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Abstract: Based on acoustic fluid elements, a dynamic analysis of liquid sloshing modes and liquid-
filled containers was undertaken, considering the effect of fluid–structure interactions (FSIs). The
liquid sloshing modes in two-dimensional (2D) and three-dimensional (3D) containers were analyzed,
and the results were compared with liquid sloshing modes measured in tests and theoretically
calculated modes. This finding thus verifies the correctness of the simulation method based on
acoustic fluid elements. Cylindrical liquid-filled containers with different water levels were subjected
to a modal analysis and dynamic and time-history analysis. The results show that the finite element
analysis (FEA) based on acoustic fluid elements can accurately simulate liquid sloshing modes in
liquid-filled containers, as well as the vibration characteristics of these containers with different
liquid levels. The vibration frequency of liquid-filled containers decreases with rising liquid levels.
The liquid level significantly affects the distribution of the maximum displacement, maximum
acceleration, and maximum von Mises stress on the sidewall of liquid-filled containers. Numerical
simulations based on acoustic fluid elements provide an effective and reliable method for dynamic
analysis of liquid-filled containers considering the effect of FSIs.

Keywords: fluid–structure interaction; acoustic fluid elements; liquid sloshing modes; liquid-filled
containers; dynamic analysis

1. Introduction

The effect of fluid–structure interactions (FSIs) between solid structures and liquids
is prevalent in engineering practice. For example, liquid-filled containers under seismic
action or other vibration loads are a structure with the typical effect of FSIs [1]. Analysis of
the FSI effect of liquid-filled containers, on the one hand, focuses on liquid sloshing therein,
and on the other, considers the influence of liquid sloshing on these containers.

In order to tackle liquid sloshing problems, Dodge et al. [2–5] systematically ex-
pounded the theoretical and engineering applications of liquid sloshing modes. However,
these methods pay more attention to theoretical and analytical methods and are only ap-
plicable to solving cases with regular shapes and simple external excitations, yet fail to
solve vibration problems of liquid-filled structures of complex shapes [6,7]. Bao et al. [8,9]
studied liquid modes based on potential-based fluid elements. When using this method,
the liquid sloshing frequency is much lower than the structural vibration frequency, and the
resulting first hundreds of modes are all liquid sloshing modes rather than modes of solid
structures [10]. Therefore, it is difficult to apply the mode-superposition response spec-
trum method and time history analysis to any dynamic analysis of liquid-filled structures,
and these methods are inapplicable to the analysis of dynamic responses of liquid-filled
containers.
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Structural engineers generally pay more attention to how liquid motion affects struc-
tural responses under seismic action, while they are not interested in the motion of liquids
themselves. To consider the influence of liquid sloshing on the dynamic responses of liquid-
filled containers and avoid complex liquid sloshing computation, the simplified equivalent
mechanical model of fluid sloshing is generally used. On the basis of the potential flow
theory, Graham [11] took the lead to establish an equivalent mechanical model of fluid
sloshing in a rectangular container, which has been widely applied in the engineering field.
Housner [12] deduced a simplified calculation formula based on an equivalent model of
fluids based on physical intuition. The Housner model is a good approximation for the
exact solution to the model proposed by Graham and has found extensive applications
in civil and hydraulic engineering; however, the Housner model is not based on physical
intuition and therefore is not an exact physical model, so its results are unreliable in some
cases. Li [13] improved the Housner model on the basis of the theory of linear potential
flow and provided a fitting solution to the equivalent model using a semi-analytical and
semi-numerical method, whereas the improved Housner model has such complex param-
eters that it is only suitable for regular two-dimensional (2D) models and not complex
2D and three-dimensional (3D) models. Apart from proposing the equivalent methods
based on the potential flow theory, Wstergaard [14] and Chopra [15] also developed the
added-mass method. Rajasankar et al. [16] applied the added-mass method to the finite
element method (FEM) and performed FSI analysis. Bao et al. [17] proposed an improved
added-mass model based on the added-mass method and conducted dynamic analysis
on an annular tank, providing reference for the design and application thereof. However,
the distributed mass coefficient is difficult to determine in the above added-mass method
and improved added-mass methods, so when using these methods to analyze structures of
liquid-filled containers, the results are generally less reliable.

The conventional analytical methods are only applicable to cases with regular geomet-
ric shapes and simple external excitations, and FEM based on potential-based fluid elements
is not applicable to the analysis of the dynamic responses of liquid-filled structures. More-
over, equivalent mechanical models based on fluid sloshing and the added-mass methods
also have drawbacks. Considering this, it is necessary to use a method that is not only
suitable for exploring liquid sloshing modes but is also applicable to assessing influences
of liquid sloshing on the dynamic responses of liquid-filled containers, thus providing a
reference for the engineering design and application of such containers. Therefore, the
current research conducted a finite element analysis (FEA) on liquid sloshing modes at first
and compared the analysis results with theoretical solutions and liquid sloshing frequencies
and modes measured in previous tests, thus verifying the correctness of the FEM. How-
ever, the theoretical solutions and test models are only applicable to 2D models while the
practical models are all 3D ones, so 3D models of liquid sloshing were also analyzed. Then,
a dynamic analysis was conducted on liquid-filled containers with different liquid levels,
considering the influences of the effect of FSIs and the intrinsic frequency and dynamic
response of liquid-filled containers. The FEM based on acoustic fluid elements used in this
research provides an effective and reliable method for the dynamic analysis of liquid-filled
containers considering the effect of FSIs.

2. The FEA Theory Based on Acoustic Fluid Elements

A liquid-filled container and a liquid constitute an FSI system, in which the liquid and
structure (liquid-filled container) are simulated using FEM. The FEM simulation methods of
structures have been introduced elsewhere [18]. For FEA considering the effect of FSIs, one
should use the fluid displacement as an unknown quantity [19] and harness the similarity
between the fluid motion equation and the equation of motion of structural elastomers,
which results in a finite element calculation model of fluid consistent with the finite element
scheme; the other is to take the fluid pressure as an unknown quantity [20] and coordinate
the displacement and pressure on the structure–fluid interface, from which the obtained
mass and stiffness matrices are asymmetric matrices. When analyzing liquid sloshing
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problems using the pressure scheme based on acoustic fluid elements [21], the theory is as
described below.

For the structure,

[MS]
{ ..

u
}
+ [CS]

{ .
u
}
+ [KS]{u} − [R]{p} = { fS} (1)

where [MS], [CS], [KS] separately represent the mass, damping, and stiffness matrices of
the structure;

{ ..
u
}

,
{ .

u
}

, {u} separately denote the acceleration, speed, and displacement
vectors at nodes of structural elements; [R] denotes the coupling matrix at the structure–
fluid interface; {p} is the nodal pressure vector of fluid elements; and { fS} is the load
vector of the structure.

For the fluid,

[MF]
{ ..

p
}
+ [CF]

{ .
p
}
+ [KF]{p}+ ρ0[R]

T{ ..
u
}
= { fF} (2)

where [MF], [CF], and[KF] separately represent the mass, damping, and stiffness matrices
of the fluid;

{ .
p
}

,
{ ..

p
}

are the first-order and second-order derivatives of nodal pressure of
fluid elements; ρ0 denotes the fluid density; and { fF} is the load vector of the fluid.

The following can be obtained by combining Equations (1) and (2):[
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}
=
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{ fS}
{ fF}

}
(3)

By solving Equation (3), the liquid sloshing modes in the FSI system and the FSI
dynamic responses can be obtained. The bounding surface of the water domain are
modeled using various types of interface defined as follows:

(i) Fluid–structure interaction: Set a fluid–structure interaction on the boundary between
fluid and structure.

(ii) Free surface: Set a free surface on the top surface of water domain, which can provide
an approximate representation of the water surface wave.

(iii) Rigid wall: Set a rigid wall on the bottom and the lateral surface where the water
cannot flow through the boundary.

As explained above, the surface of the water domain is a defined, specified boundary
condition. In general, the software ANSYS 2023 can automatically generate fluid–structure
interactions along the boundary between the fluid and structure.

3. Analysis of Liquid Sloshing Modes
3.1. Theoretical Solutions to 2D Liquid Sloshing Modes

Following the potential flow theory of ideal fluids, the fluid is assumed to be a non-
viscous, irrotational, and incompressible ideal fluid, for which the influence of the free
surface tension of the liquid is not considered. For general practical engineering problems,
the above assumption is feasible. The corresponding eigenvalue equation is established
by establishing the free sloshing equation for the liquid using the theoretical method. The
liquid sloshing frequency and mode are attained by finding the eigenvalues.

3.1.1. Two-Dimensional Rectangular Container

For a regular rectangular container (Figure 1a), the jth sloshing frequency of the liquid
is [2,3]:

ωj =

√
g
(

jπ
2a

)
tanh

(
jπh
2a

)
j = 1, 2, 3, . . . (4)
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where g is the gravitational acceleration; a represents the half width of the rectangular
container; and h is the liquid level. According to Equation (4), the sloshing of the free liquid
surface is attributed to gravity. The jth sloshing mode of the free liquid surface is

ϕj(x, z) =

{
Cj sin jπ

2a x j = 1, 3, 5, . . . (antisymmetric mode)
Dj cos jπ

2a x j = 2, 4, 6, . . . (symmetric mode)
(5)

where Cj and Dj are constants. Figure 2 illustrates the first six sloshing modes of the free
liquid surface. Therein, odd-order frequencies ω1, ω3, ω5 correspond to the first three
antisymmetric modes, while even-order frequencies ω2, ω4, ω6 correspond to the first three
symmetric modes, respectively.
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Figure 2. The first six sloshing modes of the free liquid surface in the rectangular container.
(a) Antisymmetric (odd-order) modes (j = 1, 3, 5). (b) Symmetric (even-order) modes (j = 2, 4, 6).
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3.1.2. Container with Arbitrary Cross Sections

A container of arbitrary shape is displayed in Figure 1b. It is challenging to solve the
theoretical solution due to the irregular boundary. Considering this, the Ritz method is
adopted to calculate the liquid sloshing frequency of containers of arbitrary shape [22]:

ω2
j
∼=

{
Bjαjg j = 1, 3, 5, . . . (antisymmetric)

Djαjg j = 2, 4, 6, . . . (symmetric)
(6)

Bj =
−bAj −

√
b2

Aj − 4aAjcAj

2aAj
j = 1, 3, 5, . . . (7)

Dj =
−bSj −

√
b2

Sj − 4aSjcSj

2aSj
j = 2, 4, 6, . . . (8)


aAj =

s
Ω

(
sin2αjx + sinh2αjz

)
dxdz

bAj = 2
s

Ω
(
sinhαjz·coshαjz

)
dxdz − a/αj

cAj =
s

Ω

(
cos2αjx + sinh2αjz

)
dxdz

j = 1, 3, 5, . . . (9)


aSj =

s
Ω

(
cos2αjx + sinh2αjz

)
dxdz

bSj = 2
s

Ω
(
sinhαjz·coshαjz

)
dxdz − a/αj

cSj =
s

Ω

(
sin2αjx + sinh2αjz

)
dxdz

j = 2, 4, 6, . . . (10)

where g denotes the gravitational acceleration; αj = jπ/2a; a is the half width of the resting
free liquid surface; and Ω is the liquid area.

3.2. FEA of 2D Liquid Sloshing Modes

The model adopted is a flat container, through which the 2D liquid sloshing is sim-
ulated. The test models and the finite element models are illustrated in Figures 3 and 4,
respectively. The four-node acoustic fluid elements are used to model the water domain.
The mesh densities of all finite element models were refined until the convergence of the re-
sults. Among them, the mesh size of the rectangular container is 0.005 m, and the mesh size
of the circular container and U-shaped container along the diameter direction is 0.005 m.
The water level and half width of the rectangular container are h = 0.12 m and a = 0.10 m;
the water level and radius of the circular container are h = 0.16 m and R = 0.125 m; and
the radius, water level, and cavity thickness of the U-shaped container are R = 0.10 m,
h = 0.115 m, and 20 mm, respectively [23].

In the FEA, the containers are assumed to be rigid bodies. Generally, containers are
all elastomers, while the elastic vibration of containers only slightly influences the overall
liquid sloshing, so the influence of the stiffness of containers on liquid sloshing is ignored
when analyzing liquid sloshing modes.
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3.2.1. Rectangular Container

The first four sloshing modes in the rectangular container obtained by FEA are shown in
Figure 5; those measured in tests are illustrated in Figure 6. Table 1 presents that the liquid
sloshing frequency attained by FEA is consistent with the results of theoretical calculation,
with the maximum error within 0.5%. The maximum error in the sloshing frequency attained
by FEA and that measured in tests is 3.1%. One of the causes for the error in the liquid sloshing
frequency obtained using FEA and tests is that the liquid is assumed to be an ideal fluid in
FEA, that is, incompressible fluid without viscosity, while the liquid in the tests is viscous.
Furthermore, there is also an error (albeit small) arising in the test process. A comparison of
Figure 2 with Figures 5 and 6 shows that the sloshing modes obtained by FEA agree well with
the theoretically calculated modes, with a small difference in only the fourth order. The fourth
sloshing modes obtained by the FEA and experiment are both even-order symmetric modes
(Figure 2), so they are not, in the theoretical sense, different.

Table 1. Comparison of the first four orders in FEA, theoretical analysis, and tests (unit: Hz).

Order

Rectangular Container
Water Level h = 0.12 m

Circular Container
Water Level h = 0.16 m

U-Shaped Container
Water Level h = 0.115 m

Theoretical
Calculation Test FEA Theoretical

Calculation Test FEA Theoretical
Calculation Test FEA

1 1.93 1.89 1.93 1.77 1.68 1.77 1.90 1.85 1.89
2 2.79 2.73 2.79 2.55 2.52 2.57 2.78 2.73 2.78
3 3.42 3.40 3.43 3.12 3.09 3.15 3.42 3.35 3.42
4 3.95 3.94 3.97 3.61 3.51 3.64 3.95 3.87 3.95

Note: Test data in the table are taken from [23,24].
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3.2.2. Circular Container

The first four liquid sloshing modes in the circular container obtained by FEA are
illustrated in Figure 7; those obtained in the tests are shown in Figure 8. Their comparison
shows that the sloshing modes obtained by FEA match those in the tests, with a small
difference in only the second order, whereas the second modes are both symmetric modes,
so they can be regarded, in the theoretical sense, as consistent. Table 1 shows that the
sloshing frequencies obtained by FEA are basically consistent with the first four sloshing
frequencies attained by theoretical calculation, with the maximum error of 1.4%. The
sloshing frequencies acquired by FEA have the maximum discrepancy of 5% with those
measured experimentally, the source of which can be found in the error analysis as applied
to the rectangular container.
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3.2.3. U-Shaped 2D Container

The first four sloshing modes in the U-shaped 2D container attained by FEA are
illustrated in Figure 9, while those measured in the tests are shown in Figure 10. Their
comparison shows that the sloshing modes attained by FEA are consistent with those
measured in the tests, with a subtle difference in only the fourth order, whereas the
fourth modes are both symmetric modes, which are regarded as similar (in the theoretical
sense). As displayed in Table 1, the sloshing frequencies predicted by FEA match those
theoretically calculated for the first four frequencies, with differences of less than 0.5%. The
sloshing frequencies obtained by FEA and those measured experimentally differ by no
more than 2%, which indicates that the FEA results are reliable (again, the error analysis
follows that applied to the rectangular container).
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Based on the above analysis results, the liquid sloshing frequencies conform well to
the theoretical calculation and test results, despite small differences in several modes. This
outcome indicates that the FEM based on acoustic fluid elements can be used to simulate
the liquid sloshing modes in containers of different shapes.

3.3. FEA of 3D Liquid Sloshing Modes

To compare with the 2D models, the models of 3D containers were assigned identical
geometrical dimensions to their 2D counterparts. The 3D diagram models and the 3D finite
element models are shown in Figures 11 and 12, respectively. Compared to the 2D finite
element model, the eight-node acoustic fluid elements are used to model the water domain,
and the element size is reduced for enhancing computational efficiency. Among them, the
mesh size of the rectangular container is 0.01 m, and the mesh size of the circular container
and U-shaped-container along the diameter direction is 0.01 m. For the cuboid container,
the water level is h = 0.12 m, and its length and width are a = b = 0.20 m; the water level and
radius of the spherical container are h = 0.16 m and R = 0.125 m; the water level and radius
at the bottom of the U-shaped 3D container are h = 0.115 m and R = 0.10 m, respectively.
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3.3.1. Cuboid Container

The liquid sloshing modes in the cuboid container obtained by FEA are shown in
Figures 13 and 14. Comparisons of Figures 5 and 13, combined with Tables 1 and 2, show
that the first, third, sixth, and ninth liquid sloshing modes in the cuboid container separately
correspond to the first, second, second, and fourth liquid sloshing modes in the rectangular
container. The difference is that the liquid sloshing modes in the cuboid container are more
complex than those in the rectangular container, and the frequencies are higher. It is more
difficult to resolve the liquid sloshing modes in the cuboid container than those in the
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rectangular container in the theoretical sense. Therefore, the FEM based on acoustic fluid
elements can better simulate liquid sloshing modes in the cuboidal container.
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Table 2. The first ten liquid sloshing frequencies (unit: Hz).

Container
Order

1 2 3 4 5 6 7 8 9 10

Cuboid container
(Water level h = 0.12 m) 1.93 2.34 2.80 2.97 3.34 3.45 3.55 3.79 4.01 4.08

Spherical container
(Water level h = 0.16 m) 1.95 2.57 2.85 3.04 3.37 3.44 3.79 3.80 3.88 4.12

U-shaped 3D container
(Water level h = 0.115 m) 2.04 2.72 3.09 3.27 3.65 3.66 4.04 4.11 4.22 4.40

3.3.2. Spherical Container

The liquid sloshing modes in the spherical container acquired by FEA are shown in
Figures 15 and 16. Comparisons of Figures 7 and 15, combined with Tables 1 and 2, show
that, different from the cuboid and rectangular containers, the liquid sloshing modes in the
spherical container do not correspond to those in the spherical container. This is because
the length of the free liquid surface in the cuboid container (a = b = 0.20 m) remains identical
to that in the rectangular container (a = 0.20 m), while the free liquid surface in the spherical
container is not geometrically comparable to that in the spherical container.



Appl. Sci. 2024, 14, 2688 13 of 27Appl. Sci. 2024, 14, 2688 13 of 26 
 

 

Figure 15. Two-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th. 

 

Figure 16. Three-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th. 

3.3.3. U-Shaped 3D Container 

The liquid sloshing modes in the U-shaped 3D container obtained by FEA are shown 

in Figures 17 and 18. By comparing Figures 9 and 17 and combining with Tables 1 and 2, 

the liquid sloshing modes in the U-shaped 3D container do not correspond to those in the 

U-shaped 2D container, while they are similar to those in the spherical container. This is 

because the free liquid surface in the U-shaped 3D container demonstrates geometric sim-

ilarity to that in the spherical container. 

 

Figure 17. Two-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th. 

Figure 15. Two-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th.

Appl. Sci. 2024, 14, 2688 13 of 26 
 

 

Figure 15. Two-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th. 

 

Figure 16. Three-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th. 

3.3.3. U-Shaped 3D Container 

The liquid sloshing modes in the U-shaped 3D container obtained by FEA are shown 

in Figures 17 and 18. By comparing Figures 9 and 17 and combining with Tables 1 and 2, 

the liquid sloshing modes in the U-shaped 3D container do not correspond to those in the 

U-shaped 2D container, while they are similar to those in the spherical container. This is 

because the free liquid surface in the U-shaped 3D container demonstrates geometric sim-

ilarity to that in the spherical container. 

 

Figure 17. Two-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th. 

Figure 16. Three-dimensional view of liquid sloshing modes: (a) 1st; (b) 2rd; (c) 3rd; (d) 4th.

3.3.3. U-Shaped 3D Container

The liquid sloshing modes in the U-shaped 3D container obtained by FEA are shown
in Figures 17 and 18. By comparing Figures 9 and 17 and combining with Tables 1 and 2,
the liquid sloshing modes in the U-shaped 3D container do not correspond to those in the
U-shaped 2D container, while they are similar to those in the spherical container. This
is because the free liquid surface in the U-shaped 3D container demonstrates geometric
similarity to that in the spherical container.
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A comparison of the liquid sloshing modes in the 2D containers with those in the 3D
containers reveals that the liquid sloshing modes in the 3D containers are more complex
than those in the 2D containers, and the modes do not correspond to each other. The FEM
based on acoustic fluid elements can be used to simulate liquid sloshing modes in 2D and
3D containers of different shapes.

4. Modal Analysis and Time-Historical Analysis of Cylindrical Liquid-Filled Containers

4.1. Liquid Modal Analysis

For the cylindrical liquid-filled container in Figure 19, the liquid sloshing modes in
elastic and rigid containers were analyzed separately. As illustrated in Figure 20, the eight-
node acoustic fluid elements are used to model the water domain, and the eight-node solid
elements are used to model the cylindrical container shell. The model sizes and material
parameters are listed in Table 3 [8].
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Figure 19. Cylindrical liquid-filled containers. (a) Elastic container. (b) Rigid container.
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Figure 20. Finite element model of elastic container: (a) 3D view. (b) Two-dimensional elevation
through a central cutting plane.

Table 3. Model sizes and material parameters.

Physical Qualities Symbol Value

Container diameter D 12 m
Container height H 7 m

Container wall thickness t 0.2 m
Liquid level h 6 m

Container elastic modulus E 3.10 × 1010 Pa
Container density ρ1 2643 kg m−3

Container Poisson’s ratio µ 0.15
Liquid density ρ2 1000 kg m−3

Liquid acoustic velocity c 1435 m s−1

The liquid sloshing frequency in the cylindrical liquid-filled container is [2,3]

ωi =

√
λi

g
R

tanh
(

λi
h
R

)
(11)

where λi is the ith root of the derivative of the family of Bessel functions; g is the gravita-
tional acceleration; R is the radius of the liquid-filled container; and h denotes the liquid
level in the liquid-filled container.
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The first five liquid sloshing frequencies in the cylindrical liquid-filled container are
listed in Table 4. The liquid sloshing modes in the cylindrical liquid-filled container and
the vibration modes of this container are shown in Figures 21 and 22, respectively. The
FEA numerical solution conforms to the theoretical solution, which indicates that it is
reliable and can be used to simulate liquid sloshing modes in containers. Moreover, the
FEA predictions of liquid sloshing frequencies in rigid and elastic containers are same for
this example, suggesting that the influence of structural stiffness on the liquid sloshing
modes can be ignored.

Table 4. First five liquid sloshing frequencies of cylindrical containers (unit: Hz).

Order

1 2 3 4 5

FEA numerical solution (rigid container) 0.27 0.35 0.40 0.42 0.47
FEA numerical solution (elastic container) 0.27 0.35 0.40 0.42 0.47

Theoretical solution 0.27 0.35 0.40 0.42 0.47
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4.2. Modal Analysis of Cylinder Containers

In practical engineering application, the vibration frequencies of liquid-filled contain-
ers themselves attract more attention, in addition to liquid sloshing modes in liquid-filled
containers. Therefore, it is necessary to study containers filled to different levels.

In order to measure the influence of different water depths on the frequency of the
cylindrical container, the dimensionless coefficient is used to represent the influence coeffi-
cient of the frequency of the cylindrical container caused by water depth:

R f =
fi − f0

f0
(12)

where fi is the frequency of the cylindrical container at different water depths, and f0 is the
frequency of the cylindrical container without water.

The first five frequencies of liquid-filled containers with different liquid levels are
displayed in Table 5 and Figure 23. The results show that the liquid exerts significant
influences on the intrinsic frequency of cylindrical containers. As the liquid level rises in
the liquid-filled containers, the vibration frequency of cylindrical containers decreases. If
the liquid level in the liquid-filled containers is 6 m, the first frequency reduces by 31.24%.
Therefore, the influences of the effect of FSIs on the intrinsic frequency and dynamic
response of liquid-filled containers should be considered in the engineering design of such
containers.

Table 5. The first five frequencies of cylindrical containers (unit: Hz).

Order
Liquid Level

0 m 1 m 2.0 m 3.0 m 4.0 m 5.0 m 6.0 m

1 19.94 19.94 19.88 19.45 18.05 15.93 13.71
2 20.11 20.11 20.02 19.48 18.23 16.30 14.20
3 26.81 26.81 26.72 26.13 24.39 21.46 18.37
4 29.29 29.28 29.09 27.85 24.93 21.88 19.41
5 38.30 38.30 38.16 37.10 34.10 30.44 26.34
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4.3. Time-Historical Analysis of Cylindrical Liquid-Filled Containers

Time-historical analysis was conducted by taking cylindrical liquid-filled containers
with different liquid levels. The El-Centro (1940), Kobe (1995), and Loma Prieta (1989)
waves were selected and applied in the x direction, with the peak acceleration of 0.1 g. The
acceleration time-history curves and Fourier spectra are shown in Figure 24. Structural
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analysis generally focuses on the displacement, acceleration, and stress of structures. Hence,
the maximum displacement, maximum acceleration, and maximum von Mises stress on the
sidewall at different heights of liquid-filled containers at x = D/2 and y = 0 were monitored.
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Figure 24. Acceleration time-history curves and Fourier spectra. (a) El-Centro wave. (b) Fourier
spectrum under the El-Centro wave. (c) Kobe wave. (d) Fourier spectrum under the Kobe wave.
(e) Loma Prieta wave. (f) Fourier spectrum under the Loma Prieta wave.
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In order to measure the influence of different water depths on the seismic response of
the container, the dimensionless coefficient is used to represent the influence coefficient
of the dynamic response of the container caused by water depth, and the coefficient of
displacement along the sidewall height is as follows:

Rd =
di − d0

d0
(13)

where di is the maximum displacement of the sidewall at different water depths, and d0 is
the maximum displacement of the sidewall without water. The coefficient of acceleration
along the sidewall height is

Ra =
ai − a0

a0
(14)

where ai is the maximum acceleration of the sidewall at different water depths, and a0 is the
maximum acceleration of the sidewall without water. The coefficient of von Mises stress
along the sidewall height is

Rσ =
σi − σ0

σ0
(15)

where σi is the maximum von Mises stress of the sidewall at different water depths, and σ0 is
the maximum von Mises stress of the sidewall without water.

The distribution of the maximum displacement and Rd on the sidewall of containers
with different liquid levels along the height are displayed in Figures 25 and 26. As the
liquid level rises, the maximum displacement and Rd on the sidewall of cylindrical liquid-
filled containers increase. When the liquid levels are 0 (no liquid contained), 1, and 2 m,
the maximum displacement on the sidewall appears on the top of the container; under
conditions with liquid levels of 3 and 4 m, the maximum displacement on the sidewall
appears at the height of 2.5 m; if the liquid levels are 5 and 6 m, the maximum displacement
on the sidewall occurs at the height of 3 m. Unlike the distribution of the maximum
displacement on the sidewall, the position of the maximum Rd remains largely unchanged.

The maximum displacement and Rd on the sidewall have a similar distribution along
the height at different liquid levels under the three input seismic waves, and they always
increase on the sidewall of the cylindrical liquid-filled container with rising liquid levels,
whereas the values of the maximum displacement and Rd are different. Taking the liquid
level of 6 m as an example, the maximum displacements on the sidewall are separately
0.052, 0.049, and 0.046 mm under the El-Centro, Kobe, and Loma Prieta waves, and they all
appear at a height of 3 m on the sidewall. The Rd values on the sidewall are, separately,
4.90, 4.95, and 4.62 under the El-Centro, Kobe, and Loma Prieta waves, and they all appear
at a height of 1 m on the sidewall.

The distribution of the maximum acceleration and Ra on the sidewall of containers
with different liquid levels along the height are similar to that of the maximum displacement
on the sidewall. Figures 27 and 28 show that as the liquid level rises, the maximum
acceleration and Ra on the sidewall of cylindrical liquid-filled containers constantly grow.
In the case that the liquid levels are 0, 1, and 2 m, the maximum acceleration on the sidewall
appears on the top of the liquid-filled container; if the liquid levels are 3 and 4 m, the
maximum acceleration on the sidewall is found at the height of 2.5 m; when the liquid
levels are 5 and 6 m, the maximum acceleration on the sidewall occurs at a height of 3 m.
The position of the maximum Rd remains almost unchanged.
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Figure 25. The distribution of the maximum displacement on the sidewall of containers. (a) El-Cen-
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Figure 25. The distribution of the maximum displacement on the sidewall of containers. (a) El-Centro
wave. (b) Kobe wave. (c) Loma Prieta wave.

Under action of the three seismic waves, the maximum acceleration and Ra on the
sidewall of containers with different liquid levels have a similar distribution along the
height. The maximum acceleration and Ra on the sidewall of cylindrical liquid-filled
containers always increase with rising liquid levels. Taking the liquid level of 6 m as an
example, the maximum accelerations on the sidewall are 0.46, 0.20, and 0.058 m/s2 under
the El-Centro, Kobe, and Loma Prieta waves, respectively, and they all appear at a height of
3 m. The Ra values on the sidewall are, separately, 4.72, 8.58, and 6.35 under the El-Centro,
Kobe, and Loma Prieta waves, and they all appear at a height of 1 m on the sidewall.
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Figure 26. The distribution of Rd on the sidewall of containers. (a) El-Centro wave. (b) Kobe wave.
(c) Loma Prieta wave.

Under the action of different seismic waves, the maximum acceleration on the sidewall
of containers with different liquid levels differs greatly in the distribution height. On the
one hand, this is because the frequencies of the input seismic waves differ greatly from
the structural frequency of vibration. The main frequencies of the El-Centro, Kobe, and
Loma Prieta waves are all concentrated within 5 Hz (Figure 24). In the case of different
liquid levels, the minimum and maximum first frequencies of the cylindrical container are
13.17 Hz (liquid level of 6 m) and 19.94 Hz (liquid level of 0 m), respectively. This suggests
an unobvious acceleration amplification effect. On the other hand, the El-Centro wave has
more high-frequency components (above 15 Hz) compared with the Kobe and Loma Prieta
waves, so the maximum acceleration on the sidewall under the El-Centro wave is greater
than those under the Kobe and Loma Prieta waves.
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Figure 27. Distribution of the maximum acceleration on the sidewall of containers. (a) El-Centro wave.
(b) Kobe wave. (c) Loma Prieta wave.

The distribution of the maximum von Mises stress and Rσ on the sidewall of containers
with different liquid levels along the height are shown in Figures 29 and 30. The maximum
von Mises stress is always found at the bottom of the liquid-filled containers. The maximum
Rσ is always found at approximately 2 m of the liquid-filled containers. Apart from that
at the bottom, the maximum von Mises stress on the sidewall of cylindrical liquid-filled
containers constantly increases as the liquid rises. When the liquid levels are 0, 1, and 2 m,
the maximum von Mises stress on the sidewall appears at a height of 1.0 m; if the liquid
levels are 3 and 4 m, the maximum von Mises stress on the sidewall occurs at a height of
2.0 m; in the case that liquid levels are 5 and 6 m, the maximum von Mises stress on the
sidewall occurs at a height of 2.5 m.
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Figure 28. The distribution of Ra on the sidewall of containers. (a) El-Centro wave. (b) Kobe wave.
(c) Loma Prieta wave.

Under action of the three seismic waves, the maximum von Mises stress and Rσ on
the sidewall show a consistent distribution along the height of containers filled to different
levels. As the liquid level rises, the maximum von Mises stress on the sidewall of cylindrical
liquid-filled containers increases, while the values of the maximum von Mises stress and
Rσ differ. Taking the liquid level of 6 m as an example, under the El-Centro, Kobe, and
Loma Prieta waves, the maximum von Mises stresses on the sidewall are, separately, 0.150,
0.144, and 0.135 MPa, and they are all found at a height of 2.5 m. The Rσ values on the
sidewall are, separately, 6.67, 6.35, and 5.92 under the El-Centro, Kobe, and Loma Prieta
waves, and they all appear at a height of 2 m on the sidewall.
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Figure 29. Distribution of the maximum von Mises stress on the sidewall of containers. (a) El-Centro
wave. (b) Kobe wave. (c) Loma Prieta wave.
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Figure 30. The distribution of R� on the sidewall of containers. (a) El-Centro wave. (b) Kobe wave. 
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Figure 30. The distribution of Rσ on the sidewall of containers. (a) El-Centro wave. (b) Kobe wave.
(c) Loma Prieta wave.

5. Conclusions

A dynamic analysis was performed on liquid sloshing modes in liquid-filled containers
and the liquid-filled containers themselves using the FEM based on acoustic fluid elements.
The following conclusions can be drawn:

(1) The liquid sloshing modes in 2D and 3D liquid-filled containers of regular shapes and
arbitrary cross sections were analyzed and compared with theoretical solutions and test
results. The results reveal that the FEM based on acoustic fluid elements is accurate;

(2) The liquid level exerts significant influences on the intrinsic frequency of liquid-filled
containers. As the liquid level in liquid-filled containers rises, the vibration frequency
of cylindrical containers decreases. When the liquid level in liquid-filled containers is
6 m, the first frequency decreases by 31.24%. During the engineering design of such
liquid-filled containers, the influence of the effect of FSIs on the intrinsic frequency of
these containers should not be ignored. FEM based on acoustic fluid elements can be
used to model such an effect;

(3) For the cylindrical liquid-filled containers in this research, the liquid level essentially did
not influence the displacement, acceleration, and stress of the liquid-filled containers
under horizonal seismic action if the liquid level was low. As the liquid level rises, the
displacement and acceleration of, and stress on, such liquid-filled containers increase
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significantly. The acceleration responses of liquid-filled containers are particularly
significantly affected by the spectral characteristics of the input seismic wave.
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