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Abstract: In applications where large-order filters are needed, the computational load of adaptive
filtering algorithms can become prohibitively expensive. In this paper, a comprehensive analysis of a
selective partial-update least mean squares, named SPU-LMS-M-min, is developed. By employing the
partial-update strategy for a non-normalized adaptive scheme, the designer can choose an appropriate
number of update blocks considering a trade-off between convergence rate and computational
complexity, which can result in a more than 40% reduction in the number of multiplications in some
configurations compared to the traditional LMS algorithm. Based on the principle of minimum
distortion, a selection criterion is proposed that is based on the input signal’s blocks with the
lowest energy, whereas typical Selective Partial Update (SPU) algorithms use a selection criterion
based on blocks with highest energy. Stochastic models are developed for the mean weights and
mean and mean squared behaviour of the proposed algorithm, which are further extended to
accommodate scenarios involving time-varying dynamics and suboptimal filter lengths. Simulation
results show that the theoretical predictions are in good agreement with the experimental outcomes.
Furthermore, it is demonstrated that the proposed selection criterion can be easily extended to
active noise cancellation algorithms as well as algorithms utilizing variable filter length. This
allows for the reduction of computational costs for these algorithms without compromising their
asymptotic performance.

Keywords: adaptive algorithms; least mean squares; selective partial-update algorithms

1. Introduction

Digital communications have seen rapid development, largely due to research in
adaptive signal processing [1]. Other important applications of such techniques are system
identification, acoustic and network echo cancelers, among others [2,3]. Especially in acous-
tic and channel equalization scenarios, the use of high-order adaptive filter is necessary.
Thus, the required computational complexity can become the bottleneck in obtaining the
expected performance [1]. In this context, strategies that reduce the computational load of
adaptive filtering schemes are of great interest.

The ability of adaptive filters to adjust to variations in the environment in which they
operate is what gives them flexibility and sophistication. The LMS algorithm is the most
popular adaptive filtering approach. In general terms, it implements an online estimator
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that employs the observable data pair {x(k), d(k)}, where d(k) ∈ R is the reference signal
and x(k) ∈ RN denotes the input vector, defined as:

x(k) ≜
[
x(k) x(k − 1) . . . x(k − N + 1)

]T . (1)

where N denotes the filter length.
The LMS belongs to the class of supervised adaptive algorithms whose learning

dynamics is driven by a feedback mechanism based on the error signal

e(k) ≜ d(k)− wT(k)x(k), (2)

where y(k) ≜ wT(k)x(k) is the filter output at the k-th iteration and w(k) ∈ RN con-
tains the N adaptive coefficients {w0(k), w1(k), . . . , wN−1(k)}. Moreover, the LMS update
equation is traditionally derived from the stochastic gradient of the mean squared error,
thereby yielding

w(k + 1) = w(k) + βx(k)e(k), (3)

where β ∈ R+ is the step size, whose choice implies a trade-off between asymptotic
performance and convergence rate [4].

In a system identification task, the block diagram of the adaptive filter functioning
is depicted in Figure 1, where the desired signal d(k) sometimes is acquired by ingenious
ways and signal ν(k) models the impact of inaccuracies in the measurement process, such
as quantization noise.

x(k) w⋆

w(k)
y(k)

−

+

+
d(k)

ν(k)

e(k)

Figure 1. Block diagram of an adaptive filtering algorithm applied to systems identification.

Although the LMS is one of the simplest adaptive filtering algorithms, its update
equation requires computational complexity proportional to the length of the adaptive
coefficient vector w(k) ∈ RN (see Equations (2) and (3)). Unfortunately, as already dis-
cussed, long transfer functions that occur in important real applications might demand a
prohibitively large computational effort. Several schemes have been presented in the open
literature to address this issue, such as sign-error, sign-data, and selective partial-update
(SPU) strategies [5–9]. The latter schemes are the focus of this paper. The SPU-NLMS
algorithm, one of the most popular SPU-based adaptive algorithms, is typically presented
as a solution of a deterministic optimization problem [10]. The resulting update equation
implies a reduced computational burden by decreasing the amount of tap modifications
at every iteration. Concisely, the SPU-NLMS groups a set of adaptive coefficients in a
single or multiple blocks, and selects the significant excitation data blocks according to
their squared Euclidean norms. By a proper selection of input data blocks, the reduction of
the computational burden can be attained.

In this paper, a new deterministic optimization approach is proposed, which avoids
the normalization steps commonly required by SPU-based schemes. Based on it, a novel
SPU-based LMS algorithm, referred to as SPU-LMS-M-min, is introduced. Furthermore,
stochastic models are advanced to predict its mean weight dynamics and mean square
error performance. In order to obtain a comprehensive analytic characterization of the
learning abilities of the SPU-LMS-M-min algorithm, tracking and deficient-length analyses
were also carried out.
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The proposed coefficient selection method can be easily adapted to mitigate the
computational cost of other strategies. For instance, Variable Filter-Length (VFL) algo-
rithms [11–16] dynamically update the filter size throughout iterations, thereby reducing
computational cost during transients. However, such algorithms update all adaptive coef-
ficients, leading to an increased computational cost, especially in steady-state conditions.
Additionally, these algorithms commonly asymptotically demand a longer filter length
than optimal [17], implying unnecessary computational overhead. Both drawbacks can
be alleviated through coefficient selection techniques. Thus, it is possible to reduce the
computational cost of these algorithms without compromising their asymptotic perfor-
mance, albeit with a controllable loss (to be judiciously chosen based on the application
requirements) in convergence rate.

This paper is organized as follows. In Section 2, the proposed framework is derived,
covering the single-block case for didactic purposes. A generalized algorithm that engen-
ders a selection of several blocks in each update is the focus of Section 2.2. Section 3.1
introduces concepts for first-order analysis, which precedes the second-order analysis
described at Section 3.2. Generalizations of the advanced stochastic model for both time-
variant and deficient-length scenario approaches are presented on Sections 3.3 and 3.4,
respectively. Section 4 presents extensions of the proposed selection methodology to vari-
able tap length and active noise cancellation (ANC) algorithms. Results and discussion are
the focus of Section 5. At last, Section 6 contains the final considerations of the paper.

2. Proposed SPU-LMS-M-Min for a Single Block

Consider the following partition of the input vector x(k) and the adaptive weights
vector w(k) into M equal-length blocks:

x(k) =
[
xT

0 (k) xT
1 (k) . . . xT

M−1(k)
]T , (4)

w(k) =
[
wT

0 (k) wT
1 (k) . . . wT

M−1(k)
]T , (5)

where the vectors xi(k) and wi(k) contains N/M = L ∈ N coefficients (For simplicity, L
is supposed to be an integer number.) (for i ∈ {0, 1, . . . , M − 1}). In order to reduce the
computational burden, under the selective partial-update paradigm, only B blocks (for
B ∈ {1, 2, . . . , M}) of the adaptive weights are updated in each iteration. For the sake of
simplicity, in this section it is assumed that only one block is updated in each iteration
(i.e., B = 1). Note that for the existence of a block algorithm, it is necessary that M > 1.
Therefore, as L = N/M, we have N > L, an inequality valid for any value of B (including
B = 1).

Consider that the index of the block that will be updated (wi(k)) is denoted by i
(later, the proposed selection procedure of such a index will be derived). The advanced
SPU-LMS-M-min algorithm is the resulting solution of the following optimization problem:

min
wi(k+1)

1
2
∥wi(k + 1)− wi(k)∥2 s.t. ep(k) =

(
1 − βLσ2

x

)
e(k), (6)

where σ2
x denotes the variance in x(k), and the posterior error ep(k) is

ep(k) = d(k)− wT(k + 1)x(k)

= d(k)−
[
wT

i (k + 1)xi(k) + wT
i (k + 1)xi(k)

]
, (7)

where wi(k) and xi(k) are the vectors obtained by removing wi(k) and xi(k) from w(k) and
x(k), respectively. The equality in Equation (6) imposes a linear constraint on the solution
w(k + 1), which requires that the a posteriori error (dependent on the solution w(k + 1)) be
a fraction of the a priori error e(k).
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Using the Lagrange multipliers technique, the constrained optimization problem (6)
can be translated into the following unconstrained one:

Fi[wi(k + 1)] =
1
2
∥wi(k + 1)− wi(k)∥2 + λ

[
ep(k)−

(
1 − βLσ2

x

)
e(k)

]
, (8)

where λ ∈ R is the Lagrange multiplier. Zeroing ∇wi(k+1)Fi[wi(k + 1)] and using the
approximation Lσ2

x ≈ ∥xi(k)∥2, ∀i ∈ {0, 1, . . . , M − 1}, yields

wi(k + 1) = wi(k) + βxi(k)e(k), (9)

whereas the remaining blocks are supposed to be unaltered, that is,

wi(k + 1) = wi(k). (10)

Remark 1. It is worth mentioning that the approximation Lσ2
x ≈ ∥xi(k)∥2, ∀i ∈ {0, 1, . . . ,

M − 1} is a feature of the proposed non-normalized SPU scheme, which is not necessary when
normalized adaptive filtering algorithms are adopted. For long filters, exactly where one intends
to reduce the computational complexity of adaptive filtering algorithms, such an approximation is
less critical (assuming a stationary input signal). In the case of non-stationary signals, real-time
estimation of the input signal variance can be achieved with a minor increase in computational
complexity. However, in instances of highly non-stationary input signals, the efficacy of such a
mechanism may be significantly compromised.

Note that Equation (9) represents the update equation after the selection of the block
index i that will be updated, and that, indeed the adopted approximation makes the
estimation of the variance in x(k) unnecessary. The choice of such an index i can be
oriented by the minimum distortion principle (MDP) [10]:

i = arg min
1≤j≤M

∥wj(k + 1)− wj(k)∥2

= arg min
1≤j≤M

∥βxj(k)e(k)∥2 = arg min
1≤j≤M

∥xj(k)∥2, (11)

so that the update equation of the advanced SPU-LMS-M-min algorithm can be written as

wi(k + 1) = wi(k) + βxi(k)e(k), i = arg min
0≤j≤M−1

∥xj(k)∥2. (12)

Remark 2. Observe that the advanced criterion selects a block whose quadratic norm is the smallest
among all blocks, whereas in established algorithms, the block with the largest norm is chosen [10].
For example, the selection procedure of the M-max LMS chooses the block whose ℓ2-norm is the
largest. This difference derives from the fact that in this paper, the derivation procedure relies on a
deterministic and local problem induced by the minimum distortion principle, whereas normally,
the stochastic-gradient interpretation of the LMS algorithm is adopted in order to motivate the
derivation of SPU-based non-normalized algorithms.

2.1. Computational Complexity

In order to guarantee an effective reduction of the computational burden, the selec-
tion of index i required by the SPU-LMS-M-min algorithm (see Equation (12)) should be
carried out by fast algorithms for running ordering and max/min calculation criteria [18].
Assuming the adoption of efficient ordering algorithms (which do not require neither multi-
plications nor sums, but only comparisons between numbers), it is possible to evaluate the
number of additions and multiplications required per iteration by the SPU-LMS-M-min.

Table 1 compares the computational complexity of the elements of an LMS algorithm
bundle, taking into account SPU-NLMS (Norm. selective) and LMS-SPU-M-(max|min).
It is noteworthy that update Equation (12) requires N + BL + 1 multiplications, whereas
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the standard LMS requires 2N + 1 multiplications per iteration. Since the designer might
enforce the condition BL < N, a significant reduction in computational burden requirement
can be attained. For example, for a configuration with N = 4000, M = 8 and B = 1, the
number of required multiplications per iteration is reduced by 43.65%. Furthermore, no
divisions are required, which is an advantage of the proposed non-normalized scheme. It
is noteworthy that such complexity reduction may decrease the convergence rate of the
adaptive algorithm, which may not be feasible in applications imposing stringent criteria
on the number of iterations required for the learning process to reach a steady state.

Table 1. Number of multiplications, additions, comparisons (i.e., if one value is greater than another,
required to find the maximum or minimum value of a vector), and divisions at each iteration of
the algorithms and their respective selective partial update variants [10,19]. S denotes the period of
coefficient updates (i.e., it is assumed that updates occur only every S consecutive input vectors).

Algorithm Multiplication Addition Comparison Division
LMS-Based

Standard 2N + 1 2N − −

M-min N + BL + 1 N + BL 2[log2N] + 2 −

Periodic N + (N + 1)/S N + N/S − −

Sequential N + BL + 1 N + BL − −

Stochastic N + BL + 3 N + BL + 2 − −

M-max N + BL + 1 N + BL 2[log2N] + 2 −

Norm. Selective N + BL + 2 N + BL + 2 2[log2N] + 2 1

After the following new derivation approach of the target algorithm SPU-LMS-M-min,
it is expected that presents some distinct features, such as reduction in the convergence
rate, which can be predicted and elucidated by stochastic models. Some models based
on conventional assumptions are described in the following sections. Note that such
theoretical analysis are appreciated in the open literature due to their ability to provide
performance guarantees for the algorithm designer, as well as important insights about
its functioning.

2.2. SPU-LMS-M-Min for Multiple Blocks

The ensuing derivations facilitates the understanding of the generalized formulation of
the algorithm, in which the designer intends to update B blocks in each iteration. Consider
these indexes are denoted by IB = {i0, i1, . . . , iB−1}. Equation (8) can be extended by the
following generalized optimization problem:

min
wIB (k+1)

1
2
∥wIB(k + 1)− wIB(k)∥

2

s.t. ep(k) =
(

1 − βB
N
M

σ2
x

)
e(k), (13)

where wIB(k + 1) ≜
[
wT

i0
(k) wT

i1
(k) . . . wT

iB−1
(k)

]T
.

Using similar steps to those in (9), one may describe the SPU-LMS-M-min algorithm
that updates B blocks by

wIB(k + 1) = wIB(k) + βxIB(k)e(k), (14)
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where IB can be computed by the following rule:

IB = arg min
JB∈S

∥wJB(k + 1)− wJB(k)∥
2

= arg min
JB∈S

∥βxJB(k)e(k)∥
2 = arg min

JB∈S
∥xJB(k)∥

2

= arg min
JB∈S

∑
j∈JB

∥xj(k)∥2. (15)

3. Stochastic Modelling of the Proposed Algorithm

3.1. First-Order Analysis

Note that Equation (12) can be rewritten as

w(k + 1) = w(k) + βΓ(k)x(k)e(k), (16)

where Γ(k) is an N × N diagonal matrix, with each element of its main diagonal denoted
as γi(k), where i is the associated block index. The main diagonal elements of Γ(k) are
obtained by

γi(k) =
{

0, if i /∈ IB
1, if i ∈ IB

. (17)

Consider that reference signal d(k) is generated by the following affine regression model:

d(k) = [w⋆]Tx(k) + ν(k), (18)

where w⋆ ∈ RN is a vector that contains the coefficients of the ideal (and unknown) plant
and ν(k) is an additive noise. Defining the deviation coefficient vector as w̃(k) ≜ w⋆−w(k),
the following recursion can be obtained from Equation (16):

w̃(k + 1) =
(

I − βΓ(k)x(k)xT(k)
)

w̃(k)− βΓ(k)x(k)ν(k), (19)

which is a non-homogeneous stochastic difference equation, where −βΓ(k)x(k)ν(k) acts
as a driving force that avoids the asymptotic convergence of the deviation vector energy
to zero. A first-order stochastic analysis of the SPU-LMS-M-min algorithm can be per-
formed by applying the expectation operator in E[·] in (19), which leads (using the popular
independence assumption-IA [4]) to

E[w̃(k + 1)] = (I − βRΓ)E[w̃(k)], (20)

where RΓ ≜ E[Γ(k)x(k)xT(k)].

Remark 3. Note that Equation (20) implies that the SPU-LMS-M-min, under a sufficient excitation
condition, performs an asymptotically unbiased estimation [20]. Furthermore, the maximum step
size that guarantees mean-weight convergence can be obtained by assuming

β <
2

ρ[RΓ]
, (21)

where ρ[RΓ] denotes the spectral radius of RΓ, i.e., ρ[RΓ] ≜ maxi|λi(RΓ)|, where λi is the i-th
eigenvalue of RΓ. Unfortunately, a stable-in-the-mean adaptive filter may perform an estimation
with unbounded variance, so that a second-order stochastic analysis is necessary in order to achieve
proper performance guarantees [20]. In the derivation of Equation (20), the statistically strong (but
physically plausible) assumption that the additive noise is white and statistically independent from
the remaining random variables is employed. Such a noise assumption (NA) is almost ubiquitous
and is utilized henceforth.
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3.2. Second-Order Analysis

The usage of the independence assumption implies that the expectation value of the matrix

Φ(k) = w̃(k)w̃T(k) (22)

has a major rule in a second-order stochastic model of adaptive algorithms [20]. Using
Equation (19), a recursion for Φ(k) can be obtained as

Φ(k + 1) = Φ(k)− βΦ(k)x(k)xT(k)Γ(k)

−βΓ(k)x(k)xT(k)Φ(k)

+β2Γ(k)x(k)xT(k)Φ(k)x(k)xT(k)Γ(k) (23)

+β2ν2(k)Γ(k)x(k)xT(k)Γ(k) +O[ν(k)],

where O[ν(k)] contains first-order noise components, which are irrelevant to the follow-
ing analysis.

Recursion (23) can be rewritten in a more adequate formulation by applying the relationship

vec(XYZ) =
(

ZT ⊗ X
)

vec(Y), (24)

where vec(A) is an operator that stacks the columns of matrix A in order to generate a
column-type vector and ⊗ denotes the Kronecker product. Employing such a formulation,
applying the expectation operator and using the independence assumption, leads to the
following time-invariant state space equation:

v(k + 1) = Av(k) + b, (25)

where
v(k) ≜ E{vec[Φ(k)]}, (26)

A ≜ I − βE
{[

Γ(k)x(k)xT(k)
]
⊗ I

}
−βE

{
I ⊗

[
Γ(k)x(k)xT(k)

]}
(27)

+β2E
{[

Γ(k)x(k)xT(k)
]
⊗

[
Γ(k)x(k)xT(k)

]}
,

and
b ≜ β2σ2

νE
{

vec
[
Γ(k)x(k)xT(k)Γ(k)

]}
, (28)

where σ2
ν is the variance of the additive noise.

Since vec[X] is a bijection operator, all information of the mismatch covariance matrix
Rw̃(k) ≜ E[Φ(k)] can be extracted from v(k). From both IA and NA stochastic hypotheses,
the mean square deviation (MSD) and mean square error (MSE) performance metrics can
be predicted for the k-th iteration using [20]

MSD(k) ≜ E
[
∥w⋆ − w(k)∥2

]
≈ Tr[Rw̃(k)], (29)

MSE(k) ≜ E
[
e2(k)

]
≈ σ2

ν + Tr[RxRw̃(k)], (30)

where Tr[Y ] denotes the trace of matrix Y and Rx ≜ E
[
x(k)xT(k)

]
is the input autocorrela-

tion matrix.
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Remark 4. It is noteworthy that Equation (25) is able to yield a closed-form estimate for both
asymptotic MSD and MSE, provided the algorithm is stable. In this case, the steady-state vector
v∞ ≜ limk→∞ v(k) can be computed by [20]

v∞ = (I − A)−1b. (31)

3.3. Tracking Analysis

Since adaptive filters that present good performance in stationary environments do not
necessarily exhibit good learning behavior in the identification of time-variant plants [21],
obtaining a stochastic model that offers guarantees with respect to the algorithm learning
capabilities in a tracking scenario is crucial.

A popular model that accounts for temporal variation in w⋆(k) can be described as a
first-order Markov process [22]

w⋆(k + 1) = w⋆(k) + q(k), (32)

where the statistical characterization of the perturbation vector q(k) is established by the
assumption stated below.

Assumption 1. Tracking assumption (TA): vector q(k1) is statistically independent from the
input data and from q(k2), ∀k2 ̸= k1. Furthermore, its autocorrelation matrix is given by
Rq ≜ E

[
q(k)qT(k)

]
σ2

q IN , where IN denotes the N-order identity matrix.
In order to create coefficient error vector in a deviation form, let us consider Equation (32) compared

to Equation (16):

w⋆(k + 1)− w(k + 1) = w⋆(k + 1)− w(k)− βΓ(k)x(k)e(k)

w̃(k + 1) = q(k) + w⋆(k)− w(k)− βΓ(k)x(k)e(k) (33)

w̃(k + 1) = w̃(k)− βΓ(k)x(k)e(k) + q(k),

By also replacing e(k) by Equation (2) at Equation (34), after some arrangements, the following
recursion deviation vector w̃(k) can be rewritten:

w̃(k + 1) =
(

I − βΓ(k)x(k)xT(k)
)

w̃(k)−

−βΓ(k)x(k)ν(k) + q(k) (34)

In order to reach a mean-square performance model (following similar steps than those employed
to obtain Equation (25)), taking into account Equation (34), which can be used to derive the non-
homogeneous stochastic difference equation by performing the product between Equation (34) and
its transposed version, reaching this equation:

Φ(k + 1) = Φ(k)− βΦ(k)x(k)xT(k)Γ(k)

−βΓ(k)x(k)xT(k)Φ(k)

+β2Γ(k)x(k)xT(k)Φ(k)x(k)xT(k)Γ(k) (35)

+β2ν2(k)Γ(k)x(k)xT(k)Γ(k)

+q(k)qT(k) +O[ν(k)] +O[q(k)],

where Φ(k) is as defined by Equation (22), O[ν(k)] denotes noise-related terms that will not interfere
with the hereinafter analysis, and O[q(k)] is related to the first-order perturbation vector, which
would also not be part of that balance. Aiming to make the mathematics tractable, the application
of the expectation operator from Equation (36) should be performed alongside some assumptions,
which are described below.

v(k + 1) = Av(k) + b + c, (36)

where c ≜ E
{

vec
[
q(k)qT(k)

]}
.
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Remark 5. Note that under the considered tracking scenario, the stability region of the algorithm
remains unaltered, since the time-invariant transition matrix A is the same as the stationary
configuration [20].

3.4. Deficient-Length Analysis

There are several practical situations to motivate that analysis: Usually we do not
know in advance the transfer function to be identified, no how limited the computational
resources would be. In addition, the length of the adaptive filter N is often less than the
length L of the transfer function to be identified. In this deficient-length setting, according
to [4], it is possible to model the transfer function coefficients vector and the reference
signal as:

wo
⋆ = [w⋆, w̄⋆]T , (37)

ddef(k) = [w⋆]Tx(k) + [w̄⋆]T x̄(k) + ν(k), (38)

where
x̄(k) ≜

[
x(k − N) x(k − N − 1) · · · x(k − N − L + 1)

]
(39)

and w̄⋆ ∈ RL is the L-length component of the ideal transfer function, w⋆, whose total
length is N + L, that the adaptive filter is not able to emulate. Considering Equation (2)
and the previous definitions, it is possible to write edef(k) in the deficient-length approach:

edef(k) = ddef(k)− w̃T(k)x(k)

= (w⋆)Tx(k) + (w̄⋆)T x̄(k) + ν(k)− w̃T(k)x(k) (40)

= w̃T(k)x(k) + (w̄⋆)T x̄(k) + ν(k),

Subsequently, defining input, reference signals, and error, it is necessary to rewrite
Equation (16) for the context of the deficient-length analysis with Equation (41):

w⋆(k + 1)− w(k + 1) = w⋆(k + 1)− w(k)− βΓ(k)x(k)edef(k)

w̃(k + 1) = w̃(k)− βΓ(k)x(k)edef(k)

w̃(k + 1) = w̃(k)− βΓ(k)x(k)[w̃T(k)x(k) (41)

+ (w̄⋆)T x̄(k) + ν(k)]

w̃(k + 1) = w̃(k)− βΓ(k)x(k)xT(k)w̃(k)

− βΓ(k)x(k)x̄T(k)w̄⋆ − βΓ(k)x(k)ν(k)

Calculating the product between Equation (41) and its respective transposed version,
applying the same steps as than those employed to obtain Equation (25), also to make
more comprehensible the mathematics, the following assumption will be considered in the
deficient-length setup:

Assumption 2. Whiteness assumption (WA). The excitation data is white.

Remark 6. Note that WA is a common assumption in the field of adaptive filtering analysis, even
when the input signal is non-stationary (see, e.g., [23]). A more evolved analysis is necessary if
such an assumption should be circumvented [24]. Using WA and the previous assumptions, it can be
demonstrated that in the suboptimal scenario (38) the vector v(k) is updated according to

vk+1 = Avk + b + d (42)

where

d ≜ β2E
{[

Γ(k)x(k)xT(k)
]
⊗

[
Γ(k)x(k)xT(k)

]}
v (43)
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and v ≜ vec
[
w̄w̄T].

4. Extensions of the Proposed Framework

Although the entire discussion up to this point has been focused on the LMS algorithm
and the system identification problem, the proposed framework can be easily extended
to VTL strategies and active noise cancellation (ANC) problems. This section details the
extension of the proposed methodology for both cases. It is observed that the computational
cost reduction capacity of the proposed methodology can be easily extended to other
schemes and scenarios.

The computational complexity of an adaptive filter can be reduced through the use
of VTL schemes [11–16], which adjust the tap length in real time. These algorithms share
with the SPU technique the ability to present reduced computational cost during transients.
However, under steady-state conditions, they update all filter coefficients. This, together
with the tendency of these algorithms to overestimate the optimal steady-state adaptive
filter length, can lead to excessively high steady-state computational costs [17]. Such an
issue can be circumvented by using the proposed selection update scheme.

As a proof of concept, we consider the VTL algorithm proposed in [12]. The algorithm
adjusts the pseudo fractional tap-length nf(k) ∈ R+ through the following updating rule:

n f (k + 1) = (n f (k)− α)− γ

{[
e(N(k))(k)

]2
−

[
e(N(k)−∆)(k)

]2
}

, (44)

where α, γ, and ∆ are adjustable parameters, the choice of which has been widely discussed
in the literature (see, e.g., [17]), N(k) is the length of the adaptive filter in the kth iteration,
and e(L)(k) is the error calculated with a filter of length L. The algorithm adjusts the tap
length using the rule:

N(k + 1) =
{

⌊nf(k)⌋, |N(k)− nf(k)| ≥ δ,
N(k), otherwise

, (45)

where δ ∈ R+ is also a tuning parameter. Since the size of the adaptive filter in VTL
schemes varies dynamically, it is challenging to choose a block size M for an SPU technique
insertion such that the current size of the adaptive filter is a multiple of M. To overcome this
issue, we consider the choice M = N(k). Thus, each sample of the input vector corresponds
mathematically to a block of the SPU methodology. One can then choose B to ensure
that a certain percentage of the adaptive coefficients in the VTL technique are updated
in a given iteration, using the criterion proposed in Equation (15) for the coefficients to
be updated. This ensures that the B adaptive coefficients to be updated are associated
with the B samples of the input vector x(k) with the lowest magnitudes. The resulting
algorithm exhibits asymptotic performance equivalent to that of the original VTL algorithm,
with lower computational cost. However, due to the coefficient selection, there is also a loss
in convergence rate, which is inevitable when constraints on computational complexity
are strict.

ANC algorithms can also benefit from adopting the coefficient selection strategy.
Consider, for example, the Filtered-X LMS (FX-LMS) algorithm [15,25,26], whose block
diagram is presented in Figure 2. The FX-LMS algorithm is used in active noise control
applications to minimize noise in a primary input signal. It operates by subtracting the
output of an adaptive filter from a reference signal, aiming to estimate and cancel unwanted
noise in the primary input. The algorithm adjusts the adaptive filter coefficients iteratively
using the LMS approach, with each update being proportional to the product of the error
signal (the difference between the reference signal and the filtered input) and the input
signal. The process continues iteratively until convergence, where the adaptive filter
effectively minimizes the mean square error, resulting in reduced noise in the primary
input signal. The filtering of the input signal is performed through an estimate Ŝ(z) of the
secondary path S(z). The computational cost of the FX-LMS algorithm can be mitigated by
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selectively updating a fraction of its coefficients using the proposed criterion. Similar to
the case of VTL techniques, a maintenance of the asymptotic performance of the FX-LMS
algorithm is observed, along with a controllable loss in the convergence rate.

x(k) w⋆

w(k) s

LMSŝ

y′(k)

+
d(k)

ν(k)

y′f(k)

e′(k)

Figure 2. Block diagram of the FX-LMS algorithm.

5. Results

In this section, simulation results are presented in order to assess the quality of
theoretical predictions using simulated curves obtained through 1000 independent Monte
Carlo trials (except when a different value is explained). In all of the following scenarios,
the additive noise derives from a Gaussian and white process.

5.1. First-Order Analysis

In this scenario, the proposed model of the algorithm is evaluated with regard to
the average evolution of the coefficients. The plant to be emulated consists of the first 64
coefficients from Model 4 of [27]. The total number of blocks is M = 8. To evaluate the
accuracy of the proposed model’s behavior, we consider a configuration in which the input
signal is white Gaussian and of unitary variance. The SPU-LMS-M-min parameters are:
β = 10−2, σ2

ν = 10−6. The results shown in Figure 3 reveal good correspondence with
the experimental results and confirm the expectation that an increase in B implies a faster
convergence of the algorithm. It is important to point out that Figure 3a evaluates the
evolution of the coefficient w8(k), among the 64 coefficients, while Figure 3b presents the
evolution of the coefficient w34(k), among the 64 adaptive coefficients. In both figures,
an almost perfect adherence can be seen, with updates of one, two, three, or four blocks.
Such adherence allows us to verify that the first-order theoretical modeling is validated by
the results obtained via simulation, indicating that the hypotheses described do not project
significant discrepancies in relation to the real behavior of the algorithm in this scenario.
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0
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E
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8(
k)
]

Iteration Number
(a)
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34
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Figure 3. Theoretical (red dashed line) and empirical (blue solid line) evolution of the adaptive filter
coefficients for B ∈ {1, 2, 3, 4}. (a) Coefficient w8(k); (b) Coefficient w34(k).
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5.2. Second-Order Analysis

In this scenario, the proposed model of the algorithm is evaluated with respect to the
MSD and MSE metrics. The plant to be emulated contains the first 32 coefficients from
Model 4 of [27]. The total number of blocks is M = 8. The input signal is white and the
SPU-LMS-M-min parameters are: β = 10−2, σ2

ν = 10−6. The results shown in Figure 4a
reveal good correspondence between the theoretical and experimental curves of the MSD,
both in steady-state and transient regimes. There is also confirmation that an increase
in B implies a higher convergence rate of the algorithm. Such an increase also implies
greater adherence between theoretical and experimental results (see the curve with B = 4).
The results shown in Figure 4b reveal good correspondence between the theoretical and
experimental curves of the MSE, both in steady-state and transient regimes.

5.3. Tracking Analysis

The results presented in Figure 5 shows the ability of the proposed stochastic model to
predict the tracking ability of the SPU-LMS-M-min algorithm. The plant to be emulated
contains the first 32 coefficients from Model 2 of [28]. The additive noise, as well as the
perturbation q(k), are distributed according to a white Gaussian process. Table 2 presents
the parameters used in the simulations.

The results shown in Figure 5 reveal the asymptotic MSD performance of the algorithm
as a function of β. The excellent adherence between the experimental results and the
theoretical forecast stands out. Note that there is a specific value of β that optimizes the
asymptotic performance, which is duly estimated by the elaborated theoretical analysis.
This value of β is high enough to allow the filter to follow the non-stationarity of the plant
varying in time, but at the same time, it is not high enough to generate a lot of variability
in the estimation process. Such high variability has repercussions on the second-order
statistics (such as variance), which are captured by performance metrics.

Table 2. Parameters used in tracking simulations scenario.

Parameters Figure 5

β 10−2

σ2
ν 10−6

H(z) 1 − 0.8z−1 + 0.2z−2

σ2
q 10−15

0 2000 4000 6000 8000 10000
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-40
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Figure 4. Theoretical (red dashed line) and empirical (blue solid line) evolution of the adaptive filter
coefficients for B ∈ {1, 2, 3, 4}. (a) MSD (dB); (b) MSE (dB).
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Figure 5. Theoretical (red) and simulated (blue) steady-state MSD (in dB), as a function of β. The vari-
ance in the random perturbation is σ2

q = 10−15.

In the following scenario related to Figure 6, the target is to identify ability of the
proposed stochastic model in following the evolution of the MSD and MSE under a non-
stationary σν

2. The plant to be identified contains the first 32 coefficients of Model 2 of [28].
The total number of blocks is M = 8. To evaluate the accuracy of the behavior of the pro-
posed model before a colored input signal, the input signal is generated by passing a Gaus-
sian white noise of unitary variance through the filter H(z) = 1 − 0.8z−1 + 0.6z−2 − 0.1z−3.
The parameters of SPU-LMS-M-min are: β = 8 × 10−3 and the formula used for calculating
σ2

ν (k) is
σ2

ν (k) = σ2
ν + A sin(2π fsk), (46)

where σ2
ν = 10−2, A = 10−1 and fs = 2 × 10−3. Empirical results were obtained through

2 × 104 independent Monte Carlo trials. The results shown in Figure 6a reveal adequate
correspondence between the theoretical and experimental MSD curves, both in steady-state
and transient regimes. The results shown in Figure 6b, which take advantage of the same
parameters as those of Figure 6a, reveal adequate correspondence between the theoretical
and experimental MSE curves, both in steady-state and transient regimes.
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Figure 6. Comparison of empirical results (a) MSD (dB); (b) MSE (dB). Theoretical result (red) and
experimental result (blue), considering the colored input signal.

5.4. Deficient-Length Analysis

The results shown in Figure 7a,b reveal adequate correspondence between the the-
oretical and experimental MSE curves. Note that Equation (42) is very consistent with
the dynamics of the MSE, both in transient regions, and especially in asymptotic regions.
In these simulations, we used the following parameters: β = 10−2, σ2

ν = 10−4, and M = 4.
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The average results were computed from 105 independent Monte Carlo trials. The ideal
transfer function, w⋆

i was generated using the following interval:

w⋆
i =

{
1, for i ∈ {0, 1, ..., N − 1}

0.5, for i ∈ {N, N + 1, ..., N + D − 1} (47)

Taking into account N = C + D, where C ∈ {12, 16} is the fixed number of filter coefficients,
and D ∈ {2, 4, 6} is the number of coefficients that exceed the filter amount. Note that
Equation (42) is very consistent with the empirical dynamics of the MSE both in transient
and asymptotic regions.

0 200 400 600 800 1000
-5

0

5

10

N = 14

N = 16

N = 18

M
SE

(d
B)

Iteration Number
(a)

0 200 400 600 800 1000
-5

0

5

10

15

N = 18

N = 20

N = 22

M
SE

(d
B)

Iteration Number
(b)

Figure 7. Comparison between theoretical MSE (dashed red line) and empirical MSE (solid blue line)
for the deficient-length scenario.

5.5. SPU-LMS-M-Min versus SPU-LMS-M-Max

Accordingly with classical approach for derivation of the SPU-LMS-M-max algorithm
there was a statement never discussed before related to block selection, whose quadratic
norm is the largest chosen [10] among all blocks, whereas in this paper the block with
the smallest norm is elected. It should be observed that the advanced criterion selects a
smallest norm (M-min) and shows better and more efficient results compared with the
M-max variation, even-though under very intensive impulsive noise. Figure 8a shows
comparisons between empirical MSD in which the first 64 coefficients of Model 3 of [28] are
employed as the ideal transfer function. All empirical results were obtained by performing
2 × 105 independent Monte Carlo trials, and the additive noise derives from a white
Gaussian process. The total number of blocks is M = 8 and only B = 5 blocks were updated.
The input signal is generated by passing a unity-variance white Gaussian noise through
the filter H(z) = 1 − 0.8z−1 + 0.6z−2 − 0.1z−3. The selected parameters are β = 10−3,
σ2

ν = 10−8, and impulsive noise in a range from σ2
ν = 2−1 to σ2

ν = 1 with 50% probability of
occurrence. Figure 8b shows comparisons between empirical MSEs taking advantage of the
same parameters as those employed in Figure 8a. In the settings depicted in Figure 8a,b,
the reduction in the number of multiplications brought about by the proposed algorithm
(compared to LMS) was approximately 20%. Note that a high-energy noise signal severely
degrades the algorithm’s performance.
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Figure 8. Comparison between empirical SPU-LMS-M-max (red) and SPU-LMS-M-min (blue) for the
very intense impulsive noise scenario. (a) MSD (dB); (b) MSE (dB).

5.6. Extensions of the Proposed Framework Simulations

In accordance with the extension approach for SPU-LMS-M-max, incorporating a
variable tap length algorithm, it is noteworthy that this method inherently utilizes a greater
number of steady-state coefficients than strictly essential. Consequently, such an algorithm
demands inefficient utilization of computational resources during steady-state operation.
In response to this challenge, the amalgamation of SPU and VTL is proposed, thereby
facilitating diminished computational costs while preserving an equivalent asymptotic
performance. Despite the inevitable consequence of a controllable reduction in the conver-
gence rate due to this integration, this trade-off can be effectively managed by judiciously
selecting the fraction of coefficients to update. Thus, the proposed SPU methodogy was
applied to an Acoustic Echo Cancellation (AEC) context, showcasing sustained asymptotic
performance alongside diminished computational costs. This accomplishment is achieved
at the cost of a controllable loss in the convergence rate, a parameter that remains adjustable
by the designer. Figure 9a shows comparisons between empirical MSE for those algorithms
VTL and SPU-VTL, where the 100 coefficients of Model 2 of [27] are employed as the ideal
transfer function. All empirical results were obtained by performing 2 × 104 independent
Monte Carlo trials, and the additive noise derives from a white Gaussian process. The to-
tal number of blocks is M = 8 and only 85% of the blocks were updated. The input
signal is generated by passing a unity-variance white Gaussian noise through the filter
H(z) = 0.35 − z−1 + 0.35z−2. The selected parameters were β = 10−2, σ2

ν = 10−6, γ = 20,
α = 4.10−4, δ = 3, and ∆ = 15. While the transient regime underscores the superior
convergence rate of Variable Tap Length (VTL), it is imperative to highlight that the uti-
lization of Selective Partial Update with Variable Tap Length (SPU-VTL) concurrently
diminishes computational complexity while maintaining an equivalent convergence rate
during steady-state operation. Therefore, in the context of a Mean Squared Error (MSE)
comparison, the judicious selection between VTL and SPU-VTL is pivotal for designers
aiming to achieve specific targets. Figure 9b shows comparisons between empirical Tap
Length over iterations used on VTL and SPU-VTL taking advantage of the same parameters
as those employed in Figure 9a. In the configurations depicted in Figure 9a,b, the reduction
in the number of multiplications resulting from the insertion of the SPU technique averaged
7.5%. Further, a detailed examination of Figure 9b reveals that in terms of energy efficiency,
the application of tap length measurements by MSE calculation over up to 104 iterations
proved to be more effective during the transient regime. Moreover, in the steady-state
regime, both algorithms demonstrated comparable performance.
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Figure 9. Comparison between empirical SPU-Variable Tap Length (red) and Variable Tap Length
(blue). (a) MSE (dB); (b) Tap Length.

Figure 10a,b present comparisons, measured in terms of Mean Squared Error (MSE),
between traditional LMS and SPU algorithms applied to a practical scenario of Acoustic
Echo Cancellation (AEC). In both instances, the parameters utilized included 20 coefficients
representing the ideal transfer function, with SPU employing only 18 coefficients. The
empirical results stem from 2.104 independent Monte Carlo trials, incorporating white
Gaussian noise as the additive element. The input signal is generated by passing unity-
variance white Gaussian noise through the filter H(z) = 1 − 0.2z−1 + z−2. The coefficients
of the ideal plant are described by , defined as hk = [cos (0.2 × π × (k + 1))]−0.2×(k+1). The
parameters applied are β = 10−2, σ2

ν = 10−6 for Figure 10a and σ2
ν = 10−2 for Figure 10b.

In the settings depicted in Figure 10a,b, the computational cost reduction provided by
the SPU-FX-LMS algorithm amounts to approximately 8%. Greater computational cost
reductions can be achieved if the constraints of the application permit, given that such
reductions entail a larger decrease in the convergence rate.

While both figures emphasize the superior convergence rate of FX-LMS during the
transient regime, and in the steady-state regime where both FX-LMS and SPU-FX-LMS
exhibit similarity, it is crucial to underscore that the implementation of SPU-FX-LMS con-
currently reduces computational complexity while maintaining an equivalent performance
during steady-state operation. Therefore, in the context of a Mean Squared Error (MSE)
comparison, there is an important choice between FX-LMS and SPU-FX-LMS that becomes
pivotal for designers with specific objectives in mind. Figure 10b illustrates similar compar-
isons of empirical MSE over iterations for FX-LMS and SPU-FX-LMS, leveraging the same
parameters as in Figure 10a.

The theoretical framework expounded in the antecedent Figure 10a suggests a dimin-
ished computational demand. Nevertheless, a meticulous scrutiny of Figure 10b elucidates
that, particularly in the presence of intensified noise, the augmentation of σ2

ν values in the
MSE calculations over a span of up to 104 iterations proves to be notably efficacious when
employing SPU-FX-LMS. This effectiveness arises from the algorithm’s capacity to optimize
performance under conditions of high noise while concurrently exhibiting reduced compu-
tational complexity. The observed parity in steady-state results between SPU-FX-LMS and
FX-LMS further underscores the former’s viability. Consequently, the strategic application
of SPU-FX-LMS is advocated in scenarios characterized by constrained computational
resources, even in the presence of substantial ambient noise. Notably, in applications such
as Acoustic Echo Cancellation (AEC), the SPU strategy demonstrates potential benefits,
including potential reductions in battery usage for hands-free devices, while maintaining
robust echo cancellation capabilities in comparison to conventional LMS techniques.
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Figure 10. Comparison between empirical SPU-FX-LMS (red) and FX-LMS (blue) for different intense
noise scenarios. (a) σ2

ν = 10−6; (b) σ2
ν = 10−2.

6. Conclusions

This paper proposes a deterministic and local optimization problem, whose approx-
imate solution puts forward a non-normalized adaptive algorithm with selective partial
updates. Such an algorithm provides the designer with the ability to operate in a region of
a trade-off between computational complexity and convergence rate. A stochastic model
that predicts the learning capabilities of the new algorithm is derived and then extended to
address first-order Markovian perturbations of the ideal plant in an identification scenario.
Theoretical predictions are shown to be in close agreement with computer simulation re-
sults. The proposed methodology has been extended to configurations of automatic noise
cancellation and time-varying filter length, providing the designer with the possibility to
operate at various points where the convergence rate and computational complexity vary.
Extensions to adaptive algorithms that exhibit higher computational cost (such as RLS [29])
and to the double-talk scenario constitute a promising line of future investigations.
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