
Citation: Oladipupo, E.T.; Abikoye,

O.C.; Awotunde, J.B. A Lightweight

Image Cryptosystem for Cloud-

Assisted Internet of Things. Appl. Sci.

2024, 14, 2808. https://doi.org/

10.3390/app14072808

Academic Editors: Subhas

Mukhopadhyay and Dimitris

Mourtzis

Received: 5 June 2023

Revised: 19 August 2023

Accepted: 21 August 2023

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Lightweight Image Cryptosystem for Cloud-Assisted Internet
of Things
Esau Taiwo Oladipupo 1 , Oluwakemi Christiana Abikoye 2,* and Joseph Bamidele Awotunde 2

1 Department of Computer Science, The Federal Polytechnic Bida, Bida 912211, Nigeria;
taiwotheophilus@gmail.com

2 Department of Computer Science, Faculty of Information and Communication Sciences, University of Ilorin,
Ilorin 240003, Nigeria; awotunde.jb@unilorin.edu.ng

* Correspondence: abikoye.o@unilorin.edu.ng

Abstract: Cloud computing and the increasing popularity of 5G have greatly increased the ap-
plication of images on Internet of Things (IoT) devices. The storage of images on an untrusted
cloud has high security and privacy risks. Several lightweight cryptosystems have been proposed
in the literature as appropriate for resource-constrained IoT devices. These existing lightweight
cryptosystems are, however, not only at the risk of compromising the integrity and security of the
data but also, due to the use of substitution boxes (S-boxes), require more memory space for their
implementation. In this paper, a secure lightweight cryptography algorithm, that eliminates the use
of an S-box, has been proposed. An algorithm termed Enc, that accepts a block of size n divides the
block into L n R bits of equal length and outputs the encrypted block as follows: E = (L

⊗
R)
⊕

R,
where

⊗
and

⊕
are exclusive-or and concatenation operators, respectively, was created. A hash

result, hasR = SHA256(P
⊕

K), was obtained, where SHA256, P, and K are the Secure Hash Al-
gorithm (SHA−256), the encryption key, and plain image, respectively. A seed, S, generated from
enchash = Enc(hashenc, K), where hashenc is the first n bits of hasR, was used to generate a random
image, Rim. An intermediate image, intimage = Rim

⊗
P, and cipher image, C = Enc(intimage, K),

were obtained. The proposed scheme was evaluated for encryption quality, decryption quality, sys-
tem sensitivity, and statistical analyses using various security metrics. The results of the evaluation
showed that the proposed scheme has excellent encryption and decryption qualities that are very sen-
sitive to changes in both key and plain images, and resistance to various statistical attacks alongside
other security attacks. Based on the result of the security evaluation of the proposed cryptosystem
termed Hash XOR Permutation (HXP), the study concluded that the security of the cryptography
algorithm can still be maintained without the use of a substitution box.

Keywords: cloud; cryptography; S-box; cloud-assisted IoT; resource constrained

1. Introduction

Internet of things (IoT) amalgamates diverse devices running on different platforms,
communicate with different caliber of devices, and employ internet to send and receive
messages [1]. Despite the wide acceptability of IoT, standardization, energy management,
IPv6 adoption, and security are fundamental issues of its applications [2]. These problems
of IoT applications emanated from the fact that most IoT devices have limited processing
power, memory, and storage space [3]. These constraints of IoT devices led to the adoption
of edge computing [4], and the need to have access to data and computing resources anytime
and anywhere on demand led to the adoption of cloud computing [5]. IoT applications
employ a cloud to store and sense readings. A computationally costly security program
can easily run in a cloud server and also ensures user privacy and security without having
trouble managing these applications on the device [6]. The fact that a cloud provider has a
huge processing power [7], and the capability of the cloud to make data accessible to IoT

Appl. Sci. 2024, 14, 2808. https://doi.org/10.3390/app14072808 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072808
https://doi.org/10.3390/app14072808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1535-670X
https://orcid.org/0000-0002-8912-6333
https://orcid.org/0000-0002-1020-4432
https://doi.org/10.3390/app14072808
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072808?type=check_update&version=3

Appl. Sci. 2024, 14, 2808 2 of 27

devices anytime and anywhere [8], make cloud computing a very suitable technology in
IoT applications which are, though resource constrained, needed in real-time applications,
where quick and precise responses with vital security are required [9]. These capabilities,
provided by cloud computing to IoT applications, make IoT applicable to almost all works
of life [10]. Hence, the integration of IoT and cloud computing technology is referred to as
cloud-assisted IoT (CIoT) [11], which was called cloudIoT by the authors of [12].

Cloud-enabled IoT frameworks have recently become prominent [13]. However,
connecting different remotely operated IoT devices to the cloud via the internet raises
security and privacy concerns for users [14,15]. Both the IoT and the cloud sides of the CIoT
are vulnerable to security attacks; hence, the need for security of the data on both sides. The
growing awareness of data security during transmission, or when it is stored on the cloud,
explains the reason for the high demand for cryptography algorithms [16]. Conventional
cryptography algorithms, due to their high demand for computing resources for storage
and processing, are not suitable for resource-starved IoT devices [10]. Resource-starved IoT
applications, such as wireless sensor nodes (WSNs) [17,18], radio-frequency identification
(RFID) networks [19], and secure robotic communications [20], require the area-optimized
implementation of the cryptographic algorithm [21]. A lighter version of the cryptography
scheme that requires a low computational storage and power will be more appropriate for
these resource-starved IoT devices [22].

CIoT utilizes prevailing data processing proficiencies of the cloud platform to resolve
massive Internet of Things (IoT) data [23]. A typical CIoT stores its data on the cloud
storage to reduce the problem of data processing, as depicted in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 28

accessible to IoT devices anytime and anywhere [8], make cloud computing a very suitable
technology in IoT applications which are, though resource constrained, needed in real-
time applications, where quick and precise responses with vital security are required [9].
These capabilities, provided by cloud computing to IoT applications, make IoT applicable
to almost all works of life [10]. Hence, the integration of IoT and cloud computing tech-
nology is referred to as cloud-assisted IoT (CIoT) [11], which was called cloudIoT by the
authors of [12].

Cloud-enabled IoT frameworks have recently become prominent [13]. However, con-
necting different remotely operated IoT devices to the cloud via the internet raises security
and privacy concerns for users [14,15]. Both the IoT and the cloud sides of the CIoT are
vulnerable to security attacks; hence, the need for security of the data on both sides. The
growing awareness of data security during transmission, or when it is stored on the cloud,
explains the reason for the high demand for cryptography algorithms [16]. Conventional
cryptography algorithms, due to their high demand for computing resources for storage
and processing, are not suitable for resource-starved IoT devices [10]. Resource-starved
IoT applications, such as wireless sensor nodes (WSNs) [17,18], radio-frequency identifi-
cation (RFID) networks [19], and secure robotic communications [20], require the area-
optimized implementation of the cryptographic algorithm [21]. A lighter version of the
cryptography scheme that requires a low computational storage and power will be more
appropriate for these resource-starved IoT devices [22].

CIoT utilizes prevailing data processing proficiencies of the cloud platform to resolve
massive Internet of Things (IoT) data [23]. A typical CIoT stores its data on the cloud stor-
age to reduce the problem of data processing, as depicted in Figure 1.

Figure 1. A typical CIoT for solving the storage problem of massive IoT data [23].

Existing lightweight cryptosystems have proven to be highly efficient in terms of
their memory and energy consumption. However, they are more suitable for text and bi-
nary data than for multimedia data [24]. As IoT applications are pivoting towards multi-
media-oriented data, such as videoconferencing, surveillance sensors in the environment
or military fields, and medical sensors and applications, a lightweight image cryptosystem
will be more appropriate. In this study, a new lightweight image cryptosystem, that is
suitable for resource-starved IoT applications that eliminates the use of an S-Box in its
design in order to conserve its resources during the implementation of the cryptosystem,
has been proposed.

1.1. Motivation
Confusion and diffusion constitute the two vital features of cryptography techniques

[25,26]. Researchers use substitution boxes (S-boxes) to achieve the confusion property

Figure 1. A typical CIoT for solving the storage problem of massive IoT data [23].

Existing lightweight cryptosystems have proven to be highly efficient in terms of their
memory and energy consumption. However, they are more suitable for text and binary
data than for multimedia data [24]. As IoT applications are pivoting towards multimedia-
oriented data, such as videoconferencing, surveillance sensors in the environment or
military fields, and medical sensors and applications, a lightweight image cryptosystem
will be more appropriate. In this study, a new lightweight image cryptosystem, that is
suitable for resource-starved IoT applications that eliminates the use of an S-Box in its
design in order to conserve its resources during the implementation of the cryptosystem,
has been proposed.

1.1. Motivation

Confusion and diffusion constitute the two vital features of cryptography techniques [25,26].
Researchers use substitution boxes (S-boxes) to achieve the confusion property [27], while the
bit permutation technique is normally used to achieve the diffusion property [28]. However,

Appl. Sci. 2024, 14, 2808 3 of 27

the use of an S-box increases the demands for memory (for storage) and computing power (for
production) [29]. A cryptography algorithm that is capable of replacing an S-box with other less
memory and less power-intensive techniques to achieve the same or higher level of security
(which is still an open research problem) will be more appropriate for securing information in
these resource-constrained IoT applications [29].

1.2. Contribution

In this paper, a lightweight image cryptosystem named Hash XOR Permutation (HXP)
has been proposed. The use of an S-box is eliminated in HXP by applying a hash algorithm,
exclusive-or (XOR) operation, and bit permutation. Through this approach, non-linearity,
confusion, and diffusion properties were built into the HXP. Specifically, the following have
been contributed to the existing knowledge:

i. The use of an S-box and bit permutation techniques to achieve the confusion and
diffusion properties of the cryptography algorithm was replaced with the use of the
XOR function and bit permutation.

ii. A hash algorithm was introduced to make the cryptosystem sensitive to both changes
in the key and plain image bits.

iii. The innovations (i) and (ii) were applied to design a new lightweight image cryptosystem.

The rest of this paper is prepared as follows. Section 2 presents a literature review.
Section 3 explains the materials and methods employed in this study, while Section 4
presents the results and discussion of the results. Section 5 justifies the suitability of the
proposed lightweight cryptography algorithm on resource-starved devices. Finally, the
conclusion and suggestions for future work are presented in Section 6.

2. Literature Review

Security challenges militating against the wide acceptability of cloud computing tech-
nology range from vulnerability to security attacks [14], and breach of confidentiality [30] to
privacy intrusion [16]. In the same vein, IoT applications increase the security and privacy
risk [31] of their users. Luckily, researchers have put up measures, such as cryptography,
steganography, watermarking, and a host of other measures, to secure and protect the
privacy of data on transit or storage mediums.

Cryptography is an effective technique that guarantees data confidentiality, integrity,
authentication, and authorization [32]. However, conventional cryptography algorithms
require enormous memory, processing power, and physical areas for their implementation.
This higher demand for resources makes the conventional cryptography algorithms un-
suitable [33] for implementation on resource-starved IoT devices. An alternative approach
is the use of hardware crypto processors, such as IBM 4758, SafeNet security proces-
sors, smartcards, and Atmel Crypto Authentication devices. It is important to note that
these crypto-processors are also not immune to security attacks [34]. Recently, lightweight
symmetric cryptography algorithms, such as PRESENT, an improved version of PRESENT—
GIFT, RECTANGLE, TWINE, etc., have been developed. Lightweight hash functions and
message authentication codes (MACs), such as SPONGENT, PHOTON, Quark, and Marvin,
which can be efficiently implemented into IoT devices, have been reported in the literature.
Lightweight asymmetric cryptography algorithms that can be used for IoT, such as elliptic
curve cryptography (ECC), as well as post-quantum cryptography lattices and codes, have
also been developed. A typical lightweight cryptography algorithm requires a small RAM
for implementation and is very efficient at processing short messages. However, short
key and short block messages make lightweight cryptography algorithms vulnerable to
different attacks. The short key, for example, can increase vulnerability to key-related
attacks [35], while the short block can also cause problems, such as cipher block chaining
(CBC) eroding faster than other parts when the total quantity of n-bit blocks encrypted
approaches 2 n/2 [36].

Although the authors of [28–37] roughly classified lightweight cryptography (LWC)
algorithms into four categories based on their internal structure, the authors of [29] ac-

Appl. Sci. 2024, 14, 2808 4 of 27

curately categorized LWC algorithms into six groups. The six categories are as follows:
substitution–permutation networks (SPNs), Addition/AND-Rotation-XOR (ARX), Feistel
networks (FNs), generalized Feistel networks (GFNs), non-linear-feedback shift register
(NLFSR), and hybrid. These internal structures are adopted to ensure the security of LWC
algorithms. SPNs use S-boxes to achieve non-linearity; however, hardware implementation
is resource-intensive; hence, it is not appropriate for resource-starved IoT devices. The
same mechanism is used for encryption and decryption in the Feistel structure; therefore,
the Feistel structure is less resource-intensive and more appropriate for resource-starved
devices [38]. ARX structure-based cryptosystems combine addition/AND, rotation, and
XOR operations to achieve non-linearity, diffusion, and confusion properties. The ARX
structure is very simple, and its simplicity makes it more appropriate for lightweight block
ciphers. However, in order to correctly generate plaintext images from cipher images
through the decryption process, the round function of ARX is required to be built on either
a Feistel structure or a generalized Feistel structure [39].

TEA, HIGHT, KATAN, and KLEIN, four of the most popular lightweight cryptography
algorithms, were implemented and evaluated by the authors of [40] based on their memory
efficiency, energy consumption, and the degree of confusion and diffusion. The results of
the analysis revealed that KATAN is more memory efficient than HIGHT, TEA, and KLEIN,
and consumed the least power among the ciphers. In terms of security, KLEIN had the
lowest degree of diffusion and the highest degree of confusion. This behavior of KLEIN
was believed to be related to its SPN structure.

A multiplatform Feistel structure-based lightweight cryptosystem called TWINE was
developed by the authors of [41]. TWINE has a well-organized embedded software, a
small hardware size, a block size of 64 bits, 36 rounds, and a key length of 80 or 128 bits.
TWINE’s rounds have unpredictable four-bit S-boxes and four-bit block permutations as
substitution and permutation layers, respectively. RECTANGLE is another lightweight
multiplatform cryptosystem created by the authors of [42]. RECTANGLE has a block
size of 64 bits, a key length of 80 or 128 bits, and runs on only 25 rounds. It is a bit-
slice block encryption algorithm, requires a small hardware area for its implementation,
and achieves an outstanding software performance. A lightweight image cryptography
algorithm that employed the techniques of message passing and a two-dimensional logistic
chaotic map, consumes a low memory space, is highly secure, and has a high running
performance was designed by the authors of [43]. The algorithm was tested and evaluated.
The scheme’s evaluation results demonstrated that the cryptosystem can withstand key
sensitivity analysis even when its key space is insufficiently large. The results additionally
showed that the encryption system is immune to statistical, differential, known-plaintext,
and brute-force cryptanalysis attacks while consuming little time and space. Table 1
summarizes the various lightweight cryptography algorithms that are used today.

Table 1. Summary of existing work on lightweight cryptography algorithms.

Author Title Algorithm used Strength Weakness

[41]
Lightweight cryptography

Algorithm for
Multiple platforms

Generalized Feistel
structure (GFS)

Less resources-intensive. The
same program code can be

used for encryption
and decryption

It is vulnerable to related
key attacks

[44] An Ultra-Lightweight
Block Cipher Feistel structure Conserves memory

Susceptible to related key
attacks, and requires more
rounds to ensure security

[45] The Noekeon Block Cipher SPN structure

Consumes less power and
has better performance than

the software on
legacy sensors

It is resource-intensive

Appl. Sci. 2024, 14, 2808 5 of 27

Table 1. Cont.

Author Title Algorithm used Strength Weakness

[46]
PRINCE—A low-latency

block cipher for pervasive
computing applications

Feistel structure It conserves
computational resources

It is susceptible to
key-related attacks and
requires more rounds to

ensure security

[47] A New Family of
Lightweight Block Ciphers SPN structure Consumes low power and

exhibits high diffusion
Hardware implementation

is resource-intensive

[48] New Lightweight
DES Variants Feistel structure It uses only one S-Box

S-Box consumes memory
and requires more rounds

to ensure security

[49]

mCrypton—A Lightweight
Block Cipher for the Security

of Low-Cost RFID Tags
and Sensors

Crypton architecture
[50] (SPN structure)

Compact implementation in
both hardware and software

Hardware implementation
is resource-intensive

From the reviewed literature, it appears that SPNs and FNs are more common struc-
tures adopted by researchers to ensure the security of LWC.

3. Materials and Methods

In this section, a detailed description of the algorithms of the proposed cryptosystem
has been provided. The description of the metrics used for the evaluation and the method
of evaluation of the proposed cryptosystem have also been discussed. Table 2 is a symbol
table that outlines the description of the notations used in the description of the algorithms
and the rest of this paper.

Table 2. Description of the notations used in this research paper.

Symbol Description

XOR Exclusive-or

HXP Hash, XOR, and bit permutation⊕
Concatenation operator

⊗ XOR operator

SHA−256 Secure Hash Algorithm 256

P Input image

C Cipher image

σp Contrast of P/standard deviation of pixels in P

µp Luminance of P/mean of pixel in P

σC Contrast of C/standard deviation of pixels in C

µP Luminance of C/mean of pixel in C

varP Variance of P

varC Variance of C

3.1. Proposed Lightweight Image Cryptography Algorithm

The proposed lightweight image cryptosystem (HXP) algorithm is a block cipher
designed for low area overhead. The cipher features bit grouping, the XOR function, and
bit permutation layers. The cipher accommodates a variable block size; hence, it can also
be used with rich-resource IoTs, like conventional cryptography algorithms. There is no
need for an S-box in the proposed image algorithm; hence, it conserves memory. The
architectural design of HXP is shown in Figure 2. Figure 2a depicts the encryption module

Appl. Sci. 2024, 14, 2808 6 of 27

of HXP. The encryption module takes the permutation key and all the pixels in a single row
of the image to be encrypted at a time. The array of pixels is converted into an array A of
n bits.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 28

The encryption module takes the permutation key and all the pixels in a single row of the
image to be encrypted at a time. The array of pixels is converted into an array A of n bits.

Figure 2. HXP architectural design.

The layers making up the HXP cryptosystem are outlined as follows:
i. Bit grouping layer: The bits in A are grouped into two equal parts, L and R, each of

size (n/2) bits. 𝐿 = 𝐴 0 … 𝑛2 − 1 (1)

𝑅 = 𝐴 𝑛2 … 𝑛 − 1 (2)

ii. XOR operation layer: A bitwise XOR operation is carried out on L and R, according
to Equation (3), to form an array of xorbit and the bits in R is concatenated to xorbit
to form xorbitR, which has n bits. The symbol ⨁ represents concatenation in Equa-
tion (4). 𝑥𝑜𝑟𝑏𝑖𝑡 𝑖 = 𝐿 𝑖 ⊗ 𝑅 𝑖 𝑓𝑜𝑟 0 ≤ 𝑖 < 𝑛2 (3)

𝑥𝑜𝑟𝑏𝑖𝑡𝑅 = 𝑥𝑜𝑟𝑏𝑖𝑡 ⊕ 𝑅 (4)

iii. Bit permutation: This layer takes the permutation key, permkey, and xorbitR as in-
puts. Permkey contains an array of random integers with size n. The value of integers
in permkey ranges between 0 and n−1. Each bit of xorbitR is rewritten according to
Equation (5). 𝑒𝑛𝑐𝑏𝑖𝑡𝑠 𝑖 = 𝑥𝑜𝑟𝑏𝑖𝑡𝑅 𝑝𝑒𝑟𝑚𝑘𝑒𝑦 𝑖 𝑓𝑜𝑟 0 ≤ 𝑖 < 𝑛 (5)

The pseudocode in Algorithm 1 outlines the design of the encryption module.

Figure 2. HXP architectural design.

The layers making up the HXP cryptosystem are outlined as follows:

i. Bit grouping layer: The bits in A are grouped into two equal parts, L and R, each of
size (n/2) bits.

L = A
[
0 . . .

n
2
− 1
]

(1)

R = A
[n

2
. . . n − 1

]
(2)

ii. XOR operation layer: A bitwise XOR operation is carried out on L and R, accord-
ing to Equation (3), to form an array of xorbit and the bits in R is concatenated to
xorbit to form xorbitR, which has n bits. The symbol

⊕
represents concatenation in

Equation (4).

xorbit[i] = L[i]⊗ R[i] f or 0 ≤ i <
n
2

(3)

xorbitR = xorbit ⊕ R (4)

iii. Bit permutation: This layer takes the permutation key, permkey, and xorbitR as inputs.
Permkey contains an array of random integers with size n. The value of integers in
permkey ranges between 0 and n − 1. Each bit of xorbitR is rewritten according to
Equation (5).

encbits[i] = xorbitR[permkey[i]] f or 0 ≤ i < n (5)

The pseudocode in Algorithm 1 outlines the design of the encryption module.

Appl. Sci. 2024, 14, 2808 7 of 27

Algorithm 1: Encryption module (block, permkey)

Output: encblock

1. START
2. L = block

[
0 . . . n

2 − 1
]
//a block contains n bits

3 R = A
[n

2 . . . n − 1
]

4. FOR I = 0 TO n
2 − 1

a. xorbit[i] = L[i]⊗ R[i]

5. xorbitR = CONCATENATE(xorbit, R)
6. encbits = CALL encreshufflement(xorbitR, permkey) //Algorithm 2
7. encblock = CONVERT encbits to pixels
8. STOP

Algorithm 2: encreshufflement (blockbits, permkey)

Output: rblockbit

1. START
2. FOR i = 0 TO n − 1 //blockbits has n bits

a. rblockbit[i] = blockbit[permkey[i]]

3. STOP

Figure 2b depicts the encryption process where the encryption module of HXP is used.
The image to be encrypted, pimage, and the encryption key, K, are the two inputs for the
encryption process. The encryption process involves random key generation, random
image generation, and generation of cipher images, which are detailed as follows:

i. Random key generation: An array of random integer, PERMkey, is generated using
the key. Given an image A with dimension (a × b × c), the image A is converted into
a grayscale image, grayA, of dimension (a × b). If a > b, the size of PERMkey will be
a; otherwise, the size of PERMkey will be b.

ii. Random image generation: the bytes of grayA and that of the key are combined
together to form Cbyte. Cbyte is made to pass through SHA−256. The first k bits of
the output of SHA−256, where k is the block size, is selected as the shavalue. The
shavalue is encrypted using the encryption module and the output is used as the seed
to generate the pixels of a random image, Randimage. The size of Randimage is equal
to the size of grayA. A bitwise XOR operation is carried out between Randimage and
grayA to form interimage.

iii. Cipher image generation: The generation of cipherimage is carried according to
Equations (6) and (7), where nrows and ncols represent the quantity of rows and
columns in the interimage, respectively. Equations (6) and (7) outline the description
of how the bits of interimage are manipulated along the rows and columns of the
image, respectively, to form an encrypted image.

cipherimage[row, :]
= Encryptionmodule(interimage[row, ;], PERMkey[row]) f or 0 ≤ row
< nrrows

(6)

cipherimage[:, col]
= Encryptionmodule(cipherimage[:, col], PERMkey[col]) f or 0 ≤ col
< ncols

(7)

The pseudocode in Algorithm 3 represents the design of the encryption process in
HXP.

Appl. Sci. 2024, 14, 2808 8 of 27

Algorithm 3: Encryption process (pimage, K)

Output: encimage

1. START
2. grayA = CONVERT pimage to gray image of dimension h and w
3. cbyte = CONCATENATE (grayA, K)
4. randseed = CALL generaterandomseed(key) // Algorithm 7
5. blocksize = MAXIMUM (h, w)
6. permkey [1. . .blocksize] = GENERATE array of random integers using randseed as seed
7. hashvalue = HASH (cbyte)
8. hashvalue = hashvalue [1. . .blocksize]
9. enchashvalue = CALL EncryptionModule(hashvalue,permkey) // Algorithm 1
10. rseed = CALL generaterandomseed(enchashvalue) // Algorithm 7
11. randimage = Generate random image of size (h × w) using rseed as seed
12. interimage = XOR (randimage, grayA)
13. FOR i = 0 TO h − 1

a. encimage[i, :] = CALL EncryptionModule(interimage[i, :], permkey) //Algorithm 1

14. FOR j = 0 TO w − 1

a. encimage[:,j] = CALL EncryptionModule(encimage[:,j], permkey) // Algorithm 1

15. STOP

The decryption procedure converses the steps in the encryption procedure to recover
the plain image from the cipher image. Algorithms 4 and 5 outline the design of the
decryption module and the decryption process in HXP, respectively.

Algorithm 4: Decryption module (encblock, permkey)

Output: decblock

1. START
2. ecbits = CALL decreshufflement(encblock, permkey) //Algorithm 6
3. L = decbits

[
0 . . . n

2 − 1
]
//a block contains n bits

4. R = decbits
[n

2 . . . n − 1
]

5. FOR i = 0 TO n
2 − 1

a. dxorbit[i] = L[i]⊗ R[i]

6. dxorbitR = CONCATENATE(dxorbit, R)
7. decblock = CONVERT dxorbitR to pixels
8. STOP

Algorithm 5: Decryption process (cimage, hasvalue, key)

Output: decimage

1. START
2. h, w = SIZEOF(cimage)
3. rseed = CALL generaterandomseed(key)//Algorithm 7
4. blocksize = MAXIMUM (h, w)
5. permkey [1. . .blocksize] = random integers obtained from using rseed as seed
6. hashvalue = hashvalue [1. . .blocksize]
7. enchashvalue = CALL EncryptionModule(hashvalue,permkey)//Algorithm 4
8. rseed = CALL generaterandomseed(enchashvalue)//Algorithm 7
9. randimage = Generate random image of size (h x w) using rseed as seed
10. interimage = XOR (randimage, grayA)
11. FOR j = 0 TO w − 1

a. dimage[:,j] = CALL DecryptionModule(cimage[:,j], permkey)//Algorithm 4

12. FOR i = 0 TO h − 1

a. decimage[i, :] = CALL DecryptionModule(dimage[i, :], permkey)//Algorithm 4

13. STOP

Appl. Sci. 2024, 14, 2808 9 of 27

Algorithm 6: Decreshufflement (blockbits, permkey)

Output: im

1. START
2. m = LENGTH (permkey)
1. 3.] im [1. . .m] = empty 1 dimensional array of length m
4. FOR i = 1 TO m

a. im[permkey[i]] = blockbit[i]

5. STOP

Algorithm 7: Generate random seed (key)

Output: randomseed

1. START
2. binkey = key in its binary form
3. LET mstr = ‘10101010′

4. LET b = LENGTH (binkey)
5. LET m = b/8
6. LET mstr = DUPLICATE mstr IN m TIMES such that LENGTH (mstr) = LENGTH (binkey)
7. LET mstr1 = XOR (mstr,binkey)
8. LET m = COUNT number of 1′s in mstr1
9. LET confusionkey = random integers obtained by using m as seed
10. LET mstr = reshuffleforencryption(confusionkey,mstr)
11. mstr2 = XOR (mstr1, mstr)
12. k = mstr2[m:]
13. randseed = CONVER k TO an integer
14. IF randseed = 0 THEN

a. k = mstr2[:m2]
b. randseed = CONVER k TO an integer

ENDIF
15. IF randseed > 232 − 1 THEN

a. randseed = MOD (randseed, 232 − 1)

ENDIF
5. STOP

3.2. Metrics and Methods of Analysis of the Proposed Lightweight Image Cryptosystem

This section begins with the discussion of the metrics used for the analysis, following
which the procedures for carrying out the analysis are outlined.

3.2.1. Metrics Used for the Analysis of the Proposed Algorithm

The security of the cryptosystem and the quality of the image obtained are very
important features to look for in any image cryptosystem. The security of HXP and the
quality of the decrypted images were measured using the following metrics:

i. Encryption quality (EQ): Given the plain image P and its equivalent cipher image C
each with the equal size M × N, the gray values of pixel P(I,j) and C(i,j) in P and C
range from 0. . .255. If fL(P) and fL(C) represent the occurrence of each gray value,
L, in P and C, respectively, then, Equation (8) gives the encryption quality of the
cryptosystem. The higher the value of EQ, the better the |EQ of the cryptosystem.

EQ =
255

∑
L=0

(fL(C)− fL(P))2

256
(8)

ii. Mean square error (MSE): This metric measures the distance between the input P
and the output C, where P and C represent the plain and cipher images of size MN,
respectively. A cryptosystem with a high value of MSE indicates a better encryption

Appl. Sci. 2024, 14, 2808 10 of 27

quality. Mathematically, the MSE of images P and C with pixels P(i, j) and C(i, j)
at grid location (i, j) is outlined by the formula in Equation (9). When the MSE is
used as a metric for measuring the quality of the decrypted image, the image C in
Equation (9) is replaced with the decrypted image D. In this scenario, the value of
the MSE should be low for a good decryption algorithm.

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(P(i, j)− C(i, j))2 (9)

iii. Peak signal-to-noise ratio (PSNR): The PSNR is a standard way of measuring image
fidelity. It compares the quality of the cipher image C with that of the plain image
P. Mathematically, PSNR is defined by Equation (10), where Imax represents the
highest image pixel value. A secure cryptosystem is expected to produce low values
of the PSNR; the low value indicates a great difference between P and C. In the case
of comparing P and a decrypted image, the value of PSNR is expected to be infinity
for a good cipher.

PSNR = 10 log2

(
I2

max

MSE

)
(10)

iv. Structural similarity index measure (SSIM): SSIM values range from −1 to +1. A
value of +1 signifies a similarity between two images, whereas a value of −1 implies
a dissimilarity of the two images. The SSIM compares the two images based on their
luminance, µp, which represents the average of all the pixel values. In contrast, σp,
which represents the standard deviation of all the pixel values, can be implemented
to uncover the structural characteristics of the images, which are obtained by
applying the following formula: P−µp

σp
, where P is the input image. The SSIM

between images P and C can be found by applying the formula in Equation (11),
where D1 and D2 are constant to steady division with the feeble denominator.

SSIM(P, C) =

(
2µpµc + D1

)(
2σpc + D2

)(
µp2 + µc2 + D1

)(
σp2 + σc2 + D2

) (11)

For a secure cryptosystem with good decryption quality, the SSIM between the plain
image P and the cipher image C is expected to be low and close to −1; meanwhile, the
SSIM between P and the decrypted image Di is expected to high and close to 1.

v. Normalized cross-correlation (NCC): NCC is a widely accepted metric for measuring
similarity between the two images P and C. The value of NCC ranges from −1 to
1. The value −1 implies that there is strong correlation between P and C, while the
value 1 indicates that there is no strong correlation between P and C. NCC is also
used in measuring image quality in image processing. Pixels of plain image P and
that of the cipher image C should lack a correlation. Hence, it is expected that the
NCC between P and C should be close to 1 for a good cipher. There should be a
strong correlation between the pixels of P and that of the decrypted image D obtained
from the decryption of C. Hence, the NCC value obtained when P and D are used as
the inputs should be close to −1. Equation (12) details the mathematical description
of NCC:

NCC =
1

M × N
×

∑M,N
i,j (P i,j − µp

)
×(C i,j − µc

)
√

varP × varC
(12)

where M and N represent the height and width of the images P and C (the two images
should have the same size), Pi,j represents the pixel of image P at row i, column j, µp and
µc represent the mean of the pixels in images P and C, respectively, and varP and varC
represent the variance of images P and C, respectively.

Appl. Sci. 2024, 14, 2808 11 of 27

vi. Mean absolute error (MAE): The MAE can be used in the determination of an image’s
quality and the resistance of an image cryptosystem to differential attacks. An image
cryptosystem is considered secure if the value of MAE is greater than 75; otherwise, the
cryptosystem is said to be insecure. When comparing cryptosystems, a cryptosystem
that has a higher value of MAE is said to be more secure. When considering the quality
of the plain image and decrypted image obtained from the decryption of the cipher
image, a cryptosystem that has the lower value of MAE is said to produce a higher
quality image than the one with a higher value of MAE. Equation (13) represents the
formula for determining the MAE of a cryptosystem:

MAE =
1

MN

M

∑
i=1

N

∑
j=1

|P(i, j)− C(i, j)| (13)

where P(i, j), and C(i, j) are the pixels in P and C at grid location (i, j), respectively.

vii. Normalized absolute error (NAE): NAE is a metric that can be used to compare the
quality of an image with that of a reference image. If the value of NAE is high, it
means that the image quality is low. A low value of NAE implies a higher quality of
the image. Equation (14) represents the formula for calculating the NAE between the
reference image P and image C.

∑M,N
i,j=1(|P(i, j)− C(i, j)|)

∑M,N
i,j=1 P(i, j)

(14)

viii. Maximum difference (MD): The MD is determined by obtaining the maximum value
when corresponding pixels at grid location (i,j) of plain image P and the cipher image
C are subtracted from each other, as shown in Equation (15). A higher value of the
MD indicates a significant difference between P and C. Hence, a cryptosystem with a
higher value of MD is said to be more secure than the one with a lower value. In the
case of consideration of P and the decrypted image D obtained from the decryption
of C, a lower value of the MD is desirable. A cryptosystem with a lower value of the
MD between the plain image and the decrypted image is said to be better, as a lower
value indicates that there is no substantial alteration between the two images. The
formula for finding the MD is outlined by Equation (15).

MD = MAX(P(i, j)− C(i, j)) (15)

ix. Average difference (AD): A higher value of the AD, that can be obtained when the plain
image P and the cipher image C are used for the computation, signifies that the image
cryptosystem is secure, while a low value implies a less secure cryptosystem. In the
case of the computation of the AD between P and the decrypted image D, which can
be obtained when C undergoes the decryption process, a lower value of AD implies a
better quality of the decrypted image, while a high value indicates that the decryption
process cannot obtain an image that is similar to P from C. Equation (16) represents
the formula for determining the AD between the two images P and C, where P(i, j)
and C(i, j) represent the pixels at grid location (i,j) of P and C, respectively.

AD =
1

MN

M

∑
i=1

N

∑
j=1

(P(i, j)− C(i, j)) (16)

x. Structural content (SC): SC is another metric that can be used to measure the image
quality. The image quality of a processed image, Pm, is a measure of the degradation
of pm when compared to an ideal image, P. Achieving a value of 1 for the SC indicates
a high quality of Pm, while a higher value indicates a low quality of Pm. For a good
cryptosystem, when the cipher image Pm is compared with the original image P,

Appl. Sci. 2024, 14, 2808 12 of 27

it is expected that the value of SC should be high for the cipher to be regarded as
secure. When the decrypted image D is compared to P, it is expected that a good
cryptosystem should provide a SC of 1 in order for the cipher to be rated as being able
to retrieve the exact copy of P from the cipher image Pm. Equation (17) represents the
formula for calculating the SC between the original image P and the processed image
(cipher/decrypted) Pm.

SC =
∑M,N

i,j
(

Pi,j
)2

∑M,N
i,j

(
Pmi,j

)2 (17)

xi. Two-dimensional correlation coefficient (2DCC): The 2DCC can be used to calculate
the similarity or difference between two images. If the value of the 2DCC is small
(or zero), the two images are said to be different. A large value of the 2DCC implies
that the two images are similar. Equation (18) represents the formular for finding the
2DCC between two images P and C.

2DCC =
∑M,N

i,j (P i,j − µp

)
×(C i,j − µc

)
√√√√((∑M,N

i,j (P i,j − µp

)2
)
×
(

M,N
∑
i,j

(C i,j − µc

)2
)) (18)

where Pi,j, Ci,j, µp, and µc are the pixels at grid location (i,j) of P and C, and the averages of
the pixels in P and C, respectively.

xii. Differential cryptanalysis: The net pixel change rate (NPCR) [51] and the unified average
change intensity (UACI) [52] are the commonly used metrics for measuring the resistance
of a cipher to cryptanalysis attack between two images P and C. The ideal values of the
NPCR and UACI, according to the authors of [53], are 99.6093% and 33.4635%, respec-
tively, for the differential cryptanalysis-resistant cipher. The formulae for determining
the NPCR and UACI are given in Equations (19) and (20), respectively:

NPCR =
∑i,j D(i, j)

M × N
(19)

UACI =
∑i,j

E(i,j)
255

M × N
(20)

where D(i,j) = 0 if P(i, j) = C(i, j); otherwise, D(i, j) = 1 and E(i, j) = abs(P(i, j)− C(i, j) .

xiii. Histograms are graphical representations of the distribution of gray levels in the pixels
of images [54]. Ciphertext images always have a uniform distribution of pixels; in
the case of a plaintext image, these pixels are jerky. A uniform histogram of a cipher
image therefore indicates a secure encryption scheme [55]. A Chi-square test was
carried out to validate the histogram’s uniformity. The formula for calculating the
uniformity of histograms is given by Equation (21):

χ2 =
256

∑
i=1

(Oi − E)2

E
(21)

where i is the pixel value in the interval (0. . ..255), Oi is the observed frequency of each i,
and for a grayscale image with height M and width N, the expected frequency E = M×N

256 .
The significance level ∝ was set to 0.05. A Chi-square test was carried out and the p-value
was obtained. If the p-value <=∝, the histogram is not uniform. If the p value > ∝, then the
histogram is uniform.

xiv. Adjacent pixels correlation coefficient: The correlation coefficient of adjacent pixels in
an image can be calculated by applying Equation (22) [56]:

Appl. Sci. 2024, 14, 2808 13 of 27

E(x) = 1

n

n
∑

i=1
xi, D(x) = 1

n

n
∑

i=1
(x i − E(x))2

γx,y =
cov(x,y)(√

D(x)
)(√

D(y)
) , D(x) ̸= 0 and D(y) ̸= 0

cov(x, y) = 1
n

n
∑

i=1
(x i − E(x))(y i − E(y))

(22)

where xi is the grayscale value of a pixel, n is the number of pairs (xi, yi), and E(x) and E(y)
are the mean values of xi and yi, respectively. It is expected that the results of an adjacent
pixel correlation coefficient of a good encryption scheme should be close to zero [50].

xv. The statistical measure that was used to test the entropy of the proposed image
cryptosystem is given by the formula in Equation (23):

H(m) =
2N−1

∑
i=0

P(mi)log2

(
1

P(mi)

)
(23)

where m represents the image, 2N represents the pixel sample space, mi represents the
pixel i of image m, and P(mi) represents the probability of mi. The entropy H(m) of an
image, encrypted with a 2N pixel sample space, is N. The pixel space was 256; hence,
2N = 256 = 28. The maximum value of N was 8. In order for an image cryptosystem to be
rated as resistant to an entropy attack, the result of the entropy analysis of the encrypted
image should be close to 8. A cryptosystem that has an information entropy H(m) very
close to 8 is said to be resistant to an entropy attack.

3.2.2. Methods of Analysis

In this section, the details of the analysis carried out on the proposed lightweight
image cryptosystem are discussed. The following analyses were carried out: simulation,
system sensitivity, statistical, and required resources analyses.

i. Procedure for simulation analysis: ‘airplane.tiff’,’baboon.tiff’,’boat.tiff’,’lena.tiff’, and
‘pepper.tiff’ were retrieved from the USC-SIPI image database (http://sipi.usc.edu/
database/) for simulation purposes. Each of the images was converted into a grayscale
image. Each of the grayscale images was made to pass through an encryption al-
gorithm of the proposed image cryptosystem to obtain a cipher image. Each of the
obtained cipher images was also made to pass through the decryption algorithm of
the proposed image cryptosystem to ascertain whether or not the decryption process
is able to recover the original image from the cipher image.

ii. Procedure for encryption/decryption quality analysis: In order to justify the claim as
per the quality of the images produced by the encryption and decryption processes
and the security of the proposed cryptosystem, metrics 1–10 were used. For EQ, the
images produced by the encryption process were compared with the original images.
For DQ, the images produced by the decryption process were compared with the
original images.

iii. Procedure for system sensitivity analysis: Key sensitivity and plain image sensitivity
were used to test the system’s sensitivity via the following statistical procedures:

a. Key sensitivity: A key, K, was randomly generated. A single bit at a random
location within the bits of K was flipped to obtain another key, K1. The keys K
and K1 were used in turns to encrypt the image P to obtain the cipher images
C and C1, respectively. Metrics 3–11 were used to compare C and C1. This
procedure was repeated for each of the test images.

b. Plain image sensitivity: A key, K, was randomly generated. A single bit within
the bits of an image P at a random location was flipped to obtain another
image, P1. Both the P and P1 images were encrypted using key K to obtain the
cipher images C and C1, respectively. Metrics 3–11 were used to compare C
and C1. This procedure was repeated for each of the test images.

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/

Appl. Sci. 2024, 14, 2808 14 of 27

c. Cipher image sensitivity: A key, K, was randomly generated. A plain image,
P, was encrypted using the proposed image encryption algorithm to form
the cipher image, C. A single bit within the bits of image C was flipped at a
randomly selected location within the bits of image C to obtain another cipher
image, C1. Both C and C1 were decrypted using the decryption algorithm of
the proposed image cryptosystem and key K to obtain the decrypted images
D and D1, respectively. Metrics 3–11 were used to compare D and D1. This
procedure was repeated for each of the test images.

iv. Statistical analysis procedure: The purpose of statistical analysis is to test the algorithm
in order to ascertain its resistance to statistical attacks. Histograms, the adjacent pixel
correlation coefficient, and entropy analysis were employed in this case as follows:

a. Histogram analysis procedure: For each of the test images, histograms of the
plain image and that of the cipher image were taken and the Chi-square test
was used to verify the uniformity of each histogram.

b. The adjacent pixel correlation coefficient: A thousand randomly selected pixels
along the horizontal, vertical, and diagonal directions of each of the test images
were plotted on scatter graphs for each direction. The same was conducted
for each of the cipher images obtained from each test image. The correlation
coefficient, in each case, was also calculated to verify the resistance of the
cryptosystem against correlation coefficient attacks.

c. Entropy analysis: Each of the test images were encrypted using the proposed
encryption scheme. Entropy analysis, as specified by Equation (23), of both the
plain and cipher images were measured.

4. Results and Discussions

In this section, the experimental results and the results of comparison of HXP with the
existing algorithms are discussed. Implementation of the HXP was carried out on a laptop
with the following configuration:

Processor AMD E1−1200 APU with Radeon(tm) HD
Graphics 1.40 GHz

Installed RAM 4.00 GB (3.59 GB usable)
Device ID E4C0446D−57F5−4475−8A60-F1D4A41F6048
Product ID 00331−10000−00001-AA508
System type 64-bit operating system, x64-based processor

4.1. Discussion of Experimental Results

i. Simulation results: Figure 3 shows the simulation results. The input images are shown
in Figure 3a–e. The outputs of these images following their conversion into grayscale
images are shown in Figure 3f–j. The resulting images when the images in Figure 3f–j
are subjected to the encryption process are shown in Figure 3k–o, and Figure 3p–t
represent the images recovered from the decryption of the images in Figure 3k–o.
By visual inspection, the images in Figure 3k–o are very different from the images
in Figure 3f–j. Comparing the images through visual inspection also shows that
Figures 3f–j and 3p–t are identical. These results reveal that HXP is capable of securing
images and that the recovered images from the cipher images are of a high quality,
such that mere visual inspection cannot detect any difference between the original
image and the decrypted images.

Appl. Sci. 2024, 14, 2808 15 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 28

Installed RAM 4.00 GB (3.59 GB usable)
Device ID E4C0446D−57F5−4475−8A60-F1D4A41F6048
Product ID 00331−10000−00001-AA508
System type 64-bit operating system, x64-based processor

4.1. Discussion of Experimental Results
i. Simulation results: Figure 3 shows the simulation results. The input images are

shown in Figure 3a–e. The outputs of these images following their conversion into
grayscale images are shown in Figure 3f–j. The resulting images when the images in
Figure 3f–j are subjected to the encryption process are shown in Figure 3k–o, and
Figure 3p–t represent the images recovered from the decryption of the images in Fig-
ure 3k–o. By visual inspection, the images in Figure 3k–o are very different from the
images in Figure 3f–j. Comparing the images through visual inspection also shows
that Figure 3f–j and Figure 3p–t are identical. These results reveal that HXP is capable
of securing images and that the recovered images from the cipher images are of a
high quality, such that mere visual inspection cannot detect any difference between
the original image and the decrypted images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 3. (a) airplain.tiff, (b) baboon.tiff, (c) boat.tiff, (d) lena.tiff, (e) pepper.tiff, (f–j) grayscale im-
ages of (a–e), (k–o) encrypted images of (f–j), and (p–t) decrypted images of (k–o), respectively.
Figure 3. (a) airplain.tiff, (b) baboon.tiff, (c) boat.tiff, (d) lena.tiff, (e) pepper.tiff, (f–j) grayscale images
of (a–e), (k–o) encrypted images of (f–j), and (p–t) decrypted images of (k–o), respectively.

ii. Encryption quality of the HXP algorithm: The encryption quality of HXP was analyzed
using the metrics one to eleven. Each cipher image C, in Figure 3k–o, was compared
with their corresponding original image P, in Figure 3f–j, based on these metrics.
Table 3 shows the results that were obtained. The high values of EQ, MSE, MAE, NAE,
MD, and AD indicate that C is very different from P. Furthermore, the low values
of the metrics PSNR, SSIM, NCC, and DCC establish the fact that C is very different
from P. The inability of the algorithm to produce a value of one for the metric SC is
also an indication that C is different from P. Overall, these results showed that the
quality of C produced by the HXP algorithm is not of the same quality as that of P.
This is an indication of a secure image encryption algorithm.

iii. Decryption quality of HXP: Metrics two to ten were used to measure the
decryption quality of HXP. The values of these metrics were compared with the
ideal values of these metrics in order to ascertain the quality of the decrypted
images. Table 4 shows the results of the evaluation. The first row shows the
ideal value of each metric in the heading of the table, while the subsequent
rows show the obtained value for each metric in the headings of the columns
of the table when the images in Figure 3p–t were compared with the images in

Appl. Sci. 2024, 14, 2808 16 of 27

Figure 3f–j. From the results in Table 4, it is clear that the obtained values for
all the tests images are just the same as the ideal value. These results show that
the recovered images from the encrypted images have the same quality as the
original images. Hence, the HXP algorithm has an excellent decryption quality.

Table 3. Results of the encryption quality analysis of HXP.

Image EQ PSNR SC SSIM NCC DCC MSE MAE NAE MD AD

airplane.tiff 2,869,083 8.0041 1.1062 0.0095 −0.0016 −0.0016 10,296.2 82.9506 0.4629 227 67.3335
baboon.tiff 750,867.4 9.5204 0.9773 0.0087 0 0 7261.71 71.0481 0.5481 221 36.4318

boat.tiff 1,533,181 9.2952 1.0287 0.009 0.0009 0.0009 7648.14 72.5083 0.559 248 37.4054
lena.tiff 623,642.2 9.2399 1.0012 0.0096 0.0022 0.0022 7746.15 72.895 0.5876 235 34.6345

pepper.tiff 2,610,186 8.8704 1.0452 0.0097 −0.002 −0.002 8434.09 75.6136 0.629 222 34.1703

Table 4. Results of the decryption quality analysis of HXP.

Image PSNR SC SSIM NCC DCC MSE MAE NAE MD AD

Ideal values Inf 1 1 1 1 0 0 0 0 0
airplane.tiff inf 1 1 1 1 0 0 0 0 0
baboon.tiff inf 1 1 1 1 0 0 0 0 0

boat.tiff inf 1 1 1 1 0 0 0 0 0
lena.tiff inf 1 1 1 1 0 0 0 0 0

pepper.tiff inf 1 1 1 1 0 0 0 0 0

iv. System Sensitivity Analysis Results

Measuring the system’s sensitivity involves the analysis of the degree of changes in
the cipher image when a slight change is made on either a key or plain image and the
degree of changes in the plain image when a slight change is made on a cipher image. The
three dimensions of sensitivity, namely the key, plain image, and cipher image sensitivity,
of the proposed image cryptosystem were carried out. In each case, metrics two to twelve,
described above, were employed in the system sensitivity analysis.

i. Key Sensitivity Analysis Results The results of the key sensitivity analysis are shown
in Table 5. As shown in Table 5, the values of PSNR, SSIM, NCC, and DCC were
greatly reduced when compared to the ideal values when two images that were
of the same quality were compared. These results show that the obtained cipher
images are different and are not of the same quality. The high values of MSE,
MAE, MD, and AD are indicators that the cipher images are very different. The
values of the NPCR and UACI were very close to the ideal values expected of a
cryptosystem that is resistant to differential cryptanalysis. These results show that a
small change in the key causes an enormous change in the cipher images. Hence,
HXP is key sensitive.

Table 5. Results of key sensitivity analysis.

Image PSNR SC SSIM NCC DCC MSE MAE NAE MD AD NPCR UACI

airplane.tiff 7.7493 1.0012 0.0055 0.0001 0.0001 10,918.08 85.2896 0.6693 255 42.6 99.6078 33.4469
baboon.tiff 7.7494 0.9982 0.0068 0.0013 0.0013 10,917.94 85.3712 0.6698 255 42.7691 99.6178 33.4789

boat.tiff 7.7504 1.0028 0.0073 0.0021 0.0021 10,915.36 85.3001 0.669 255 42.7253 99.6208 33.451
lena.tiff 7.7413 0.9995 0.0045 −0.001 −0.001 10,938.39 85.4321 0.6715 255 42.5178 99.6143 33.5028

pepper.tiff 7.7512 1.0012 0.0063 0.0013 0.0013 10,913.51 85.3219 0.6696 255 42.6955 99.6426 33.4596

ii. Plaintext Sensitivity analysis and Results and Results The results shown in Table 6
are the obtained results when the proposed cryptosystem was subjected to plaintext
sensitivity analysis. As can be seen, the obtained results resembles the results that

Appl. Sci. 2024, 14, 2808 17 of 27

were obtained during the key sensitivity analysis. These results reveal that HXP is
very sensitive to a slight change in the plain image.

Table 6. Plain image sensitivity analysis results.

Image PSNR SC SSIM NCC DCC MSE MAE NAE MD AD NPCR UACI

airplane.tiff 7.7561 0.9993 0.0075 0.0019 0.0019 10,901.08 85.2592 0.6679 255 42.6426 99.6025 33.435
baboon.tiff 7.7637 1.0024 0.0081 0.0028 0.0028 10,882.12 85.1354 0.667 255 42.6557 99.593 33.3864

boat.tiff 7.7586 0.9979 0.0078 0.0024 0.0024 10,894.76 85.1562 0.668 255 42.5446 99.5953 33.3946
lena.tiff 7.7697 0.9987 0.0094 0.0041 0.0041 10,867.12 84.9817 0.6671 255 42.4845 99.6162 33.3262

pepper.tiff 7.7388 1 0.0037 −0.0016 −0.0016 10,944.68 85.4524 0.6706 255 42.6269 99.6231 33.5107

iii. Cipher Image Sensitivity Analysis From the results shown in Table 7, it is obvious
that HXP has a poor cipher image sensitivity. This is revealed from the values of
PSNR, SC, SSIM, NCC, DCC MSE, MAE, NAE, MD, and AD, that were very close to
the ideal values when two images of a similar quality were compared. These results
revealed that there was no significant difference between the cipher image and the
altered cipher image. This means that the two cipher images are of a similar quality.
The obtained results for the NPCR and UACI were very far from the ideal values
for the images that were different. Hence, HXP has a poor cipher image sensitivity.
However, this poor cipher image sensitivity should not be seen as a weakness,
as cipher image sensitivity and a chosen cipher image attack are not related. On
the contrary, a cryptosystem that has a poor cipher image sensitivity is capable of
resisting against certain noise interference. Hence, it can be said by these results
that the proposed lightweight cryptosystem is resistant to some noise interference.

Table 7. Cipher image sensitivity analysis results.

Image PSNR SC SSIM NCC DCC MSE MAE NAE MD AD NPCR UACI

airplane.tiff inf 1 1 1 1 0 0 0 0 0 0.0004 0
baboon.tiff inf 1 1 1 1 0 0 0 0 0 0.0004 0

boat.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0
lena.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0

pepper.tiff inf 1 1 1 1 0 0 0 0 0 0.0004 0

v. Statistical Analysis and Results

i. Histogram and Chi-Square Analysis Results Each of the figures in
Figures 4–8 shows the plain image, histogram of the plain image, the cipher im-
age, and histogram of the cipher image, respectively. By visual inspection, the
histograms of the plain images are not uniform, while those of the encrypted
images appear uniform. The results from the chi-square tests carried out on the
histograms are shown in Table 8. As shown in Table 8, the chi-square values for
the plain images were very high, while the chi-square values of the encrypted
images were very low. The lower the value of chi-square, the more uniform
the histogram. All the p-values of the plain images were found to be less than
the significance value; hence, their histogram is not uniform. In contrast, all
the p-values of the encrypted images were greater than the significance value
of 0.05; hence, they are uniform. These results prove that HXP is resistant to
histogram analysis.

ii. Correlation Coefficient Analysis and Results Each of the figures in
Figures 9–13 show the plain image, the graphs of the horizontal correlation
coefficient (HCC), the vertical correlation coefficient (VCC), and the diagonal
correlation coefficient of the adjacent pixels of the plain image in the first row,
and the encrypted image, the graphs of the HCC, VCC, and DCC of the en-

Appl. Sci. 2024, 14, 2808 18 of 27

crypted image in the second row, respectively. Table 9 shows the HCC, VCC,
and DCC of the plain and encrypted images in Figures 9–13. As shown in Fig-
ures 9–13, the correlation between the adjacent pixels of the plain images was
very high for the HCC, VCC, and DCC, while those of the encrypted images
appeared to be very low. These results reveal that the proposed lightweight
image encryption system can successfully destroy the correlation between the
adjacent pixels of the images. Hence, HXP is resistant to correlation coeffi-
cient analysis.

iii. Entropy Analysis Results Table 10 shows the information entropies of the plain
and encrypted images in Figures 3f–j and 3k–o, respectively. The entropies of
the plain images were low (meaning not close to the expected value of eight),
while the entropies of the encrypted images were high (close to eight). These
results show that HXP introduces enough confusion into the encrypted image;
therefore, the encryption system is immune to entropy analysis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 28

boat.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0
lena.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0

pepper.tiff inf 1 1 1 1 0 0 0 0 0 0.0004 0

v. Statistical Analysis and Results
i. Histogram and Chi-Square Analysis Results

Each of the figures in Figures 4–8 shows the plain image, histogram of the
plain image, the cipher image, and histogram of the cipher image, respec-
tively. By visual inspection, the histograms of the plain images are not uni-
form, while those of the encrypted images appear uniform. The results from
the chi-square tests carried out on the histograms are shown in Table 8. As
shown in Table 8, the chi-square values for the plain images were very high,
while the chi-square values of the encrypted images were very low. The lower
the value of chi-square, the more uniform the histogram.

Figure 4. Histogram analysis of the plan and encrypted airplain.tiff.

Figure 5. Histogram analysis of the plan and encrypted baboon.tiff.

Figure 6. Histogram analysis of the plan and encrypted boat.tiff.

Figure 4. Histogram analysis of the plan and encrypted airplain.tiff.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 28

boat.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0
lena.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0

pepper.tiff inf 1 1 1 1 0 0 0 0 0 0.0004 0

v. Statistical Analysis and Results
i. Histogram and Chi-Square Analysis Results

Each of the figures in Figures 4–8 shows the plain image, histogram of the
plain image, the cipher image, and histogram of the cipher image, respec-
tively. By visual inspection, the histograms of the plain images are not uni-
form, while those of the encrypted images appear uniform. The results from
the chi-square tests carried out on the histograms are shown in Table 8. As
shown in Table 8, the chi-square values for the plain images were very high,
while the chi-square values of the encrypted images were very low. The lower
the value of chi-square, the more uniform the histogram.

Figure 4. Histogram analysis of the plan and encrypted airplain.tiff.

Figure 5. Histogram analysis of the plan and encrypted baboon.tiff.

Figure 6. Histogram analysis of the plan and encrypted boat.tiff.

Figure 5. Histogram analysis of the plan and encrypted baboon.tiff.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 28

boat.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0
lena.tiff inf 1 1 1 1 0 0 0 0 0 0.0008 0

pepper.tiff inf 1 1 1 1 0 0 0 0 0 0.0004 0

v. Statistical Analysis and Results
i. Histogram and Chi-Square Analysis Results

Each of the figures in Figures 4–8 shows the plain image, histogram of the
plain image, the cipher image, and histogram of the cipher image, respec-
tively. By visual inspection, the histograms of the plain images are not uni-
form, while those of the encrypted images appear uniform. The results from
the chi-square tests carried out on the histograms are shown in Table 8. As
shown in Table 8, the chi-square values for the plain images were very high,
while the chi-square values of the encrypted images were very low. The lower
the value of chi-square, the more uniform the histogram.

Figure 4. Histogram analysis of the plan and encrypted airplain.tiff.

Figure 5. Histogram analysis of the plan and encrypted baboon.tiff.

Figure 6. Histogram analysis of the plan and encrypted boat.tiff. Figure 6. Histogram analysis of the plan and encrypted boat.tiff.

Appl. Sci. 2024, 14, 2808 19 of 27
Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 28

Figure 7. Histogram analysis of the plan and encrypted lena.tiff.

Figure 8. Histogram analysis of the plan and encrypted pepper.tiff.

Table 8. Results of Chi-square analysis for Figures 4–8.

Plain image Encrypted image
Image Chi-square p-Value Remark Chi-square p-Value Remark

airplane.tiff 564,672.6 0 not uniform 216.5977 0.961 Uniform
baboon.tiff 134,688.4 0 not uniform 225.127 0.911 Uniform

boat.tiff 381,445.8 0 not uniform 280.6582 0.129 Uniform
lena.tiff 91,011.39 0 not uniform 209.1113 0.984 Uniform

pepper.tiff 79,851.4 0 not uniform 289.3418 0.069 Uniform

All the p-values of the plain images were found to be less than the significance value;
hence, their histogram is not uniform. In contrast, all the p-values of the encrypted images
were greater than the significance value of 0.05; hence, they are uniform. These results
prove that HXP is resistant to histogram analysis.

ii. Correlation Coefficient Analysis and Results
Each of the figures in Figures 9–13 show the plain image, the graphs of the horizontal

correlation coefficient (HCC), the vertical correlation coefficient (VCC), and the diagonal
correlation coefficient of the adjacent pixels of the plain image in the first row, and the
encrypted image, the graphs of the HCC, VCC, and DCC of the encrypted image in the
second row, respectively. Table 9 shows the HCC, VCC, and DCC of the plain and en-
crypted images in Figures 9–13. As shown in Figures 9–13, the correlation between the
adjacent pixels of the plain images was very high for the HCC, VCC, and DCC, while
those of the encrypted images appeared to be very low. These results reveal that the pro-
posed lightweight image encryption system can successfully destroy the correlation be-
tween the adjacent pixels of the images. Hence, HXP is resistant to correlation coefficient
analysis.

Figure 7. Histogram analysis of the plan and encrypted lena.tiff.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 28

Figure 7. Histogram analysis of the plan and encrypted lena.tiff.

Figure 8. Histogram analysis of the plan and encrypted pepper.tiff.

Table 8. Results of Chi-square analysis for Figures 4–8.

Plain image Encrypted image
Image Chi-square p-Value Remark Chi-square p-Value Remark

airplane.tiff 564,672.6 0 not uniform 216.5977 0.961 Uniform
baboon.tiff 134,688.4 0 not uniform 225.127 0.911 Uniform

boat.tiff 381,445.8 0 not uniform 280.6582 0.129 Uniform
lena.tiff 91,011.39 0 not uniform 209.1113 0.984 Uniform

pepper.tiff 79,851.4 0 not uniform 289.3418 0.069 Uniform

All the p-values of the plain images were found to be less than the significance value;
hence, their histogram is not uniform. In contrast, all the p-values of the encrypted images
were greater than the significance value of 0.05; hence, they are uniform. These results
prove that HXP is resistant to histogram analysis.

ii. Correlation Coefficient Analysis and Results
Each of the figures in Figures 9–13 show the plain image, the graphs of the horizontal

correlation coefficient (HCC), the vertical correlation coefficient (VCC), and the diagonal
correlation coefficient of the adjacent pixels of the plain image in the first row, and the
encrypted image, the graphs of the HCC, VCC, and DCC of the encrypted image in the
second row, respectively. Table 9 shows the HCC, VCC, and DCC of the plain and en-
crypted images in Figures 9–13. As shown in Figures 9–13, the correlation between the
adjacent pixels of the plain images was very high for the HCC, VCC, and DCC, while
those of the encrypted images appeared to be very low. These results reveal that the pro-
posed lightweight image encryption system can successfully destroy the correlation be-
tween the adjacent pixels of the images. Hence, HXP is resistant to correlation coefficient
analysis.

Figure 8. Histogram analysis of the plan and encrypted pepper.tiff.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 28

Figure 9. Correlation analysis of the plain and encrypted airplane.tiff.

Figure 10. Correlation analysis of the plain and encrypted baboon.tiff.

Figure 9. Correlation analysis of the plain and encrypted airplane.tiff.

Appl. Sci. 2024, 14, 2808 20 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 28

Figure 9. Correlation analysis of the plain and encrypted airplane.tiff.

Figure 10. Correlation analysis of the plain and encrypted baboon.tiff. Figure 10. Correlation analysis of the plain and encrypted baboon.tiff.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 28

Figure 11. Correlation analysis of the plain and encrypted boat.tiff.

Figure 12. Correlation analysis of the plain and encrypted lena.tiff.

Figure 11. Correlation analysis of the plain and encrypted boat.tiff.

Appl. Sci. 2024, 14, 2808 21 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 28

Figure 11. Correlation analysis of the plain and encrypted boat.tiff.

Figure 12. Correlation analysis of the plain and encrypted lena.tiff. Figure 12. Correlation analysis of the plain and encrypted lena.tiff.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 28

Figure 13. Correlation analysis of the plain and encrypted pepper.tiff.

Table 9. Correlation coefficient of the adjacent pixels of the plain and encrypted images in Figures
9–13.

 Plain image Encrypted image
Image Horizontal Vertical Diagonal Horizontal Vertical Diagonal

airplane.tiff 0.9556 0.9709 0.9556 -0.0239 -0.0239 -0.036
baboon.tiff 0.7774 0.8726 0.7774 -0.0034 -0.0034 -0.0149

boat.tiff 0.972 0.9268 0.972 -0.0215 -0.0215 -0.0636
lena.tiff 0.9852 0.972 0.9852 0.0156 0.0156 0.0027

pepper.tiff 0.9764 0.9755 0.9764 -0.0023 -0.0023 0.0169

iii. Entropy Analysis Results
Table 10 shows the information entropies of the plain and encrypted images in Figure

3f–j and Figure 3k–o, respectively. The entropies of the plain images were low (meaning
not close to the expected value of eight), while the entropies of the encrypted images were
high (close to eight). These results show that HXP introduces enough confusion into the
encrypted image; therefore, the encryption system is immune to entropy analysis.

Table 10. Entropies of the plain images in Figure 3f–j and the encrypted images in Figure 3k−o.

Image Plain image Encrypted image
airplane.tiff 6.66391 7.99934
baboon.tiff 7.76244 7.99941

boat.tiff 7.19137 7.99932
lena.tiff 7.7502 7.99941

pepper.tiff 7.66983 7.99927

Figure 13. Correlation analysis of the plain and encrypted pepper.tiff.

Appl. Sci. 2024, 14, 2808 22 of 27

Table 8. Results of Chi-square analysis for Figures 4–8.

Plain image Encrypted image

Image Chi-square p-Value Remark Chi-square p-Value Remark

airplane.tiff 564,672.6 0 not uniform 216.5977 0.961 Uniform
baboon.tiff 134,688.4 0 not uniform 225.127 0.911 Uniform

boat.tiff 381,445.8 0 not uniform 280.6582 0.129 Uniform
lena.tiff 91,011.39 0 not uniform 209.1113 0.984 Uniform

pepper.tiff 79,851.4 0 not uniform 289.3418 0.069 Uniform

Table 9. Correlation coefficient of the adjacent pixels of the plain and encrypted images in
Figures 9–13.

Plain image Encrypted image

Image Horizontal Vertical Diagonal Horizontal Vertical Diagonal

airplane.tiff 0.9556 0.9709 0.9556 −0.0239 −0.0239 −0.036
baboon.tiff 0.7774 0.8726 0.7774 −0.0034 −0.0034 −0.0149

boat.tiff 0.972 0.9268 0.972 −0.0215 −0.0215 −0.0636
lena.tiff 0.9852 0.972 0.9852 0.0156 0.0156 0.0027

pepper.tiff 0.9764 0.9755 0.9764 −0.0023 −0.0023 0.0169

Table 10. Entropies of the plain images in Figure 3f–j and the encrypted images in Figure 3k−o.

Image Plain image Encrypted image

airplane.tiff 6.66391 7.99934
baboon.tiff 7.76244 7.99941

boat.tiff 7.19137 7.99932
lena.tiff 7.7502 7.99941

pepper.tiff 7.66983 7.99927

Analysis of Memory Utilization during the Encryption and Decryption Processes of
the HXP

Tables 11 and 12 show the memory utilization by each line in the code when the
encryption and decryption modules were implemented in python, respectively.

Table 11. Memory utilization of the encryption module (Figure 2a) during python implementation.

Line # Mem usage Increment Occurrences Line contents

92 168.8 MiB 168.8 MiB 1 @ profile
93 def bitmodification(encseed, encryptedtext, bsize):
94 168.8 MiB 0.0 MiB 1 encryptedtext = bytestobinary(encryptedtext)
95 168.8 MiB 0.0 MiB 1 confusionkey = randgen(encseed,len(encryptedtext))
96 168.8 MiB 0.0 MiB 1 lnibble = encryptedtext [0: len(encryptedtext)//2]

97 168.8 MiB 0.0MiB 1 rnibble = encryptedtext[len(encryptedtext)//2:
len(encryptedtext)]

98 168.8 MiB 0.0 MiB 2051 xornibble = [str(int(lnibble[i])ˆint(rnibble[i])) for i in
range(len(lnibble))]

99 168.8 MiB Xornibble = “.join(xornibble)
100 168.8 MiB 0.0MiB 1 fullbyte = “.join([xornibble, rnibble])
101 168.8 MiB 0.0MiB 1 fullbyte = reshuffleforencryption(confusionkey,fullbyte)
102 168.8 MiB 0.0MiB 1 encryptedtext = “.join(fullbyte)

103 #encryptedtext =
“.join(reshuffleforencryption(confusionkey,fullbyte))

104 #encryptedtext = binarytobytes(encryptedtext)
105 168.8 MiB 0.0MiB 1 encryptedtext = list(binarytobytes(encryptedtext))
106 168.8 MiB 0.0MiB 1 return encryptedtext

Appl. Sci. 2024, 14, 2808 23 of 27

Table 12. Memory utilization of the decryption module during python implementation.

Line # Mem usage Increment Occurrences Line contents

107 55.0 MiB 55.0 MiB 1 @ profile
108 def reversebitmodification(encseed, ciphertext, bsize):
109 55.0 MiB 0.0 MiB 1 reversebinX = bytestobinary(ciphertext)
110 55.0 MiB 0.0 MiB 1 confusionkey = randgen(encseed,len(reversebinX))

111 55.0 MiB 0.0 MiB 1 reversebinX = reshufflefordecryption(confusionkey,
reversebinX)

112 55.0 MiB 0.0 MiB 1 lnibble = reversebinX [0: len(reversebinX)//2]

113 55.0 MiB 0.0 MiB 1 rnibble = reversebinX[len(reversebinX)//2:
len(reversebinX)]

114 55.0 MiB 0.0 MiB 2051 Xornibble = [str(int(lnibble[j])ˆint(rnibble[j])) for j in
range(len(lnibble))]

115 55.0 MiB 0.0 MiB 1 Xornibble = “.join(xornibble)
116 55.0 MiB 0.0 MiB 1 rnibble = “.join(rnibble)
117 55.0 MiB 0.0 MiB 1 reversebinX = xornibble + rnibble
118 55.0 MiB 0.0 MiB 1 revtext = list (binarytobytes(reversebinX))
119 55.0 MiB 0.0 MiB 1 return revtext

4.2. Comparative Security Analysis of HXP with the Existing Cryptosystems

Table 13 compares the security of HXP with the existing cryptosystems. The values EQ
and entropy of HXP were found to be higher than what was obtainable in other algorithms.
These result show that HXP has a better encryption quality and higher diffusion and
confusion properties compared to other algorithms under consideration. The lower values
of PSNR and NCC are desirable between the plain and encrypted image pixels. From
Table 13, the PSNR and NCC values obtained from the analysis of HXP were found to be
higher in some images than the PSNR and NCC values produced from the analysis of the
existing algorithms. However, the differences observed were within the experimental error
limits. These results also attest to the good encryption quality of HXP. The higher values of
the MSE were desirable. However, in most of the cases, HXP produced a lower value of MSE
than the algorithm proposed by the authors of [57]. These results showed that the algorithm
outlined by the authors of [57] has a better MSE than the HXP algorithm. Lower values of
chi-square are desirable. From Table 12, it can be seen that the HXP algorithm has a lower
value of chi-square in most cases than the existing algorithms. These results are proof that
HXP is more resistant to histogram analysis attacks. Generally, the comparative analysis of
HXP revealed that HXP performs better than the existing algorithms in terms of security in
most cases. It can therefore be said that HXP is more secure than the existing algorithms.

Table 13. Comparative security analysis of HXP with existing systems.

Metrics Algorithm airplane.tiff baboon.tiff boat.tiff lena.tiff pepper.tiff

PSNR HXP 8.0041 9.5204 9.2952 9.2399 8.8704
[57] 7.9804 9.4722 - 8.55 8.8807
[58] 9.5466 9.2322 8.9914
[59] - 9.400680 9.312557 9.287804 -
[60] - 9.4474 9.2653 8.5731 8.9603

NCC HXP −0.0016 0 0.0009 0.0022 −0.002
[57] −0.000004 0.00257 - −0.0023 −0.011567
[58] −0.006632 0.002851 −0.001650
[60] - −0.00070284 −0.00302940 0.003389097 0.002385462

MSE HXP 10,296.1584 7261.712 7648.1358 7746.154 8434.092
[57] 10352 7343 - 9080 8414
[60] - 7385 7701 9032 8261

Appl. Sci. 2024, 14, 2808 24 of 27

Table 13. Cont.

Metrics Algorithm airplane.tiff baboon.tiff boat.tiff lena.tiff pepper.tiff

[61] 9980 6583 - 7510 8298

χ2 HXP 216.5977 225.127 280.6582 209.1113 289.3418
[57] 246 259 - 184 270
[59] - 274.7051 216.3223 254.5176 -
[61] 265 266 - 263 274
[62] 244.65 - 256.31 284.81 281.41

Entropy HXP 7.99934 7.99941 7.99932 7.99941 7.99927
[57] 7.9973 7.9972 - 7.9980 7.9970
[58] - 7.9970 - 7.9977 7.9973
[59] - 7.99924 7.99940 7.99930 -
[63] - 7.997436 - 7.997466 7.997355

EQ HXP 2,869,083.01 750,867.4 1,533,181.18 623,642.2 261,0186
[57] 259.17 189.78 - 147.20 155.67
[60] - 190.76 209.95 146.84 153.52

5. Justification of The Suitability of HXP on Resource-Staved IOT Devices

HXP takes after ARX. In ARX, AND, rotation, and XOR operations are used alongside
the Feistel structure to achieve non-linearity, diffusion, and confusion properties, which
ensure the security of the LWC algorithm. In HXP, the Secure Hash Algorithm (SHA), XOR,
and bit permutation operations are used in conjunction with the Feistel structure to achieve
non-linearity, diffusion, and confusion properties. Variants of SHA for LWC exist [64]; bit
permutations are inexpensive operations that are commonly used to achieve diffusion [65],
and of course XOR operations can easily be executed on resource-constrained IoT devices.
Hence, HXP can be used on resource-constrained devices. HXP has an advantage over
the existing ARX structure, because while ARX can only diffuse half of the block in one
round [39], HXP has the capability of diffusing an entire block in a single round. This is
achieved through the permutation of the bits that follow the XOR operation.

6. Conclusions and Future Works

In this paper, efforts have been made to implement a lightweight cryptosystem (HXP)
that does not make use of a substitution box. Security analysis of the scheme revealed that
it has good security and performs better than the existing schemes in terms of its encryption
quality (EQ), entropy, and NCC. This scheme has a good plain image and key sensitivity;
hence, it is resistant to known plaintext, known ciphertext, chosen plaintext, chosen cipher-
text, and differential cryptanalysis attacks. It can therefore be inferred that security of the
cryptography algorithm can still be maintained without the use of a substitution box, as
demonstrated in this research paper. There is the need to evaluate whether this approach
actually led to the reduction in memory usage. In the future, comparative analyses of the
proposed scheme in terms of its memory usage, execution time, throughput, as well as
power consumption will be carried out.

Author Contributions: The manuscript was written through the contributions of all authors. E.T.O.
and J.B.A.; were responsible for the conceptualization of the topic; article gathering and sorting were
carried out by O.C.A., E.T.O. and J.B.A.; manuscript writing and original drafting and formal analysis
were carried out by O.C.A., E.T.O. and J.B.A.; writing of reviews and editing were carried out by
O.C.A. and J.B.A., led the overall research activity. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2024, 14, 2808 25 of 27

Data Availability Statement: The data (images) presented in this study are available at http://
sipi.usc.edu/database/ (accessed on 15 March 2023). These data (images) were derived from the
USC-SIPI image database at http://sipi.usc.edu/database/ (accessed on 15 March 2023).

Conflicts of Interest: The authors declare that there are no conflict of interest.

References
1. Ambika, N. A Reliable Cloud Assisted IoT Application in Smart Cities. In Data-Driven Mining, Learning and Analytics for Secured

Smart Cities; Chakraborty, C., Lin, J.C.-W., Alazab, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 71–88.
2. Sundaram, B.V.; Ramnath, M.; Prasanth, M.; Sundaram, J.V. Encryption and Hash based Security in Internet of Things. In

Proceedings of the ICSCN 2015, Chennai, India, 26–28 March 2015; pp. 1–6.
3. Sallam, S.; Beheshti, B.D. A survey on lightweight cryptographic algorithms. In Proceedings of the IEEE Region Conference,

Austin, TX, USA, 6–8 April 2018; pp. 1784–1789.
4. Ram, R.S.; Kumar, M.V.; Ramamoorthy, S.; Balaji, B.S.; Kumar, T.R. An Efficient Hybrid Computing Environment to Develop

a Confidential and Authenticated IoT Service Model. In Wireless Personal Communications; Springer: Cham, Switzerland, 2020;
pp. 1–25.

5. Zolfaghari, B.; Yazdinejad, A.; Dehghantanha, A.; Krzciok, J.; Bibak, K. The Dichotomy of Cloud and IoT: Cloud-Assisted IoT from a
Security Perspective; Spring: Berlin/Heidelberg, Germany, 2022.

6. Ahmed, M.S.K.S.; Hossain, M.F.; Mahmud, M.B.T.N.M.; Chakraborty, C. Artificial Intelligence and Machine Learning for Ensuring
Security in Smart Cities. In Data-Driven Mining, Learning and Analytics for Secured Smart Cities; Chakraborty, C., Lin, J.C.-W.,
Alazab, M., Eds.; Spring: Berlin/Heidelberg, Germany, 2021; pp. 23–47.

7. França, R.A.R.P.; Monteiro, A.C.B.; Iano, Y. Smart Cities Ecosystem in the Modern Digital Age: An Introduction. In Data-Driven
Mining, Learning and Analytics for Secured Smart Cities; Chakraborty, C., Lin, J.C.-W., Alazab, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 49–70. [CrossRef]

8. França, R.P.; Lano, Y.; Montriro, A.C.B.; Arthur, R. Lower memory consumption for data transmission in smart cloud environments
with CBEDE methodology. In Smart Systems Design, Applications, and Challenges; IGI Global: Hershey, PN, USA, 2020; pp. 216–237.

9. Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, I.; Manifavas, C. A review of lightweight block ciphers. J. Cryptogr. Eng. 2018,
8, 141–184. [CrossRef]

10. El-Hajj, M.; Mousawi, H.; Fadlallah, A. Analysis of Lightweight Cryptographic Algorithms on IoT Hardware Platform. Futur.
Internet 2023, 15, 54. [CrossRef]

11. AlJabri, Z.S.; Abawajy, J.H.; Huda, S. Lightweight Authenticated Encryption for Cloud-assisted IoT Applications. In Trends
in Wireless Communication and Information Security Proceedings of EWCIS 2020; Jha, R.K., Balas, V.E., Sur, S.N., Kandar, D., Eds.;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 295–299.

12. Botta, A.; De Donato, W.; Persico, V.; Pescape, A. On the integration of cloud computing and internet of things. In Proceedings
of the 2014 International Conference on Future Internet of Things and Cloud, FiCloud, Barcelona, Spain, 27–29 August 2014;
pp. 23–30. [CrossRef]

13. Ghanavati, S.; Abawajy, J.; Izadi, D.; Alelaiwi, A. Cloud-assisted IoT-based health status monitoring framework. Clust. Comput.
2017, 20, 1843–1853. [CrossRef]

14. Yazdinejad, A.; Dehghantanha, A.; Parizi, R.M.; Hammoudeh, M.; Karimipour, H.; Srivastava, G. Block Hunter: Federated
Learning for Cyber Threat Hunting in Blockchain-Based IIoT Networks. IEEE Trans. Ind. Inform. 2022, 18, 8356–8366. [CrossRef]

15. Ranger, S. What is cloud computing? Everything you need to know about cloud explained. Zdnet. 2018. Available online:
https://www.zdnet.com/article/ (accessed on 20 March 2022).

16. Sultangazin, A.; Tabuada, P. Symmetries and isomorphisms for privacy in control over the cloud. IEEE Trans. Autom. Control 2021,
66, 538–549. [CrossRef]

17. Nakhodchi, S.; Zolfaghari, B.; Yazdinejad, A.; Dehghan Tanha, A. Steeleye: An application-layer attack detection and at_tribution
model in industrial control systems using semi-deep learning. In Proceedings of the 2021 18th International Conference on
Privacy, Security and Trust (PST), Auckland, New Zealand, 13–15 December 2021; IEEE: New York, NY, USA; pp. 1–8.

18. Pasupuleti, S.K.; Varma, D. Lightweight Ciphertext-Policy Attribute-Based Encryption Scheme for Data Privacy and Security in Cloud-
assisted IoT in Real-Time Data Analytics for Large Scale Sensor Data; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–114.

19. Oladipupo, E.T.; Abikoye, O.C.; Imoize, A.L.; Awotunde, J.B.; Chang, T.-Y.; Lee, C.-C.; Do, D.-T. An Efficient Authenticated
Elliptic Curve Cryptography Scheme for Multicore Wireless Sensor Networks. IEEE Access 2023, 11, 1306–1323. [CrossRef]

20. Ibrahim, A.A.A.; Nisar, K.; Hzou, Y.K.; Welch, I. Review and Analyzing RFID Technology Tags and Applications. In Proceedings
of the 2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT), Baku,
Azerbaijan, 23–25 October 2019; pp. 1–4.

21. Hu, S.; Chen, Y.; Zheng, Y.; Xing, B.; Li, Y.; Zhang, L.; Chen, L. Provably Secure ECC-Based Authentication and Key Agreement
Scheme for Advanced Metering Infrastructure in the Smart Grid. IEEE Trans. Ind. Inform. 2022, 19, 5985–5994. [CrossRef]

22. Aljaedi, A.; Jamal, S.S.; Rashid, M.; Alharbi, A.R.; Alotaibi, M.; Alanazi, D.J. Area-Efficient Realization of Binary Elliptic Curve
Point Multiplication Processor for Cryptographic Applications. Appl. Sci. 2023, 13, 7018. [CrossRef]

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
https://doi.org/10.1007/978-3-030-72139-8_3
https://doi.org/10.1007/s13389-017-0160-y
https://doi.org/10.3390/fi15020054
https://doi.org/10.1109/FiCloud.2014.14
https://doi.org/10.1007/s10586-017-0847-y
https://doi.org/10.1109/TII.2022.3168011
https://www.zdnet.com/article/
https://doi.org/10.1109/TAC.2020.2982611
https://doi.org/10.1109/ACCESS.2022.3233632
https://doi.org/10.1109/TII.2022.3191319
https://doi.org/10.3390/app13127018

Appl. Sci. 2024, 14, 2808 26 of 27

23. Eisenbarth, T.; Gong, Z.; Güneysu, T.; Heyse, S.; Indesteege, S.; Kerckhof, S.; Koeune, F.; Nad, T.; Plos, T.; Regazzoni, F.;
et al. Cryptology: Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny Devices. In Progress in
AFRICACRYPT 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 172–187.

24. Zhu, B.; Sun, J.; Qin, J.; Ma, J. A Secure Data Sharing Scheme with Designated Server. Secur. Commun. Networks 2019, 2019, 4268731.
[CrossRef]

25. Omrani, T.; Rhouma, R.; Becheikh, R. LICID: A lightweight image cryptosystem for IoT devices. Cryptologia 2019, 43, 313–343.
[CrossRef]

26. Sadikin, M.A.; Susanti, B.H. Design of AL-13 Block Cipher Algorithm Based On Extended Feistel Network. J. Phys. Conf. Ser.
2019, 1127, 012027. [CrossRef]

27. Oladipupo, E.T.; Abikoye, O.C. Modified Playfair cryptosystem for improved data security. Comput. Sci. Inf. Technol. 2022,
3, 51–64. [CrossRef]

28. Piret, G.; Roche, T.; Carlet, C. Picaro—A block cipher allowing efficient higher-order side-channel resistance. In International
Conference on Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2012; pp. 311–328.

29. Vergili, I.; Yücel, M.D. Avalanche and Bit Independence Properties for the Ensembles of Randomly Chosen n × n S-Boxes. Turk J.
Electr. Eng. 2001, 9, 137–145.

30. Thakor, V.A.; Razzaque, M.A.; Khandaker, M.R.A. Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices:
A Review, Comparison and Research Opportunities. IEEE Access 2021, 9, 28177–28193. [CrossRef]

31. Zhang, Y.; Xu, C.; Cheng, N.; Shen, X. Secure Password-Protected Encryption Key for Deduplicated Cloud Storage Systems. IEEE
Trans. Dependable Secur. Comput. 2021, 19, 2789–2806. [CrossRef]

32. Samaila, M.G.; Neto, M.; Fernandes, D.A.B.; Freire, M.M.; Inácio, P.R.M. Security Challenges of the Internet of Things. In Beyond
the Internet of Things, Internet of Things; Batalla, J.M., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017;
pp. 53–82. [CrossRef]

33. Mohd, B.J.; Hayajneh, T. Lightweight Block Ciphers for IoT: Energy Optimization and Survivability Techniques. IEEE Access 2018,
6, 35966–35978. [CrossRef]

34. Din, I.U.; Guizani, M.; Kim, B.S.; Hassan, S.; Khan, M.K. Trust management techniques for the internet of things: A survey. IEEE
Access 2018, 7, 29763–29787. [CrossRef]

35. Robertson, J.; Riley, M. The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies. 2018. Available on-
line: https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-
s-top-companies#xj4y7vzkg (accessed on 16 June 2023).

36. Li, S.Z.S.; Xu, L.D. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
37. Dinu, D.; Biryukov, A.; Großschädl, J. FELICS—Fair evaluation of lightweight cryptographic systems. In NIST Workshop on

Lightweight Cryptography 2015; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2015.
38. Zhang, X.; Tang, S.; Li, T.; Li, X.; Wang, C. GFRX: A New Lightweight Block Cipher for Resource-Constrained IoT Nodes.

Electronics 2022, 12, 405. [CrossRef]
39. Guo, Y.; Li, L.; Liu, B. Shadow: A Lightweight Block Cipher for IoT Nodes. IEEE Internet Things J. 2021, 8, 13014–13023. [CrossRef]
40. Alizadeh, M.; Salleh, M.; Zamani, M.; Shayan, J.; Karamizadeh, S. Security and Performance Evaluation of Lightweight

Cryptographic Algorithms in RFID. In Recent Researches in Communications and Computers Security; Kos Island, Greece, 2012;
pp. 45–50.

41. Suzaki, T.; Minematsu, K.; Morioka, S.; Kobayashi, E. TWINE: A lightweight block cipher for multiple platforms. In Selected Areas
in Cryptography, vol. 7707 of Lecture Notes in Computer Science; Knudsen, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 339–354.

42. Zhang, W.; Bao, Z.; Lin, D.; Rijmen, V.; Yang, B.; Verbauwhede, I. Rectangle: A Bit-Slice Ultra-Lightweight Block Cipher Suitable
for Multiple Platforms. 2014. Available online: http://eprint.iacr.org/ (accessed on 15 September 2022).

43. Liu, H.; Zhao, B.; Zou, J.; Huang, L.; Liu, Y. A Lightweight Image Encryption Algorithm Based on Message Passing and Chaotic
Map. Secur. Commun. Networks 2020, 2020, 12. [CrossRef]

44. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A. PRESENT: An Ultra-Lightweight Block Cipher; Spring:
Berlin/Heidelberg, Germany, 2007.

45. Daemen, J.; Peeters, M.; Van Assche, G.; Rijmen, V. The Noekeon Block Cipher. In The NESSIE Proposal, 2000. First Open NESSIE
Workshop; 2016; Available online: http://gro.noekeon.org (accessed on 15 September 2022).

46. Borghoff, J.; Canteaut, A.; Güneysu, T.; Kavun, E.B.; Knezevic, M.; Knudsen, L.R.; Leander, G.; Nikov, V.; Paar, C.; Rechberger, C.;
et al. PRINCE—A low-latency block cipher for pervasive computing applications. In Proceedings of the ASIACRYPT, Beijing,
China, 2–6 December 2012; Springer: Berlin/Heidelberg, Germany„ 2012; pp. 208–225.

47. Gong, Z.; Nikova, S.; Law, Y.W. KLEIN: A New Family of Lightweight Block Ciphers. In RFIDSec 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 1–18.

48. Leander, G.; Paar, C.; Poschmann, A.; Schramm, K. New Lightweight DES Variants. In FSE 2007; Springer: Berlin/Heidelberg
Germany, 2007; pp. 196–210.

49. Lim, C.H.; Korkishko, T.; Song, J.; Kwon, T.; Yung, M. mCrypton—A Lightweight Block Cipher for Security of Low-Cost RFID
Tags and Sensors. In ISA 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 243–258.

50. Borislav, S.; Krasimir, K. Image encryption using chebyshev map and rotation equation. Entropy 2015, 17, 2117–2139.

https://doi.org/10.1155/2019/4268731
https://doi.org/10.1080/01611194.2018.1563009
https://doi.org/10.1088/1742-6596/1127/1/012027
https://doi.org/10.11591/csit.v3i1.p51-64
https://doi.org/10.1109/ACCESS.2021.3052867
https://doi.org/10.1109/TDSC.2021.3074146
https://doi.org/10.1007/978-3-319-50758-3
https://doi.org/10.1109/ACCESS.2018.2848586
https://doi.org/10.1109/ACCESS.2018.2880838
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies#xj4y7vzkg
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies#xj4y7vzkg
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.3390/electronics12020405
https://doi.org/10.1109/JIOT.2021.3064203
http://eprint.iacr.org/
https://doi.org/10.1155/2020/7151836
http://gro.noekeon.org

Appl. Sci. 2024, 14, 2808 27 of 27

51. Chen, G.; Mao, Y.; Chui, C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004,
21, 749–761. [CrossRef]

52. Rhouma, R.; Meherzi, S.; Belghith, S. OCML-based color image encryption. Chaos Solitons Fractals 2009, 40, 309–318. [CrossRef]
53. Liu, H.; Zhao, B.; Huang, L. Quantum Image Encryption Scheme Using Arnold Transform and S-box Scrambling. Entropy 2019,

21, 343. [CrossRef]
54. Kaur, J.; Jindal, N. A secure image encryption algorithm based on fractional transforms and scrambling in combination with

multimodal biometric keys. Multimed. Tools Appl. 2019, 78, 11585–11606. [CrossRef]
55. Xian, Y.; Wang, X. Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 2021, 547, 1154–1169. [CrossRef]
56. Chai, X.; Bi, J.; Gan, Z.; Liu, X.; Zhang, Y.; Chen, Y. Color image compression and encryption scheme based on compressive

sensing and double random encryption strategy. Signal Process 2020, 176, 107684. [CrossRef]
57. Norouzi, B.; Seyedzadeh, S.M.; Mirzakuchaki, S.; Mosavi, M.R. A novel image encryption based on row-column, masking and

main diffusion processes with hyper chaos. Multimed. Tools Appl. 2013, 74, 781–811. [CrossRef]
58. Zhu, C. A novel image encryption scheme based on improved hyperchaotic sequences. J. Opt. Commun. 2012, 285, 29–37.

[CrossRef]
59. Wang, X.; Li, Y.; Jin, J. A new one-dimensional chaotic system with applications in image encryption. Chaos Solitons Fractals 2020,

139, 110102. [CrossRef]
60. Norouzi, B.; Mirzakuchaki, S.; Seyedzadeh, S.M.; Mosavi, M.R. A simple, sensitive and secure image encryption algorithm based

on hyper-chaotic system with only one round diffusion process. Multimed. Tools Appl. 2014, 71, 1469–1497. [CrossRef]
61. Borujeni, S.E.; Eshghi, M. Chaotic image encryption system using phase-magnitude transformation and pixel substitution.

Telecommun. Syst. 2011, 52, 525–537. [CrossRef]
62. Wang, X.; Liu, C.; Xu, D.; Liu, C. Image encryption scheme using chaos and simulated annealing algorithm. Nonlinear Dyn. 2016,

84, 1417–1429. [CrossRef]
63. Zhang, Y. The fast image encryption algorithm based on lifting scheme and chaos. Inf. Sci. 2020, 520, 177–194. [CrossRef]
64. Bertoni, G.; Daemen, J.; Peeters, M.; Assche, G.V. On the Indifferentiability of the Sponge Construction. In EUROCRYPT. Lecture

Notes in Computer Science; Ismart, N.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 181–197.
65. Watson, K. Network security. Netw. Secur. 2002, 4965, 1–34.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.chaos.2003.12.022
https://doi.org/10.1016/j.chaos.2007.07.083
https://doi.org/10.3390/e21040343
https://doi.org/10.1007/s11042-018-6701-2
https://doi.org/10.1016/j.ins.2020.09.055
https://doi.org/10.1016/j.sigpro.2020.107684
https://doi.org/10.1007/s11042-013-1699-y
https://doi.org/10.1016/j.optcom.2011.08.079
https://doi.org/10.1016/j.chaos.2020.110102
https://doi.org/10.1007/s11042-012-1292-9
https://doi.org/10.1007/s11235-011-9458-8
https://doi.org/10.1007/s11071-015-2579-y
https://doi.org/10.1016/j.ins.2020.02.012

	Introduction
	Motivation
	Contribution

	Literature Review
	Materials and Methods
	Proposed Lightweight Image Cryptography Algorithm
	Metrics and Methods of Analysis of the Proposed Lightweight Image Cryptosystem
	Metrics Used for the Analysis of the Proposed Algorithm
	Methods of Analysis

	Results and Discussions
	Discussion of Experimental Results
	Comparative Security Analysis of HXP with the Existing Cryptosystems

	Justification of The Suitability of HXP on Resource-Staved IOT Devices
	Conclusions and Future Works
	References

