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1. Performance of the radiative thermal memristor
1.1. Thermal conductance Curve

The plot depicted in Figure S1 illustrates the relationship between Thermal Con-
ductance (G) and Temperature Difference (∆T) across various values of θ. This visual
representation effectively demonstrates how changes in the parameter θ influence the
width of the curves in the plot. In other words, the variations in θ play a crucial role in
determining the spread of the plotted curves, which decreases as θ decreases.

Figure S1. Closed loops of thermal conductance against temperature difference (∆T) at different
values of θ
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1.2. Determination of the constant (α)

The value of α is calculated as follows: In the linear segment of the Lissajous curve,
the heat flux (Q) is directly proportional to the temperature difference (∆T), expressed
as Q ∝ ∆T. As outlined in the main manuscript, this relationship can be represented as
Q = G∆T, where G denotes the slope of the linear portion of the zero crossing.

The expression for G is given by:

G =
αkm(i)Tav

d
(1)

α =
G · d

kmTav
(2)

Where:

• km = 5.3 Wm−1K−1

• ki = 3.4 Wm−1K−1

• d = 10µm
• Tav = 305.5 K
• G ≈ 0.22 MWm−2K−1

By substituting these parameters into Equation 2, we can determine the value of α.
Thus, we have:

α =
G · d

kmTav
= 0.0013587 (3)
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2. Code

This excerpt presents a segment of the Mathematica code employed in the context of
this study.

k(T_, T0_) :=
km − ki

exp(−β(T − T0)) + 1
+ ki;

keffinv(T_, T0_) :=
1

k(T, T0)
+

1
k1

;

keff(T_, T0_) :=
1

keffinv(T, T0)
;

∆T(t_) = θ sin(2πt);

δT(t_) =
∂∆T(t)

∂t
;

∆T1(t_)∗ = θ1 sin(2πt);

δT1(t_) =
∂∆T1(t)

∂t
;

kt(t_):= { k(T0 + ∆T(t), T0h) δT(t) > 0
k(T0 + ∆T(t), T0c) δT(t) < 0

kteff(t_):= { keff(T0 + ∆T(t), T0h) δT(t) > 0
keff(T0 + ∆T(t), T0c) δT(t) < 0

kteff1(t_):= { keff(T0 + ∆T1(t), T0h) δT1(t) > 0
keff(T0 + ∆T1(t), T0c) δT1(t) < 0

Qeff(t_, d_):=
kteff(t)((∆T(t) + T0)− T0)

d
;

Qeff1(t_, d_):=
kteff(t)((∆T1(t) + T0)− T0)

d
;

Meff(t_):=
∆T(t)

Qeff
(

t, 1
100000

) ;

Meff1(t_):=
∆T1(t)

Qeff1
(

t, 1
100000

) ;

ParametricPlot
[(

∆T(t) Meff(t)
∆T1(t) Meff1(t)

)
, {t, 0, 1}, AspectRatio → Full

]
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