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Abstract: The use of augmented reality (AR) continues to increase, particularly in marketing and
advertising, where virtual objects are showcased in the AR world, thereby expanding its various
applications. In this paper, a method of linking coordinate systems to connect the metaverse with the
real world is proposed and a system for correcting and displaying virtual objects in the AR environ-
ment is implemented. The proposed method calculates errors to accurately represent virtual objects
in AR and presents a method to show these objects without errors. The proposed method was verified
through experiments to successfully display virtual objects in AR. To minimize localization errors,
semantic segmentation was used to recognize objects and estimate buildings, thereby correcting the
device location. An error correction expression is also presented. The proposed system is designed to
correct and display virtual objects in AR, with confirmed functionality for location correction.

Keywords: augmented reality; semantic segmentation; 3D object rendering; GPS accuracy 3D
coordinate system integration

1. Introduction

Augmented reality (AR) merges the real and virtual worlds, enriching user experience
with overlaid virtual elements. Combined with digital twin technology, AR offers precise
virtual replicas of real environments, thereby enhancing the accuracy of the information
presented [1,2]. This synergy is highly beneficial in advertising, where AR with digital twins
allow businesses to deliver engaging and interactive advertising experiences, boosting
consumer engagement by offering real-time product and service information. Educational
AR applications [3] also elucidate its potential for advertising, particularly in consumer
education and product demonstrations. Research in the automotive industry [4] provides
insights into effective advertising object placement in AR, illustrating the interaction be-
tween virtual and real-world elements. Furthermore, the use of urban digital twins and
drones to visualize future landscapes [5] demonstrates an effective combination of real-time
data and 3D modeling in AR advertising. These technologies collectively offer innovative
advertising methods and promising personalized and interactive consumer experiences,
achieving significant progress in the advertising industry [6].

The integration of sophisticated building classification algorithms is pivotal for re-
fining AR technologies, particularly in urban and complex architectural environments.
Previous studies have provided a comprehensive survey of three-dimensional (3D) object
recognition in cluttered scenes, highlighting how detailed building surface features can be
leveraged to improve AR image accuracy [7]. Real-object recognition and localization in an
AR environment have been addressed based on simultaneous localization and mapping
(SLAM), a technique that is crucial for accurately overlaying virtual images onto real-world
buildings [8]. Further, a mobile outdoor AR method combining deep-learning object detec-
tion with spatial relationships for geovisualization has been proposed. This approach is
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instrumental in precisely mapping AR objects onto the corresponding physical buildings,
ensuring seamless integration of virtual and real elements [9]. Finally, markerless pose
tracking for AR delves into the nuances of accurately aligning virtual images with physical
structures without the need for physical markers, a method that significantly improves
user experience in AR applications [10].

To address the challenge of global positioning system (GPS) inaccuracies, a pivotal
aspect of enhancing the AR experience lies in GPS-induced error detection and correc-
tion. Previous research has shed light on the existing technologies and methodologies
for such purpose. These previous studies explored various approaches to identify and
mitigate GPS inaccuracies, which are critical for ensuring the precise placement of AR
elements in real-world coordinates. Advanced techniques in image-based localization
and camera-pose estimation have been discussed, which play a significant role in GPS
error compensation [11]. Correcting geometric distortions in stereoscopic 3D imaging is
intimately linked to accurate GPS positioning [12]. The fusion of map and satellite data for
outdoor localization, which highlights the importance of integrating multiple data sources
to enhance the accuracy of GPS systems in AR applications, has been explored [13,14].
Collective efforts to refine GPS accuracy are fundamental for advancing the reliability and
usability of AR technology in various settings.

A critical component in the realm of AR is the advancement of camera-position
estimation and 3D imaging technologies. Previous studies have emphasized the significance
of these technologies for AR environments. Innovative methods for camera-pose estimation,
a fundamental aspect that determines the accuracy and effectiveness of AR applications,
have been explored [15,16]. Precise camera localization is paramount to ensure that virtual
elements align correctly with the real world [17,18]. An overview of image-based camera-
localization techniques, which are essential for the seamless integration of 3D elements into
physical spaces, was presented in [19]. These advancements in camera position estimation
and 3D imaging not only enhance the user experience by providing more realistic and
immersive AR scenarios but also extend the potential applications of AR technology to
various fields, including navigation, gaming, and education. This collective body of work
underscores the ongoing innovations and improvements in camera technology essential
for the evolution of AR.

These studies provide insight into the vast potential of AR across various sectors,
emphasizing its transformative impact on marketing, education, and beyond [20,21]. How-
ever, they also highlight the need for improved localization techniques to ensure that AR
content, particularly advertising objects, is displayed accurately and reliably in the user’s
environment. Accordingly, the current study addresses this issue by proposing a solution
for enhancing the placement and visibility of AR advertising objects. We suggest a method
that not only improves the accuracy of object localization in AR but also contributes to a
more immersive and engaging user experience. This approach is not only a step forward in
the realm of AR advertising but also sets the stage for broader AR technology applications.
By addressing these localization challenges, we aim to unlock the full potential of AR and
pave the way for more advanced practical applications in various fields.

Studies have been conducted on the mapping and recognition of the location of objects
and users. Methods utilizing markers for AR placement have been explored; however,
they entail the inconvenience of physically installing markers, which are impractical for
outdoor environments [22]. Additionally, indoor-based approaches lack adequate outdoor
application [23]. Although outdoor AR solutions employing GPS have been proposed,
the inaccuracies associated with GPS can significantly hinder the precise localization and
recognition of objects [24]. This study aims to address these challenges by proposing a
technique that not only accurately displays objects within the AR environment but also
corrects their positioning, thus enhancing both the user experience and the accuracy of AR
advertising objects.

The remainder of this paper is organized as follows: Section 2 encompasses both the
original system architecture and the exploration of 3D object display in AR environments.
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Section 3 details the experimental validation of our system, emphasizing the methods used
for the AR image display and positional accuracy. Finally, Section 4 summarizes the study,
presents our main conclusions, and points to avenues for future research in this field.

2. Materials and Methods

In this section, we provide an in-depth mathematical treatment for accurate 3D object
rendering in AR, encompassing coordinate mapping between a virtual object coordinate
system and a GPS coordinate frame through three-point matching, camera-pose estimation
and rectification, and transformations between the object coordinate space and image plane
coordinate system.

2.1. Framework for Object Rendering in Augmented Reality

As depicted in Figure 1, the proposed system introduces an advanced framework
for acquiring and refining AR imagery and location data. The system’s cornerstone, the
“Digital Twin Server”, hosts a comprehensive repository of 3D spatial information, including
latitude, longitude, and a versatile virtual coordinate system for object management and
registration. This server not only stores detailed building information but also integrates
digital elevation model (DEM) and digital terrain model (DTM) updates provided by the
“Spatial Information Acquisition via UAV (Unmanned Aerial Vehicle)” component. The
DSM and DTM are instrumental in depicting the Earth’s surface and terrain morphology,
respectively, thereby enhancing the precision of digital twins for AR applications. The
“Spatial Information Acquisition via UAV” segment deploys drones to capture imagery,
which includes crucial GPS coordinate information embedded in TIFF files. These files are
processed by the “Building Semantic Segmentation Detection” module, where semantic
segmentation extracts geolocation data as building polygons, enriching the digital twin
database. This process benefits from cross-referencing public building records, ensuring
that the building height data of the DT server remain updated. To facilitate dynamic
interactions with AR objects, the “Object Management System” oversees the registration
and management of items within a virtual coordinate framework. End-users interact
with these AR objects through the “User Application”, which communicates with the
digital twin server via the “API (web)”. This interaction enables the server to retrieve and
display object information based on user location data, ensuring a seamless and interactive
AR experience.

Figure 1. Workflow diagram of the AR system, showcasing the data flow between key components,
such as UAV data acquisition, building data processing, server synchronization, and user interaction.

2.2. Coordinate Mapping for 3D Object Rendering in AR

A separate coordinate system is used to facilitate the rendering of various 3D objects.
This allows easy adjustment of the 3D object size and position, making the objects more
readily displayable on AR devices. The Digital Twin Server maintains both the 3D object
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coordinate system and the latitude, longitude, and elevation coordinates of the building.
Critical processes include 3D object creation and three-point matching execution on AR
devices. Three-point matching refers to the task of mapping the object coordinate system
to the GPS coordinate system. Once the mapping is complete, the app can retrieve and
display 3D object information from the server using the building information in the object
coordinate system to properly overlay the objects in the AR environment. As illustrated in
Figure 2, once three-point matching is completed, objects denoted as OBJ can be rendered
using the acquired building coordinates. However, errors in the GPS position, such as with
points A, B, and C, can lead to location inaccuracies. Therefore, it is imperative to correct
the device location and ensure perfect image rendering through semantic segmentation.

Figure 2. Illustration of three-point matching for object localization. (a) Alignment of object coordi-
nates via GPS coordinates without error using three reference points. (b) Potential errors in case of
GPS inaccuracies, represented by the thickness of each circle.

2.3. Localization of 3D Objects

Understanding the position and orientation of the camera is vital to transform 3D
spatial coordinates into 2D image coordinates. This concept is often referred to as the rigid
body transformation of a camera. Consider an object located in 3D space, designated by
coordinates P(x, y, z). In AR, the positioning of a virtual object can be estimated using the
physical location of the camera and GPS data correlating to a specific real-world location.

First, let us consider rigid-body transformation. Conversion of the 3D position into
the camera coordinate system involves a series of rotations and translations determined
by the camera’s accurate positioning and orientation data obtained via GPS. This trans-
formation is essential for precisely locating the camera in space. The 3D coordinates are
then projected onto a 2D image plane by utilizing the intrinsic parameters of the camera,
such as the focal length and sensor attributes. This projection process generates image
coordinates (xpixel, ypixel), indicating the 3D point’s horizontal and vertical positions in the
2D image frame.

However, in real-world applications, discrepancies in camera positioning, primarily
due to GPS inaccuracies, can occur. These discrepancies lead to a scenario in which the
rigid-body transformation, now with GPS errors, presents positional deviations. Targeting
the same 3D point P, this altered transformation yields a different set of 2D coordinates
on the image plane, denoted (xpixel_error, ypixel_error). These coordinates reflect the incor-
rect projection of the same 3D point, which is attributed to deviations in the rigid-body
transformation of the perturbed camera.

Comparing P′ with P′
e reveals the impact of camera positioning errors on the precision

of projecting 3D points onto a 2D plane. This insight is particularly crucial in AR for
accurate mapping and object localization. The rotation matrix in the context of 3D space is
a fundamental aspect of camera characteristics, representing the rotation of an object or
coordinate system in three dimensions. Let us now explore the derivation of a 3D rotation
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matrix, commonly denoted as R. In the XYZ coordinate system, rotation can occur around
the principal X, Y, and Z axes. These rotations are typically described using Euler angles:
roll (ϕ), pitch (θ), and yaw (ψ). The matrices for these rotations are as follows:

The roll around the X-axis is denoted as

Rx(ϕ) =

 1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

. (1)

The pitch around the Y-axis is denoted as

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

. (2)

Finally, the yaw around the Z-axis is denoted as

Rz(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

. (3)

The combined rotation matrix R, representing rotations in the Z-Y-X sequence (i.e.,
yaw-pitch-roll), is defined as the product of the individual matrices, denoted as (1), (2), and
(3), respectively, collectively forming

Rz(ψ) · Ry(θ) · Rx(ϕ) (4)

This matrix is crucial for rotating a point or coordinate frame in 3D space, and the
specific multiplication order (Z-Y-X) indicates the non-commutative nature of matrix multi-
plication in rotations. To compute the rigid-body transformation of a camera in 3D space,
both rotation and translation are involved. This transformation is pivotal for mapping
points from one coordinate system to another. The detailed process is described next.

A rigid body transformation in 3D space comprises both rotation, which can be derived
using (4) to obtain R, a 3 × 3 matrix representing the rotation, and translation, represented
by vector T = (t_x, t_y, t_z). This matrix formulates the following transformation:[

R 1
0 1

][
I T
0 1

]
=

[
R RT
0 1

]
(5)

To transform a point P = (x, y, z) using this transformation, with and without GPS
error, the following steps were taken:

In the case where GPS errors are incorporated, the position of an object projected into
the camera space is represented as:

P′
e =

[
R RTe
0 1

]
· P (6)

Conversely, in the absence of GPS errors, the position of an object projected onto the
camera space is represented as:

P′ =

[
R RT
0 1,

]
· P (7)

where P denotes the position of the object in the world coordinate system, and Te and T
represent the translation vectors with and without errors, respectively.

The results are in homogeneous coordinates and must be converted back to Cartesian
coordinates for practical applications. The intrinsic parameters of a camera, including the
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focal lengths fx and fy, principal points cx and cy, and skew coefficient, define its internal
characteristics. The intrinsic matrix K that encapsulates these parameters is as follows:

K =

 fx 0 cx
0 fy cy
0 0 1

 (8)

The transformation of a world coordinate point Pworld = (x, y, z) into the camera
coordinate system involves the use of the extrinsic parameters of the camera (rotation R
and translation T). This transformed point (X′, Y′, Z′)′ is then projected onto the image
plane (u, v, w)′ using the following intrinsic matrix: u

v
w

 = K ·

 X′

Y′

Z′

 (9)

In the final step, these homogeneous coordinates are converted into pixel coordinates
in the image sensor as follows:

xpixel =
u
w

, ypixel =
v
w

(10)

Using the differences in the image plane coordinates P′ and P′
e , we aim to determine

the difference Tdelta in the GPS coordinates to pinpoint the camera’s exact location.
For erroneous pixel coordinates:

P′
e = Z · K−1 ·

xpixel_error
ypixel_error

1

 (11)

For reference pixel coordinates:

P′ = Z · K−1 ·

xpixel
ypixel

1

 (12)

We transform these points into world coordinates using the rotation matrix R. Upon
applying the inverse rotation matrix to the world coordinates, we obtain

Z = R−1P (13)

where Z represents the point depth in the coordinate system of the camera. This depth is
critical for accurately projecting a point onto a 2D image plane by leveraging the camera’s
intrinsic matrix K. The intrinsic matrix then scales this depth along the X- and Y-coordinates
to compute the final image coordinates, ensuring an accurate representation of the 3D world
point on the 2D image.

P′
he and P′ represent the transformation in the extended and basic environments,

respectively. Calculating each transformation yields

P′
e = R · P + R · Te (14)

P′ = R · P (15)

Then, we can calculate T using the difference between P′
e and P′ as follows:

P′
e − P′ = R · Te (16)

Assuming that R is invertible (i.e., an inverse exists), to directly calculate T, we use
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R−1 · (P′
e − P′) = Te (17)

This calculation is valid under the assumption that the inverse of R exists and can be
computed. To perform the actual calculation, specific values for R, P′

he, and P′
h are needed.

Therefore, T can be calculated as follows:

Te = R−1 · (P′
e − P′) (18)

This depends on the actual values of R, P′
e , and P′, Thus, we address the challenge

of accurately determining the camera positioning in 3D space by considering potential
GPS errors and their impact on 3D point projections in 2D imaging.

In our computational analysis, we sought to refine the estimation of the translation
vector T, which represents the displacement from erroneous measurements to accurate
world coordinates. Given a series of individual translation vectors Ti, derived from mul-
tiple observations or point pairs, the most prevalent method for determining an optimal
translation vector is to compute the mean of these vectors. Each translation vector Ti is
computed as the difference between the corresponding erroneous camera point P′

e and the
reference world point P′.

Then, the aggregate translation vector Tmean is calculated as the average of all individ-
ual Ti vectors as follows:

Tmean =
1
n

n

∑
i=1

Ti (19)

where n is the total number of observations.
This averaging process effectively reduces the random errors present in individual

observations under the assumption that these errors are unbiased and normally distributed.
The calculation is performed by summing all individual translation vectors and then
dividing by the number of vectors to yield the mean translation vector Tmean.

From a least-squares error perspective, this approach is equivalent to minimizing the
sum of the squared differences between Tmean and each Ti, thereby providing a robust
estimate of the actual translation required to correct the measurement discrepancies.

3. Results

Here, we present the implementation of a 3D object-rendering AR application, focusing
on methods to correct location errors caused by GPS inaccuracies and object occlusion
by buildings, ensuring realistic and seamless integration of virtual objects within the
real-world environment.

3.1. Results of 3D Object AR Rendering App Implementation and Location Correction

We focused on the development results of the AR rendering features of 3D objects
rather than the server and building updates previously described. Figure 3 illustrates a
promotional balloon floating between buildings. The server API retrieves the building’s
GPS coordinates and height information corresponding to the coordinates of the object,
which are then rendered by the application. Invisible barriers are set in the application to
ensure proper object rendering. In the sequence of images presented in Figure 3a–d, the
balloon’s apparent reduction in size as it moves leftward is not due to an actual decrease
in size but rather a perspective effect caused by the balloon being obscured by buildings.
This visual effect is a result of the viewing angle, where parts of the balloon become
hidden, giving the illusion of shrinking. However, GPS inaccuracies contribute to further
discrepancies, making the balloon seem partially cut off from the viewer’s perspective. The
next step was to correct the appearance of the truncated balloon and adjust the location of
the device. There are two methods to correct this: recalculating the location of the device,
and using semantic segmentation to recognize different buildings and move the balloon
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accordingly. The selected method involved object segmentation, building recognition, and
balloon movement.

Figure 3. Sequence displaying the movement of an advertising balloon being obscured by buildings.
The series from (a–d) shows the balloon moving and becoming partially hidden behind buildings,
demonstrating the occurrence of distance discrepancies due to occlusion.

As shown in Figure 4, object segmentation is specifically applied to isolate each
building. Then, we established barriers corresponding to these segmented buildings to
ensure that the balloon was correctly displayed. As shown, the building identified in (a) is
segmented, as shown in (b), leading us to set up an arbitrary barrier, as depicted in (c). This
step is crucial for maneuvering the balloon, culminating in the outcomes shown in (d). This
sequence clearly demonstrates the precise alignment of the balloon with the buildings,
illustrating the practical application of our segmentation and barrier setup process in
enhancing the AR object display.

Figure 4. Sequence illustrating the augmented reality object display enhancement process: (a) initial
segmentation of a building from the urban environment; (b) the segmented building is outlined for
clarity; (c) setting of a virtual barrier around the segmented building; and (d) the augmented reality
balloon accurately positioned in relation to the building, demonstrating an effective alignment with
the urban landscape
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The proposed equations are used to validate the positional error correction method
through numerical analysis. Figure 5 shows the procedure to validate these equations using
MATLAB R2022, showcasing a distance and positioning relative to the camera, objects,
and buildings for numerical analysis. The left side of the image displays a camera without
errors, depicting its position and angle and how the image projects, as described above.
Conversely, the right-hand camera shows the projection of the lower image affected by
GPS errors, which serve as the basis for our numerical analysis. The rectangles in the left
image symbolize buildings, representing real structures. In this depiction, we calculate the
projections of P(x, y, z) into (xpixel, ypixel) and (xpixel_error, ypixel_error).

Figure 5. Positioning accuracy under location errors. The ‘x’ symbol captured by the red camera
display the correct positioning for object ‘*’, indicating where the image should ideally appear. In
contrast, the ‘+’ symbol captured by the green camera represent the misalignment of objects due to
GPS inaccuracies, illustrating the discrepancy in actual versus expected object locations.

Given the world coordinates of object P(x, y, z) as (21.6, 17.3, 8.4), this point is pro-
jected onto the camera space under both error-prone and error-free scenarios. The erro-
neous and correct image plane coordinates were determined to be (739.5421, 366.0855) and
(550.0000, 360.0000), respectively. These coordinates allowed us to directly observe the
influence of GPS errors.

From Equations (11) and (12), we calculate P′ and P′
e using using these coordinates.

Here, Z is determined using (13). By applying these transformations, we noted the differ-
ences between the projected positions with and without GPS errors as
P′ − P′

e = (−6.8521,−0.2200, 0). This discrepancy is crucial for understanding spatial er-
rors introduced by GPS inaccuracies.

To address this issue, we calculated the translation vector Te, which represents the
necessary adjustment to correct GPS-induced errors. Utilizing (17), we determined Te to be
(4.4940, −5.6051, −0.0120). This calculation is predicted on the assumption that the rotation
matrix R is invertible, allowing us to isolate Te by computing R−1 · (P′ − P′

e).
This experimental validation underscores the practical application of our theoreti-

cal model, and demonstrates how GPS inaccuracies can be quantified and subsequently
corrected. In particular, the calculation of Te illustrates the projected position adjustment
process for virtual objects in AR, ensuring their accurate alignment with real-world locations,
despite the presence of GPS errors. This step is instrumental for object placement precision
enhancement within digital twin environments, and contributes to the overall reliability and
usability of AR technologies in various applications. An X-axis correction of 4.4940 reflects
the distance difference in the east–west direction (longitude), while a Y-axis correction of
−5.6051 indicates the distance difference in the north–south direction (latitude).

To calculate the mean translation vector using (19), we acquired ten points along the
boundary surface and computed their average. This method allowed us to determine
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the average corrections necessary for positioning errors. By averaging the individual
translation vectors derived from these multiple observations, the mean translation vector
was computed as Tmean = (4.7,−5.3).

This mean translation vector indicates an average correction of 4.7 m in the east–west
direction (longitude) and −5.3 m in the north–south direction (latitude). This calculation is
critical for refining the positional accuracy of virtual objects in the AR environment and
ensuring that they align more precisely with their real-world counterparts. This effectively
compensates for the aggregated GPS inaccuracies observed across different data points.

Finally, as shown in Figure 6, the final results demonstrate that the objects segmented
through building object division are displayed correctly from (a) to (d).

Figure 6. The images where the object is correctly displayed along the building’s boundaries. It
shows a video captured while the device is in motion from (a–d).

3.2. Discussion

This study introduces a mathematical model to correct positioning in AR environments,
focusing on the implementation and validation of the proposed algorithm. This highlights
the challenges of comparing our marker- and GPS-based algorithms with others because of
the impracticality of placing markers outdoors and the difficulty in correcting GPS errors
with existing methods. The proposed algorithm aims to display objects precisely and
adjust their locations in an AR setting, suggesting its applicability in various fields and as a
foundational study for location-based services. This discussion emphasizes the novelty of
the algorithm and its potential applications, acknowledging the limitations of comparing it
with other methods owing to its unique approach.

4. Conclusions

In this paper, we successfully demonstrate the implementation of an augmented real-
ity (AR) application capable of accurately rendering 3D objects. By employing advanced
coordinate system linking techniques and semantic segmentation, we overcome the chal-
lenges of GPS inaccuracies and object truncation in AR environments. Our experimental
results demonstrate the effectiveness of using semantic segmentation for object recognition
and movement in an AR setting, leading to the precise alignment of virtual objects with
real-world locations. In addition, our approach for calculating and correcting location
errors based on pixel distance proved to be effective in ensuring the accurate placement of
AR objects. The findings of this study not only contribute to the field of AR by enhancing
the user experience through more accurate and realistic renderings but also pave the way
for future innovations in AR applications, particularly in marketing and advertising. The
ability of the proposed system to seamlessly integrate virtual objects into the real world, as
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evidenced by comprehensive testing and experimentation, holds great potential for future
applications that require high levels of precision and realism in AR environments.
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