From these examples, one can also notice that in single-beam scenarios with
strong inclinations of the main beam, besides the main beam, there are parasitic sidelobes in
the VA. These sidelobes are also present in the project pattern F(u, v) and are due to the rather
small aperture size and small number of elements in a 10× 3 PMS.
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Figure 10. The project pattern and the electric field pattern before optimization, and the electric field
pattern after optimization in polar coordinates for single- and dual-beam scenarios. (a) Single-beam
scenario in polar coordinates, xz-plane. (b) Single-beam scenario in polar coordinates, yz-plane.
(c) Single-beam scenario in polar coordinates, xy-plane. (d) Dual-beam scenario in polar coordinates,
xy-plane. (e) Dual-beam scenario in polar coordinates, xz-plane. (f) Dual-beam scenario in polar
coordinates, yz-plane.

5. Replacing Optimization Algorithms by Trained ANNs

Although aperture phase distributions can be recovered successfully by applying
the optimization method discussed above, the optimization process is computationally
expensive and slow. Therefore, it is unsuitable for applications that require real-time
beamforming. However, the computational complexity can be dramatically reduced if
instead one uses an FFNN pretrained on the optimal phase distributions obtained for a
large set of beam deflections. In this way, the complex beamforming problem can be solved
rapidly, even on moderate hardware. The pretrained FFNN in this case realizes a set of
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nonlinear functions that relate the directions of the main beam (or several beams) to the
required reflection phases on a PMS. When dealing with a PMS controlled by varactor
diodes, another FFNN can be pretrained to deduce the varactor control voltages from
the phase distribution produced by the first FFNN. The second FFNN may also perform
additional functions, e.g., it may implement corrections to the control voltages that would
take into account parasitic coupling between the PMS elements, etc.

In light of what has been just discussed, in this work we propose and develop two
use cases for such pretrained ANNs: (1) a beamforming neural network (BFNN) and (2) a
control FFNN. In the first case, i.e., the BFNN case, the phases are computed directly
by a pretrained FFNN by inputting the desired main beam(s) targets into the model. In
the second case, i.e., the control FFNN case, a pretrained FFNN takes the output of the
BFNN as its input and computes the required control voltages. Figure 11a presents the
proposed ANN configuration, in which the blocks inside a dashed blue rectangle represent
the control FFNN. Note that we deliberately split the ANN configuration into two FFNNs
trained separately, because this allows us to have a better control over the training process.
Moreover, in this work, in order to reduce the number of necessary neurons in the control
FFNN, we subdivide it into repeating equal sub-blocks (atan2(x, y) and CTRLNN) shown
in the figure. Such subdivision is possible if the PMS cell control voltages are independent
from each other. The function of each component can be separately verified.

BF
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Figure 11. Block diagram and graphical representation of a Feed-Forward Neural Networks
(FFNN) approach. (a) Connection of BFNN and control FFNN. (b) Internal structure of an FFNN.

In our realization, the BFNN consists of one input layer, one hidden layer with
32 neurons, and one output layer. A graphical representation of such FFNN is depicted
in Figure 11b. The input layer of the BFNN has 2 × L neurons to accept the parameters
of the main beams for each possible radiation pattern realization. The output layer com-
prises 2 × M × N = 60 neurons, which output the values of sin Φmn and cos Φmn. The
reason why such an approach was taken is explained in Section 5.1. The input param-
eters of the BFNN represented by vector X⃗BFNN = (θ1, φ1, . . . , θL, φL) are the spherical
angles that define the main beams’ directions, and the output parameters denoted by
Y⃗BFNN = (sin Φ11, cos Φ11, . . . , sin ΦMN , cos ΦMN) correspond to the reconstructed reflec-
tion phase values for each PMS cell. These are the data to which we fit the first FFNN model.

Each CTRLNN sub-block consists of one input neuron, one hidden layer with 20 neurons,
and one output neuron. For CTRLNN sub-blocks, the PMS cell’s reflection phase values are
defined as the inputs, i.e., Xk,CTRLNN = atan2(Y2k−1,BFNN, Y2k,BFNN), where k = 1, . . . M × N,
and the PMS cell controlling voltages are defined as the outputs: Y(n−1)M+m,CTRLNN = Vmn.
The atan2() sub-blocks realize the four-quadrant arctangent function. The CTRLNN model
is fit to these data.

In the next two subsections, we give details on the training process of these two FFNNs.

5.1. Generating Datasets for BFNN Training for Single-Beam and Dual-Beam Cases

Datasets consisting of 3200 and 1000 data samples at 5 GHz and 10 GHz have been
analyzed for single-beam and dual-beam cases using the PMS model shown in Figure 3,
respectively. The datasets are generated so that the main beam directions (θi, φi), i = 1, . . . L,
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become the inputs of the training model and a vector of M × N reflection phase values is
the output of the training model. We have taken 32 arbitrary beam directions distributed
approximately equidistantly in the hemisphere z > 0 with at most 75◦ beam tilt angle to
generate the datasets to train the BFNN. The generated datasets include 100 data points
for each direction. Approximately 70% of the data are used to train the network, and
the remaining 30% are utilized for validation. We have used 2240 and 700 samples to
train the network in the single-beam and the dual-beam cases, respectively, and 960 and
300 samples were used for validation. Instead of using the phase values directly in the
training process, we apply trigonometric sin and cos functions to the phases and use the
resulting sine and cosine values in the training in order to mitigate the 2π phase jumps.
This approach has proven to work better than any phase unwrapping. Regarding the
volume of training data, it should be mentioned that, usually, the ratio between the number
of samples and the number of features within each sample is more important than just
the total number of samples; therefore, we consider the generated dataset volume to be
sufficient for our purpose.

5.2. Generating Datasets for CTRLNN Training

For the CTRLNN sub-blocks, the training dataset was generated using the analytical
model of a varactor-controlled PMS that we have developed in an earlier work of ours [29].
The structure of the PMS is depicted in Figure 12a. The unit cell is inside a dashed square
in this figure. The unit cells are squares with the size of 6.8 × 6.8 mm2. As compared
to [28], the patch size w can be reduced from 3 mm to 1.3 mm to enable a higher operating
frequency of 10 GHz. The independent units to which the control voltages are applied can
be either single unit cells of the PMS or groups of unit cells. The figure also shows X- and
Y-controlling lines to which pulsed control voltage can be applied. For more details on the
control network layout and operation, the reader is referred to [29].
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Figure 12. (a) Geometry of the PMS. The dashed square delimits a unit cell of the structure. The
period of the structure d = 6.8 mm. The wire radius is r0 = 0.3 mm and the patch width is w = 3 mm
for a PMS operating at 5 GHz and w = 1.3 mm at 10 GHz. (b) Capacitance vs. voltage for the varactor
diode model MA46H120 simulated in Agilent ADS.

The top layer of the PMS contains a chessboard-like array of square patches loaded
with varactors at the patch corners. The layers with X- and Y-controlling lines and other
elements (filtering and memory capacitors [29]) are located below. By analyzing this
structure, we can relate the required reflection phases to the necessary input bias voltages
applied to the varactors. Indeed, the bias voltage determines the varactor diode junction
capacitance that in turn determines the resonant frequency of the cell and the local reflection
phase [29]. We use these relations to generate the datasets for the CTRLNN.

The complex reflection coefficient at every unit cell is calculated using the analytical
model developed in [29]. The diode junction capacitance varies with the applied reverse
bias approximately as

C = C0(V/φJ + 1)−γ, (14)

where C0 = 1.09 pF is the varactor diode capacitance at V = 0 V, and γ = 0.68 is the slope
of the log C vs. log V curve (Figure 12b). The value of the built-in junction potential φJ is
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about 0.7 V for Si and 1.3 V for GaAs at room temperature. Figure 12b shows the junction
capacitance as a function of bias voltage for the varactor diode used for modeling [29].

From Equation (14), the reverse voltage is

V =
(
(C0/C)1/γ − 1

)
φJ. (15)

The phase of complex electric field reflection coefficient can be computed as

φ = ∠RTM
s = ∠

(
1 − YTM

s cos θ

1 + YTM
s cos θ

)
, (16)

where YTM
s is the normalized complex input admittance of the MS structure understood as

a parallel connection of the surface admittance of the varactor-loaded patch grid and the
input admittance of a wire medium slab [29].

For generating the datasets to train the CTRLNN sub-blocks, the reflection phases
obtained by this analytical model are imported into the CTRLNN model as training inputs.
The corresponding varactor bias voltages are the outputs of this training model. Like before,
about 70% of the dataset is used to train the CTRLNN, and the remaining data are utilized
for validation. The output neurons of the CTRLNN produce the values of bias voltages in
the range from 1 to 9 V.

5.3. Performance of the BFNN for Single-Beam and Dual-Beam Cases

The FFNN model of BFNN runs on a HP Pavilion desktop computer (model no. TG01-
1008np) with an Intel® CoreTM i5-10400F CPU @ 2.90 GHz and 32 GB RAM. Training of
the BFNN takes less than 20 min; however, the trained network can predict the necessary
phase distribution for arbitrary beam directions in a fraction of second, which is much less
time-consuming than the global optimization of the phase distribution in MATLAB that
can take many hours to complete on the same hardware. Moreover, the BFNN model needs
much less memory space as compared to the optimization code.

The correlation between the numerically optimized phase values and the values
predicted by the trained BFNN in a single-beam scenario is quantified by the correlation
coefficient, which was calculated to validate BFNN performance. These results are depicted
in Figure 13. Figure 13a presents the correlation between the predicted phase values and
the optimized values used for training the BFNN. As seen in Figure 13a, 87.5% of the
predictions are above the accuracy average of the BFNN predictions, which reaches 0.98.
As shown in Figure 13b, all of the predicted values for 30 different sets of (θi, φi) pairs from
the validation set, which are not included in the dataset used for training, are predicted
with more than 83% accuracy. However, the mean accuracy for predictions is decreased to
0.92 in this case, Figure 13b.

Finally, in Figure 14 we present results for the electric field patterns of 10 × 3 PMS
obtained with the optimized FT-based beamforming method realized in MATLAB and
predicted by the BFNN in single- and dual-beam scenarios with different direction(s) of
the main beam(s). The considered beam directions are as follows: For the single-beam
case, (θ1, φ1) = {(30◦, 45◦), (60.2◦, 221.1◦), (70.23◦, 63.46◦)} and for the dual-beam case,
(θ1, φ1) = (30◦, 45◦) and (θ2, φ2) = (30◦, 225◦). In the single-beam case, the case with
(θ1, φ1) = (30◦, 45◦) is one of the cases included in the training dataset, Figure 14a–c.
However, the beam angles (θ24, φ24) = (60.2◦, 221.1◦) and (θ30, φ30) = (70.23◦, 63.46◦) are
not in the training dataset and are just used for validating BFNN performance for arbitrary
input data, Figure 14d–i, respectively. In the dual-beam case, the pairs (θ1, φ1) = (30◦, 45◦)
and (θ2, φ2) = (30◦, 225◦) are included in the training dataset, Figure 14j–l. The results show
a very good agreement between the numerically optimized and the BFNN-predicted data.
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Figure 13. Correlation between the optimized and BFNN-estimated phase distributions for a
10 × 3 PMS in a single-beam scenario. (a) Correlation of predicted vs. optimized phases from
the training dataset. (b) Correlation of predicted vs. optimized phases from the validation dataset.

5.4. Performance Validation of the CTRLNN

The CTRLNN was trained on the same computer as the BFNN. The typical training
time is less than 10 min. After training, the CTRLNN model produces a result in a fraction
of second. The ratio of 70%/15%/15% was selected for the training/validating/testing
datasets, respectively. To validate the performance of the trained network, the mean square
error (MSE) as a function of the epoch number was calculated and plotted in Figure 15a.
It was found that the control voltage MSE is about 5.54 × 10−5 V2 at epoch 655. In total,
1000 epochs were used as the maximum number of epochs in the training process.

Figure 15b plots the reflection phase versus the varactor bias voltage as obtained by
simulations in Agilent ADS and predicted by the trained CTRLNN. As one can see, the
results predicted by the CTRLNN match the simulated results very well.
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Figure 14. The optimized electric field patterns and the ANN-predicted electric field patterns in polar
coordinates, as produced by a 3 × 10 PMS. (a) Single-beam scenario in polar coordinates at 5 GHz,
xz-plane. (b) Same scenario, yz-plane. (c) Same scenario, xy-plane. (d) Single-beam scenario in polar
coordinates at 5 GHz, xz-plane. (e) Same scenario, yz-plane. (f) Same scenario, xy-plane. (g) Single-
beam scenario in polar coordinates at 5 GHz, xz-plane. (h) Same scenario, yz-plane. (i) Same scenario,
xy-plane. (j) Dual-beam scenario in polar coordinates at 10 GHz, xz-plane. (k) Same scenario,
yz-plane. (l) Same scenario, xy-plane.

(a) (b)

Figure 15. The corresponding MSE as a function of the epoch number and reflection phase versus
applied bias voltage. (a) MSE as a function of the epoch number. (b) Reflection phase versus applied
bias voltage.

6. Prototyping and Preliminary Experimental Results

In this section, we report preliminary experimental results obtained with a PMS
prototype with 3× 10 unit cells. The prototype was designed using the analytical–numerical
model developed in [29]. To control direction of the reflected beam, the phase gradient
along the PMS was generated by applying varying dc voltages to the varactors that belong
to neighboring unit cells. The phase gradient is approximately proportional to the bias
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voltage gradient. In this way, we achieved beam steering in the direction of the applied
voltage gradient. A view of the prototype PMS installed in a plastic holder is shown in
Figure 16a.

(a) (b) (c)

Figure 16. PMS prototype and results of radiation pattern measurements and simulations. (a) The
PMS installed in a custom 3D-printed plastic holder. (b) The experimental setup. (c) Radiation
patterns in the xz-plane produced by 3 × 10 PMS.

The PMS radiation pattern measurements were performed using the anechoic chamber
facilities of the Department of Electronics, Telecommunications and Informatics of Univer-
sity of Aveiro. The measurement setup is shown in Figure 16b. In the experimental setup,
the TX antenna (a circular horn) and the PMS prototype are fixed on the same rotating
support so that the incidence is always close to normal. The incident wave is linearly
polarized with the electric field vector parallel to the elongated side of the PMS. The RX
antenna (a Vivaldi antenna, not seen in the figure) is fixed and is placed a few meters away
from the rotating support. When the support rotates, the RX antenna measures the signal
scattered by the PMS sample at varying angles.

Figure 16c depicts the results of the radiation pattern measurements in the xz-plane
(θ = 0◦ corresponds to the normal to the PMS) alongside the results of the analytical
beamforming model and full-wave simulations in SIMULIA CST Studio Suite, for the
cases with and without the bias voltage. The applied voltage gradient corresponds to the
reflection phase variation from −50◦ to 50◦ (varactors’ capacitance values vary from 0.25 to
0.2 pF) in the direction of the long side of the PMS, which should produce the main beam
pointing at (θ0, φ0) ≈ (19◦, 0◦).

As can be seen in this figure, the maximum of the PMS radiation pattern without the
applied voltage points at θ0 ≈ 0◦, as expected (green dashed curve). When the voltage
gradient is applied, the maximum of the radiation pattern shifts to θ0 ≈ 17◦ (black dash-
dotted curve). The radiation pattern generated using the beamforming methodology
developed in this article (blue solid curve with a maximum at θ = 19◦) and the result
of full-wave simulations in SIMULIA CST Studio Suite (red dash-dotted curve with the
maximum at θ0 ≈ 18◦) are also depicted in the same figure.

We may conclude that beam inclinations in all these cases are in good agreement.
However, the beam shape of the prototype PMS is distorted, and sidelobes with relatively
high amplitude are clearly visible. We have investigated possible reasons of such effects
and concluded that they were caused by scattering of the TX antenna field by the elements
of the experimental setup other than the PMS itself. When such parasitic scattered field is
added to the field reflected by the PMS, a distorted radiation pattern is observed due to
the interference between the two fields. Therefore, it was concluded that a more elaborate
experimental setup is needed in order to test more complex beamforming scenarios. In par-
ticular, a larger PMS sample may be needed to increase measurement accuracy. Fabrication
of such sample and additional measurements are reserved for a future work.

For more details on the related experimental and analytical methods, the reader is
referred to Refs. [28,29,46].
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7. Discussion of the Results

In this section we discuss the limitations of our study and also compare our beam-
forming PMS design to the other designs known in the literature.

7.1. Beamforming Methodology Limitations

The optimization methodology that we propose in this work was implemented using
interpreted MATLAB scripts. Moreover, in order to have a visual feedback, a real-time
indication of the optimization convergence through MATLAB’s Integrated Development
Environment (IDE) was used. Because of this, the numerical optimization was quite time-
consuming, which forced us to consider only a limited subset of possible beamforming
scenarios. Porting the developed code to platforms such as C++ can potentially speed up
the algorithm by orders of magnitude and shall give us an opportunity to study PMS with
larger dimensions, which is reserved for a future work.

The main limitations in the presented beamforming results are related to the moderate
number of the controllable elements in the PMS and the relatively small size of the PMS.
Indeed, the considered PMS only has 3 × 10 = 30 unit cells, which allows for a rather
restrained set of beamforming scenarios. There are two reasons to keep the unit cell
count low: (1) feasibility of the initial prototype implementation and (2) reduction of the
computation time during phase distribution optimizations with MATLAB scripts. However,
even with such a limited PMS we have realized a number of single- and dual-beam
beamforming scenarios. We have also trained the BFNN and the CTRLNN networks on
the generated datasets and confirmed that the proposed beamforming approach is feasible.

To generate beamforming datasets for the prototype structure with 30 unit cells,
32 approximately equidistant directions have been selected in the frontal PMS hemisphere.
In fact, the number of such assumed beam directions as well as the number of PMS unit
cells limits the achievable beamforming accuracy. Therefore, by increasing the number of
unit cells and the number of predetermined beam directions, more elaborate beamforming
scenarios can be realized.

7.2. Pros and Cons of the PMS Design

In addition to the above, a beam steering scenario was experimentally tested with
a prototype of an electrically controllable PMS studied in our previous works [28,29,46].
Although our beamforming methodology is applicable to a wide class of reactive MS
structures that are able to control reflection phase, we decided to focus our attention on the
passive varactor-loaded PMS with capacitive memory proposed in [29]. When compared
to other realizations, such a PMS has certain advantages. In order to illustrate it, we have
compiled a comparison table (Table 1).

The items in this table are sorted into three groups organized by the complexity class
criterion, which is defined based on the set of features that are present in a design:

• Class I: Passive structures without dc feed or with just (pulsed) control voltage(s) and
with a small number of passive components per unit cell and a relatively simple layout;

• Class II: Active structures with dc feed and control voltage, with a moderate number
of components (both active and passive) and with a moderate layout complexity;

• Class III: Active structures with a dc feed, high number of components, and a complex layout.

As can be seen from this table, our design belongs to Class I, due to the fact that it is
fully passive and does not require any dc feed, has a small number of passive components
per unit cell, and is controlled with pulsed voltage. The designs that belong to Class II are
more complex, as they need more components per unit cell. They also incorporate active
devices (e.g., flip-flops, shift registers, etc.) that constantly consume dc power. Finally,
Class III is for even more elaborate designs that require continuous dc feed and a significant
number of active components assembled in a circuit with complex topology.

Although the increased complexity of the designs that fall into Classes II and III
typically brings new functionalities, the devices that belong to Class I are best in terms of
energy efficiency. They also use a small number of passive components per unit cell, which
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simplifies fabrication and reduces cost. Unfortunately, not all of them are electronically
controllable. Among the designs that belong to Class I, our design has an extra advantage
of reconfigurability. Moreover, although being passive, it is able to keep its configuration
state for some time between sequential reprogramming. For more details, the reader is
referred to [29].

Table 1. Comparison of different beamforming MS designs †.

Ref. Frequency
[GHz]

Compon. 1

per Cell Type Beam
Number Tunable R.S. 2 C.C. 3

This Work 5 & 10 4 Var. 4 Analog 1/2/M.B. 5 Yes Yes Class I
[52] 10 – – 1 No No Class I
[53] 8–20 – Mech. 6 1 Yes Yes Class I

[54] 10–12 1 PIN
Diode

Digital
(1-bit) 1/2/4 Yes No Class I

[55] 5.8 2 Var. Analog 1 Yes Yes Class II

[27] 8–15 1 Bias
Diode

Digital
(1/2-bit) 1/2/4 Yes Yes Class II

[56] 9.5 2 PIN
Diodes

Digital
(2-bit) 2 Yes Yes Class II

[57] 3 SPDT 7 Digital
(1-bit) M.P. 8 Yes Yes Class II

[58] 8 2 PIN
Diodes

Analog &
Digital M.B. Yes Yes Class II

[59] 28 1 PIN
Diode

Digital
(1-bit) 1 Yes Yes Class III

[60] 5.8
1 DFF 9 &

SR 10 &
Dec. 11

Digital
(1-bit) M.B. Yes Yes Class III

1 Component; 2 Remembers State; 3 Complexity Class; 4 Varactor; 5 Multi-Beam; 6 Mechanical; 7 Single-Pole-
Double-Throw switch chip; 8 Multi-Purpose; 9 D Flip-Flop; 10 Shift Register; 11 Decoder. † Under no circumstances
this table should be considered as a complete list of representative works; it is only a selection based on our own
preferences and limited knowledge.

8. Conclusions

An inverse design method has been introduced, which combines FT-based beamform-
ing, numerical optimization, and machine learning techniques. In our method, first, the
aperture field distribution is obtained by applying Fourier transform to the desired far-field
radiation pattern. Then, the aperture field amplitude information is discarded; however,
the phase information is retained and is used as an input to the developed optimization
algorithm that further improves beamforming accuracy. Next, this optimizing FT-based
beamforming method is used to generate datasets of required aperture phase distributions
vs. a number of single- and double-beam scenarios. The generated datasets are used to
train a Beamforming Feed-forward Neural Network (BFNN), which is able to generate the
necessary phase distribution data in a fraction of second.

Moreover, to provide control of the PMS and generate the necessary controlling voltages
for the unit cells of the PMS, we have proposed to use another trained Control Neural Network
(CTRLNN), which, in practical applications, can also perform additional functions, such as
compensating for the unit cell coupling in the PMS, etc. By employing the developed approach,
the required phase distribution over the PMS and, consequently, the required bias voltages
to control the PMS unit cells are calculated in real-time. The BFNN and CTRLNN networks
have been trained on the generated datasets for a number of beamforming scenarios. The
performance of the neural networks has been validated. The correlation between the BFNN
output and the results of the optimizing FT-based beamforming method reaches 98% in the
best cases, and is generally above 90% in other cases. The validated CTRLNN performance is
also high, with the control voltage MSE below 10−4 V2.

Overall, we have observed that the desired radiation patterns are recovered with high
precision when either the optimizing FT-based method or the trained ANNs are used,
despite ignoring the magnitude information at the Fourier transform stage. However, at
high inclination angles, parasitic sidelobes may appear in the reconstructed patterns, a
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phenomenon that is related to the rather small number of unit cell rows and columns in the
PMS sample on which the study was performed.
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