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Abstract: A study was carried out to investigate the effects of wildfires on lake water quality using a
source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-
derived datasets (Lakes_cci and Fire_cci) were used and a Source Pathway Receptor approach
applied which was conceptually represented by fires (burned area) as a source, precipitation/drought
representing transport dynamics, and lakes as the ultimate receptor. This identified 106 lakes
worldwide that are likely prone to be impacted by wildfires via a terrestrial pathway. Satellite-
derived chlorophyll-a (Chl-a) and turbidity variables were used as indicators to detect changes in
lake water quality potentially induced by wildfires over a four-year period. The lakes with the largest
catchment areas burned and characterized by regular annual fires were located in Africa. Evidence for
a strong influence of wildfires was not found across the dataset examined, although clearer responses
were seen for some individual lakes. However, among the hydro-morphological characteristics
examined, lake depth was found to be significant in determining Chl-a concentration peaks which
were higher in shallow and lower in deep lakes. Lake turbidity responses indicated a dependence on
lake catchment and weather conditions. While wildfires are likely to contribute to the nutrient load
of lakes as found in previous studies, it is possible that in many cases it is not a dominant pressure
and that its manifestation as a signal in lake Chl-a or turbidity values depends to a large part on
lake typology and catchment characteristics. Assessment of lake water quality changes six months
after a fire showed that Chl-a concentrations either increased, decreased, or showed no changes in a
similar number of lakes, indicating that a lake specific ecological and hydro-morphological context is
important for understanding lake responses to wildfires.

Keywords: lake water quality; lake catchment; satellite remote sensing; wildfires; climate change

1. Introduction

Climate change, particularly global warming and increasing drought, is leading to
an increased frequency and severity of wildfires [1]. As a consequence of global warming,
heatwaves are becoming more frequent, more intense, and lasting longer [2]. When high
temperatures are combined with dry vegetation and low air humidity, it increases the risk
of wildfire outbreak when there is a source of ignition [3]. This combination of conditions
is now observed over longer periods of time over much of the world [4].

Among the many impacts of wildfires are those on aquatic ecosystems, both via
atmospheric deposition of aerosols and via terrestrial runoff within lake catchments where
fires occur. Wildfires can have an impact on river and lake water quality by altering the
physical, chemical, and biological characteristics of soils and aquatic ecosystems [5]. Much
research has focused on the consequences of wildfires on terrestrial ecosystems and air
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quality, while until recently the effects of wildfires on water quality have been relatively
overlooked [6–8], while the majority of research concerning the aquatic impacts of wildfires
is based on streams and rivers rather than lakes.

In this study, we investigated how wildfires might affect lakes through the terrestrial
pathway, potentially mediated by weather and catchment characteristics; in particular, we
used the Source-Pathway-Receptor (SPR) approach. Environmental scientists first used
the SPR conceptual model in the late 1970s to describe the potential flow of contaminants
from a source to potential receptors via different pathways [9]. In freshwater systems, lakes
are considered receptors or sinks in which material and pollutants tend to accumulate
and pathways are processes of transport, dilution, and transformation of pollutants in
their catchments. The SPR model has been applied as a simple conceptual model for
illustrating systems and processes leading to a specific outcome in several environmental
risk assessments [10–12], such as flood risks and erosion [13–15].

The SPR approach could hence be used to also show how the transport of burned
material from wildfires can follow the terrestrial pathway via lake catchment, promoted by
periods of rainfall, to finally reach a receptor lake and ultimately affect its water quality. It
is in fact acknowledged that wildfires can have an important impact on the geomorphology
and hydrology of river catchments, particularly regarding rainfall post-wildfire events
leading to runoff, soil erosion, and transport processes which could result in lake water
quality changes [16,17]. These impacts are a function of time since the fire event, and
depend on fire types, lake trophic status, and landscape characteristics [3]. Lake ecological
context is indeed important to explain and predict lake responses to fire events, since
impacts may be mediated by weather, catchment, and lake typology [5].

Studies in burned river catchments have revealed that soil erosion and increased
sediment load can occur, with a magnitude depending on intensity and the frequency of
post-fire rainfall and associated flow events [18–20], with increased runoff volume and
velocity of transport to lakes in the catchment [21,22]. Along with the key role of flow,
particularly during storm events, research from a deforested catchment where vegetation
regrowth was inhibited revealed a dramatic increase in particulate export owing to in-
creased erodibility after two years, being more than twice as important as hydrological
changes. Loss of dissolved nitrogen and phosphorus also increased tenfold [23]. This may
be particularly relevant given the increasing frequency of fires that may limit regrowth
leading to increased erodibility of soils with important consequences for stream and lake
systems. In addition, wildfires have the potential to release nutrients and organic matter
stored in soils and vegetation, allowing them to be transferred to aquatic ecosystems [24].
Input of burned material is expected to increase water turbidity in lakes and to temporarily
decrease water transparency. Following a fire, concentrations of phosphorus and nitro-
gen, the two most generally limiting nutrients for primary producers in lakes, frequently
increase in aquatic systems [25,26].

Recently, some general patterns and responses of wildfire effects on water quality
have emerged [27], including increased concentrations of nutrients, ions, organic material,
and a general decrease in water clarity, following post-fire increments in erosion and runoff
while changes in chlorophyll-a were less consistent [28]. A recent review of 44 studies
worldwide [5] comparing pre- and post-fire water quality field sampling data found that
wildfires increased post-fire nutrient export relative to pre-fire levels within a one-year
time lag between sampling and fire occurrence. Previous research on the impact of fires
on lakes was restricted in terms of lake number, geographical regions, and ecological
contexts, with the majority of studies carried out on a limited number of lakes (≤15). In this
context, there is a need for broad scale research on a large number of lakes, covering many
geographical regions and different ecological settings, in order to assess the generalizability
of the findings. Remote sensing techniques can be used to achieve these objectives by
producing datasets providing global, objective, and consistent information on burned
areas, active fires, and water quality products. These datasets are increasingly being used
to monitor the state of the Earth’s systems [29,30]. Remote sensing data could help fill
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the knowledge gap on the long- and short-term effects of wildfires on lake water quality,
complementing traditional field sampling data.

The aim of this study was to investigate the potential impacts of wildfires on lake
water quality at a global scale. To this end, we used satellite products developed by two
separate projects on lakes (Lakes_cci) and fire (Fire_cci) managed by the European Space
Agency Climate Change Initiative (ESA CCI). The dataset included 2024 lakes allowing
for the investigation of a large number of lakes distributed globally and covering a wide
range of hydro-morphological and ecological settings combined with burned area data
from Fire_cci (FireCCI51; [31]) for a time period of about 20 years. In particular, we aimed
at testing whether changes in the satellite-derived chlorophyll-a (Chl-a) concentration and
turbidity represented signals of lake water response to fire disturbance, both in terms of the
magnitude of peaks and development time following a sequence of fire and precipitation
events in their catchments. The SPR approach was adopted because our investigation
focused on the effects of wildfires on lakes via the terrestrial pathway, and the approach
provided a framework to select lakes whose waters were likely to be most affected by
wildfires, given their catchment characteristics and precipitation conditions. A final subset
of 106 lakes distributed globally was investigated to evaluate the impact of fire disturbance
on lake water quality, through interpreting changes in the satellite products of Chl-a
and turbidity.

2. Materials and Methods
2.1. Datasets

In this study, from the different variables from the Lakes_cci project [32], we consid-
ered Chl-a and turbidity as indicators of water quality for the period from 2017 to 2020
built from OLCI-Sentinel-3 A/B data. In addition, both the Lake Ice Cover (LIC) and
Lake Surface Water Temperature (LSWT) variables were considered; the first to focus our
analysis on ice-cover free periods, the second as an ancillary observation to evaluate water
quality changes. We used the FireCCI51 Burned Area (BA) product, which shows the
global spatio-temporal distribution of BA derived from MODIS satellite observations [31].
Burned area maps are produced using a hybrid algorithm that blends active fire derived
from thermal channels with the highest resolution near-infrared (NIR) surface reflectance
(~250 m) [33]. The product comprises monthly global maps covering the period 2001–2020
and burned pixels are recorded with the estimated Julian day (DOY) of detection and
the land cover category of the burned pixels, extracted from the Land Cover_cci v2.0.7
product [34]. Burned pixels have been extracted from the FireCCI51 BA product for every
catchment connected to any of the lakes included in the Lakes_cci database for the con-
sidered period. The extraction was performed using the R package “exactextractr” [34],
allowing for the retrieval of the exact coverage fraction of a pixel on the basin polygons.

Lake and catchment area data were obtained from the HydroLAKES and HydroBASINS
datasets. The HydroLAKES database [35] was used to obtain the following attribute infor-
mation for the 2024 lakes investigated: lake surface area (km2), length of shoreline (km),
shoreline development (ratio shoreline length/circumference of a circle with the same
area), total lake volume (million cubic meters), mean water depth (m), mean long-term
discharge flowing through a lake (m3 s−1), mean water residence time (days), elevation of
lake surface (m a.s.l.), lake latitude and longitude, area of the catchment associated with the
lake (km2). Every lake is co-registered to a sub-catchment of the HydroBASINS database
(via shared IDs). We obtained the hydrologic areas of the 2024 lakes from the HydroBASINS
database [36] which provides vectorized polygon layers that show sub-basin boundaries at
a global scale. Using the HydroBASINS dataset, sub-basins connected to each lake have
been selected. The database allows us to navigate sub-basins upstream from the lake, and
all the sub-basins connected within 50 steps (levels 0–50) from a lake have been assigned
accordingly with this approach; the presence of a lake in the connection chain causes the
interruption of the navigation. The basins within four steps (levels 0–4) represent the



Appl. Sci. 2024, 14, 2626 4 of 24

nearest to the lake basin, and are thus considered the closest catchment areas around a lake
in our analysis.

Land cover data at lake catchment level was extracted from the Copernicus Climate
Change Service [37] for the period 2017–2020.

We calculated the Standardized Precipitation Index (SPI; [38]) for each lake for the
period 1980–2019 using ERA5 data of total precipitation for each lake watershed (sum of
hourly values to obtain daily data) with the reference period set to 1980–2010. The SPI
is a statistical indicator that compares the total (median) precipitation falling at a given
location during a given period (12 months for this work) with the distribution of long-term
precipitation for the same period. Negative index values identify moderately to extremely
dry conditions, while positive values identify very to moderately wet conditions; values
in the range [−1, 1] identify close to normal conditions with respect to the long-term
trend. The Standardized Precipitation Index (SPI) mean, minimum, and maximum were
calculated for each year and for the whole considered period (2017–2020).

2.2. Data and Statistical Analysis

According to the SPR approach adopted in this study [9,10], which describes the
transport of burned materials to lakes through terrestrial pathways, from the initial 2024
lakes of the Lakes_cci dataset, an initial selection of lakes to be considered in our data
analysis was performed. To achieve this, similar types of wildfires were identified and
grouped together based on the type of land cover type burned and on the frequency of
fires. Hierarchical cluster analysis was performed using Sørensen distance with flexible
beta linkage. The resulting dendrograms were grouped according to the minimization of
the indicator (p-value = 0.010) [39].

Our data analysis focused on the period 2017–2020 since during the last decade
wildfire occurrence has escalated, and also for data consistency as satellite-derived Chl-a
and turbidity products of the selected timeframe derive from the same optical sensor (OLCI
onboard Sentinel-3 A/B).

A classification of lake trophic status was carried out on the basis of mean Chl-a concentra-
tion, calculated for the period 2017–2020, according to OECD (1982): oligotrophic < 2.5 mg m−3;
mesotrophic from 2.5 to 8 mg m−3; eutrophic from 8 to 25 mg m−3; hypertrophic > 25 mg m−3.

Satellite-derived BA data were used to calculate the ratio of burned area/burnable area
(sum of burned area and unburned area) (BA/A) for each lake investigated; in particular,
in our investigation we considered the ratio for the maximum area burned in the whole
lake catchment (0–50 levels identified with the HydroBASINS dataset) and the ratio for the
closest catchment area burned around a lake, identified in the first four steps (level 0–4)
calculated for each lake for each year.

An Analysis of Variance (ANOVA or Kruskal–Wallis) test and box plots were used to
investigate Chl-a and turbidity concentration differences between depth groups (shallow
(<7 m), medium (7–15 m), and deep (>15 m) lakes, according to [40]), as well as trophic status
(oligotrophic, mesotrophic, eutrophic, hypertrophic) and burned land cover vegetation.

A Stepwise Multiple Linear Regression (SMLR; [41]) was performed to investigate the
most likely factors that explain maximum annual Chl-a and turbidity peaks among the
variables: lake surface area, length of shoreline, shoreline development, lake volume, mean
water depth, mean long-term discharge, mean water residence time, elevation, latitude
and longitude, catchment area, ratio catchment area/lake area, mean SPI for the period
(2017–2020), SPI mean per year, mean BA/A ratio (2017–2020), maximum BA/A ratio per
year, BA/A level 0–4 per year, total precipitation, normalized difference between max Chl-a
peak and mean Chl-a per year, and normalized difference between max turbidity peak and
mean turbidity per year.

The concentration of Chl-a and turbidity peaks following a fire event was calculated
using the “zoo” R package [42]. A lowess line (a locally weighted non-parametric smoothing
method) was fitted to the dataset with a data span of 10% and a window half-width of 5
days, allowing for the identification of local maxima; missing daily values were linearly
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interpolated, which should not change the maximum value recorded, but may reduce the
accuracy of the result.

The average satellite observation frequency for the dataset over the study period
was 1.7 days, which is close to the recommended sampling frequency of once every two
days required to detect short-term perturbations in phytoplankton dynamics [43] and
compares favorably with large-scale in situ synoptic sampling efforts. It is also well above
the frequencies recommended by EU policy [44–46]. The timing of Chl-a and turbidity
peaks after a fire occurrence were also identified by this analysis.

Boosted regression analysis was carried out to analyze factors (lake area, shore length
and development, total lake volume, lake average depth, water residence time, lake eleva-
tion, watershed area, longitude, latitude, ratio catchment area/lake area, mean ratio BA/A,
ratio BA/A level 0–4, ratio total BA/A, maximum BA, annual SPI mean, min, and max,
total annual rainfall) determining the timing of the first peak and maximum peak of Chl-a
and turbidity after a fire [47]. Analysis was carried out on 75% of the data with 25% used
for model evaluation by calculating the Root Mean Square Error (RMSE). Analysis was
carried out in R package ‘gbm’ [48].

To determine short-term effects of fire on lake Chl-a and turbidity, we compared
mean concentrations over a six-month period after a maximum fire occurrence with mean
concentrations over a six-month period either without or with smaller fires using R (package
dplyr [49]). Multinomial logistic regression with “nnet” R package [50] was performed
in order to investigate the role of geographical factors (i.e., altitude, latitude), land cover
types, maximum fire, and total annual rainfall in determining changes in water quality (i.e.,
Chl-a and turbidity).

Finally, lake responses to typological factors and in-lake interactions were analyzed
using a graphical analysis [51] which allows for a comparison of the timeseries data of dif-
ferent parameters: fire occurrence and intensity (BA), an indicator of precipitation/drought
(SPI), lake surface water temperature (LSWT), and lake water quality parameters such as
Chl-a concentration (smoothed) and turbidity concentration (smoothed). These timeseries
graphs allow for the investigation of the temporal succession of events in a lake catchment
and the identification of lake case studies to support statistical analysis results.

3. Results
3.1. Selection of Lakes by SPR Approach

A hierarchical cluster analysis (Sørensen distance) was performed using the FireCCI
product to identify and group comparable types of wildfires based on the land cover
type burned. Based on the minimization of the indicator p-value (=0.010), the resulting
dendrogram was divided into six groups. These groups showed that half of the clusters,
i.e., clusters 1, 2, and 3, represented a total of 1578 lakes (78% of the 2024 lakes in the
dataset) and had few records of burned areas, while the remaining clusters 4, 5, and 6
were characterized by the more consistent occurrence of wildfires (446 lakes, or 22% of the
dataset). Regarding the vegetation types and the regions identified as subject to burning,
Cluster 4 consisted of burned evergreen coniferous forestry in North America and Canada,
Cluster 5 featured crops or natural shrubbery in America, Eurasia, and Australia, and
Cluster 6 was more diversified and included the most burned areas of deciduous broad
leaves, which are common in the southern hemisphere, especially in Africa (Table 1 clusters
1–6 in rows). Figure 1 shows the map of the six vegetation clusters.

To support this analysis, a second cluster analysis on the total burned area for an
extended period (2001–2020) was performed identifying five end groups. Two clusters,
cluster I and II, contained 1394 lakes (69% of the total lakes) that had few records of burned
areas, while the remaining clusters II, IV, and V were characterized by a higher frequency
of wildfires and larger burned areas (630 lakes, 31%) (Table 1, clusters I–V in columns). In
particular, Cluster IV was characterized by hydrological areas where a high proportion was
burned every year, frequently more than 3–4% of the catchment area, and similarly Cluster
III identified hydrological basins with frequent fires (annual) but only in 0.1–0.2% of the
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catchment area, while Cluster V had limited fire peaks and burned areas. We derived a
contingency matrix by joining the results of the two clustering analysis, thereby identifying
agreement on lakes where major wildfires occurred for the different land cover types (bold
numbers in Table 1). From this table, we selected these candidate lakes covering a range
of different land cover types and with different fire regimes (fire frequency and intensity),
excluding lakes in catchments with small (low BA) and rare fires. As a result, a total of
314 lakes were therefore selected for further investigation.

Table 1. Contingency matrix of 2024 lakes selected via clustering of land cover burned (2011) and total
area burned (2001–2020). Potential geographical and land cover combinations with burn temporal
pattern (frequency/intensity). Number of lakes included in the selected clusters are highlighted in
bold (n = 314).

Vegetation Type and
Distribution

Rare Fires
and Low

BA

Rare Fires
and Very
Low BA

Limited
Regular

Annual Fires
and Medium

BA

Significant
Regular

Annual Fires
and High BA

Limited Fire
Peaks and

Medium BA
Total

Cluster I II III IV V

Needleleaf deciduous
(Global) 1 383 698 128 15 57 1281

Needleleaf, evergreen
(Northern temperate) 2 43 48 14 0 40 145

Crops/Herbaceous
(Global) 3 71 19 53 6 3 152

Boreal forest (Canada) 4 54 10 13 0 18 95

Crops—natural
shrubbery (Eurasia) 5 51 0 114 13 2 180

Deciduous broad leaves
(Africa, India, South

America)
6 17 0 93 61 0 171

Total 619 775 415 95 120 2024
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Figure 1. Global map of the six vegetation clusters burned in 2011. Land cover indicator values of
each cluster are reported in Table S1.

Because we are focusing on the terrestrial pathway of burned materials transported
to lakes, the previous analysis on vegetation and fire intensity and frequency provides an
indication of changes in hydrological pathways as a result of vegetation loss. Catchments
that experience significantly seasonal or variable rainfall leading to overland flow may be
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among the most vulnerable [52]. We used as a proxy for precipitation the SPI calculated
for the period 1980–2019. Positive SPI values identify moderately to very wet conditions
in the catchment. The other factor considered was the catchment to lake area ratio, with
low values indicating lakes potentially having a long residence time while high values
would typically have a short residence time and be more strongly influenced by their
drainage area.

The ratio catchment area/lake area was calculated and plotted against the SPI for
the 314 lakes selected from the previous cluster analysis (contingency matrix in Table 1),
allowing the identification of lakes that were potentially more prone to pollution (burned
materials and released nutrients) from wildfire occurrence in their catchments (Figure 2).
In particular, lakes having a 95th percentile of SPI > 1.5 and a catchment area to lake area
ratio > 30 (close to the limit identified by other authors [53–55] located in the upper right
part of the plot in Figure 2) have been identified as lakes more influenced by catchment
dynamics and terrestrial transport. These lakes should thus potentially be more prone to
be receptors of fire-derived substances and would eventually have more affected water
quality. These criteria used in lake selection identified a total of 153 lakes selected for
further consideration in our analysis.
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Figure 2. Lakes from contingency matrix (Table 1) plotted as a function of the catchment area/lake
area ratio (horizontal-axis) and the 95th percentile of SPI (vertical-axis). Lakes in the upper right
quarter (95th percentile SPI > 1.5 and catchment area/lake area ratio > 30) for cluster III (limited
regular annual burning), cluster IV (significant regular annual burning), and cluster V (limited
burning peaks) were selected for further investigation (n = 153).

The method of data extraction utilized five regions of interest (ROI) within the
Lakes_cci product layers for Chl-a and turbidity and was applied for the subset of the
153 lakes to ensure lake pixels had a 96% presence of water. Following these criteria,
47 lakes were excluded from the analysis, leaving a final number of 106 lakes with reliable
data to be analyzed. The final list of the 106 lakes selected is presented in Table S2 in the
Supplementary Materials.

3.2. Lake Characteristics

The 106 lakes finally selected for analysis represented a significant latitudinal and
altitude gradient (30◦ S to 60◦ N; −2 to 1518 m a.s.l.) across multiple ecoregions (from
Boreal to Tropical). The lakes cover a wide range of hydro-morphological characteristics for
mean depth, lake surface area, and diverse trophic levels (by Chl-a concentration) (Table 2).
According to the OECD trophic classification, 1 lake was oligotrophic, 29 were mesotrophic,
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58 were eutrophic, and 18 were hypereutrophic (Figure S1A in the Supplementary Mate-
rials). Based on the Lake_cci turbidity products for the period 2017–2020, we found that
most of the lakes (69%) had mean turbidity between 1.5 and 5 NTU, 14% < 1.5 NTU, 13%
between 5 and 10 NTU, 7% in the range 10–20 NTU, and the remaining 3% up to 40 NTU
(Figure S1B in the Supplementary Materials).

Table 2. Water quality and hydro-morphological characteristics of the selected 106 lakes.

Mean Chl-a
2017–2020
(mg m−3)

Mean Turbidity
2017–2020 (NTU)

Lake Area
(km2)

Total Volume
(km3)

Mean
Depth (m)

Residence
Time (Days)

Elevation
(m a.s.l.)

Mean 18.6 4.6 1005 23,691 13.9 536 318

Min 1.7 0.6 15 34 0.1 0.2 −2

Max 146.9 39.0 26,734 1,580,000 59.2 11,794 1518

Out of a total of 106 lakes, 41 lakes were identified as shallow (mean depth < 7 m),
31 as medium depth (mean depth between 7 and 15 m), and the remaining 34 as deep
(mean depth > 15 m). A total of 43% of lakes have a surface < 250 km2, 41% between
250 and 1000 km2, 10% up to 3000 km2, and the remaining six largest lakes reach an area
up to a maximum value of 26,734 km2 (Great Slave Lake, Canada) (Figure S1C in the
Supplementary Materials). Lake volume for 25% of the lakes was < 500 km3, 25% between
500 and 3000 km3, 28% between 3000 and 10,000 km3, 21% up to 150,000 km3, and Great
Slave Lake has the maximum value with 1,580,000 km3 (Figure S1D in the Supplementary
Materials). For lake water residence time, 30 lakes had a fast renewal < 2 months, 46 lakes
between 2 and 12 months, 15 lakes up to 2 years, 13 lakes had a slower residence time from
4 up to 33 years (Figure S1E in the Supplementary Materials). Finally, our dataset has 17%
of lakes at an altitude < 50 m a.s.l., 74% between 50 and 700 m a.s.l., and 9% up to 1800 m
a.s.l. (Figure S1F in Supplementary Materials).

For these 106 lakes, the corresponding BA/A ratios for the period 2017–2020 were
distributed as follows: six lakes (located in Africa) had a mean annual ratio BA/A > 0.40,
eight lakes had ratios between 0.40 and 0.25, and the remaining lakes had a ratio < 0.25
(Figure 3).
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3.3. Determination of Peaks in Chl-a and Turbidity Concentrations

Among all lake hydro-morphological parameters considered (listed in the Section 2)
we found that mean depth was a significant factor to group lakes according to water quality
responses to wildfire occurrence. In the 106 lakes analyzed, Chl-a concentration (both as
annual mean concentration and maximum peak concentration) was greater in shallow lakes
than in medium and deep lakes (Figure 4). We found that maximum peak concentrations
of Chl-a were significantly higher in shallow lakes (median = 24.8 mg m−3; N = 164;) than
in medium depth lakes (19.9 mg m−3; N = 124) and deep lakes (median = 12.2 mg m−3;
N = 136) (p < 0.001; Figure 4b) (where N represents the number of lakes for each year
analyzed from 2017 to 2020).
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A Stepwise Multiple Linear Regression (SMLR) was performed in order to investigate
factors that were significant in determining maximum annual Chl-a and turbidity peaks in
the selected lakes (Table 3). These factors included lake geo-morphological characteristics,
burned areas, the ratio BA/A calculated in the whole catchment and in the closest part
of a lake (level 0–4), and SPI variation. The SMLR results confirmed that lake depth (−;
p < 0.001) was the most significant factor to predict maximum Chl-a peaks, followed by lake
latitude (+; p < 0.001). Mean values of BA/A (+) and mean SPI (−) improved the regression
to a final R2 = 19.5%. Multiple linear regression analysis to predict maximum turbidity
peaks revealed mean SPI as a significant parameter (+; p < 0.05), but explained a very small
amount of variation (1.2%), with no additional significant variables in the analysis.
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Table 3. Results of Stepwise Multiple Regression Analysis results for chlorophyll-a (Chl-a) and
turbidity maximum peak concentrations as dependent variables. Left column = all lakes. Right
column = lakes having a significant regular annual burning, located mainly in the African continent.

Chl-a Peak (Log) R2 = 19.5%
Chl-a Peak (Log) (Cluster

IV) R2 = 45.8%

Variable Coefficient p Variable Coefficient p
Depth_mean −0.0067 0.0001 Depth_mean −0.4107 0.0001

Latitude 0.0046 0.0001 Residence time (Log) 0.2341 0.0001
BA/A_mean 0.2652 0.0218 BA level 0–4 (Log) −0.1310 0.0001

SPI_mean −0.0676 0.0057 SPI (90th percentile) 0.6872 0.0279

Turbidity (NTU) R2 = 1.2%
Turbidity (NTU) (Cluster

IV) R2 = 42.3%

Variable Coefficient p Variable Coefficient p
SPI_mean 0.5341 0.0275 Elevation −0.0004 0.0001

Log Catchment/lake area 0.3511 0.0001
SPI_mean 1.9097 0.0001

We also restricted SMLR analysis to lakes having a significant regular annual burning
and a high BA/A annual ratio in their catchment, located mainly in the African continent
(cluster IV as reported in Table 1, N = 24; Table 3 right part). For Chl-a, SMLR performed
on this restricted group of lakes confirmed that lake depth was the principal factor in
predicting maximum peak concentration (−; p < 0.001), followed by water residence time
(+; p < 0.001), burned area closest to the lake (level 0–4) (−; p < 0.001), and SPI (90th
percentile) (+; p = 0.028), resulting in a final R2 = 45.8%. SMLR analysis for predicting
turbidity maximum peaks, performed in the same restricted lakes group, resulted in lake
elevation (−; p < 0.001), log ratio catchment area/lake area (+; p < 0.001), and mean SPI (+;
p < 0.001) as significant factors giving a final R2 = 42.3%.

Graphical analysis of time series data provides example lake cases to examine in more
detail for our global findings. Figure 5 shows the time series for two lakes with the most
extensive burned areas in their catchment (BA annual mean over 10,000 km2), located in
the Sub-Saharan belt in Africa and having a regular annual burning frequency. Lake Volta
(Ghana) is a large (6045 km2) and deep lake (average depth = 24.5 m), and Lake Chad
(Chad/Niger) is very large (18,751 km2) and very shallow (average depth = 0.1 m). The
two lakes have comparable wildfire frequency and intensity, with high BA/A ratio (0.14 to
0.38) and similar SPI range. General patterns of smoothed fit of turbidity and Chl-a showed
that concentrations were more stable and with moderate concentration peaks (mean peaks:
turbidity = 5.6 NTU; Chl-a = 14.8 mg m−3) in the deeper Lake Volta, and more variable
with more pronounced peaks in the shallow Lake Chad (mean peaks: turbidity = 17.3 NTU;
Chl-a = 20.7 mg m−3).

Additional cases supporting the importance of lake depth can be found in three
other lakes located in the South American continent, with comparable burned areas in
their catchment, with similar SPI values and different lake depths, Lake Verà (Paraguay)
being a shallow lake (average depth = 2.2 m), Lake Guarico (Venezuela) medium (average
depth = 9.8 m), and Lake da Brisas (Brazil) deep (average depth = 51.2 m). Their Chl-a
response to fire was quite diverse and more evident in the shallowest Lake Verà, which
experienced a steep progressive increase after two successive important fires in 2020
(increased from 15 to over 50 mg m−3, annual mean from 16 to 25 mg m−3 in 2020).
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Figure 5. Time series data of burned area (km2), standardized precipitation index (SPI; red and
light blue boxes for extremely dry and wet conditions, respectively), water temperature (LSWT;
T◦), chlorophyll-a (Chl-a; mg m−3), and turbidity (NTU) of Lake Chad (Chad/Niger) and Lake
Volta (Ghana).

3.4. Time of Occurrence of Chl-a and Turbidity Peaks after a Fire

When Chl-a and turbidity peaks succeeded a fire event, we were able to calculate the
time (expressed in days) and concentration (mg m−3) of the peaks occurring after a fire. We
calculated the first detected peak of Chl-a and turbidity occurring immediately after a fire
occurrence and the maximum peak developed during the year. The median timing of the first
detected post-fire Chl-a peak was 58 days (mean ± standard deviation = 65 ± 45 days) across
all lakes investigated, and for the majority (58%) of lake-year cases the first peak of Chl-a
appeared within 90 days from the fire event (Figure 6a). The median time of the maximum
annual Chl-a peak that developed after a fire was 103 days (mean ± sd = 110 ± 72 days)
across all lakes and resulted in a similar percentage of lake-year cases (7–8%) up to 150 days
(Figure 6b). The median number of days for the first peak in turbidity after a fire was
68 days (mean ± sd = 72 ± 52 days) across all lakes, and for most lake-year cases (52%),
the first peak of turbidity occurred within 75 days from the fire event (Figure 6a). The
median time of the maximum annual peak of turbidity was 151 days (mean ± sd = 163 ±
85 days) after a fire event (Figure 6b). The two largest lakes in our dataset (Great Slave Lake
in Canada and Lake Chad in Central Africa) had a relatively fast response in developing
the first turbidity peak after a fire, within 70 days, and most other large lakes (lake area >
2000 km2) had a response within four months (122 days) after a fire.
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Figure 6. Frequency distribution, as percentage of lakes (annual data per each lake from 2017 to 2020),
of the time interval [days] between the occurrence of a fire and the detection of the first peak (a) and
the maximum peak (b) of Chl-a (green bars) and turbidity (black bars).

The analysis of timing in peak development for Chl-a and turbidity identified the
successive concentration peaks after a fire’s occurrence and the results were used for
investigating relationships with burned areas in lake catchments. Burned area parameters
were calculated and considered both as a ratio of burned area over total burnable area in
the catchment (ratio BA/A) and burned area over the closest burnable area to a lake (ratio
BA/A level 0–4). We found that in general, lakes with a higher proportion of burned area
in relation to burnable catchment area showed a faster timing for developing maximum
peaks of Chl-a (Figure 7), although the noise in the data did not allow us to fit a significant
trend in the relationship. The timing for development of Chl-a maximum peaks in years
when lakes had an annual BA/A level 0–4 (Figure 7a) ratio > 0.25 was 90 days on average
(N = 41) and in a relatively restricted time range (153 days), while when the BA/A (level
0–4) ratio was <0.25, the mean was 112 days (N = 307) in a wider time range (339 days). For
the ratio BA/A (Figure 7b), the days to the Chl-a maximum peak was on average 102 days
(N = 60) with ratio > 0.25, while when the BA/A ratio was <0.25 the mean was 114 days
(N = 288). Patterns of the ratio BA/A with the timing of the first peaks of Chl-a and with
both the first and the maximum peaks of turbidity were less distinct.

In order to investigate further the influence of fire and precipitation parameters on the
timing of peak development for Chl-a and turbidity, we ran a boosted regression analysis.
Models produced by this regression were weak based on the high values of Root Mean
Square Error (RMSE), which ranged from 48 to 63 days. Although the models should not
be overinterpreted, the factors estimated to have the most influence for Chl-a and turbidity
were SPI, maximum BA, lake position (latitude and longitude) and total rainfall. Results
are shown in Figure S2 in the Supplementary Materials.

When the timing of the peaks in Chl-a and turbidity that developed after a fire was ana-
lyzed by grouping lakes according to ecological characteristics, such as lake trophic conditions,
we observed that oligotrophic lakes were slightly faster (mean ± sd = 94 ± 63 days) than
mesotrophic (mean ± sd = 105 ± 64 days), eutrophic (mean ± sd = 120 ± 81 days), and hyper-
eutrophic (mean ± sd = 99 ± 81 days) lakes in developing maximum Chl-a peaks after a fire
(Figure 8a). In this analysis, trophic classification was slightly adjusted to include a represen-
tative number of lake years for each trophic group (i.e., oligotrophic lakes with annual mean
Chl-a < 5 mg m−3). However, both first and maximum Chl-a peak concentrations were smaller
in oligotrophic than in higher trophic lakes, as presented in Figure 8b showing scatterplots of
the relationships between lake trophic status, expressed as Chl-a mean concentrations (over
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the period 2017–2020), and Chl-a concentration of first peaks (Figure 8b) and maximum peaks
(Figure 8c) developed after a fire.
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Figure 8. Boxplots of lake trophic classes (O = oligotrophic, M = mesotrophic, E = eutrophic,
H = hypereutrophic) and timing (days) of max Chl-a peak development (a). Scatterplots between
lake chlorophyll-a (Chl-a) mean concentration (2017–2020; mg m−3) and Chl-a concentration of first
peaks (R2 = 0.732, p < 0.001) (b) and maximum peaks (R2 = 0.826, p < 0.001) (c).
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We also investigated whether the type of land cover burned influenced the timing
of Chl-a and turbidity peaks. Using the clustering results of the burned land cover types
presented in Table 1, we found a significant difference in ANOVA for Chl-a (p = 0.002) but
not for turbidity (p > 0.05). A Bonferroni post-hoc test indicated that the difference was
between Cluster 4 (corresponding to evergreen boreal forests) and Cluster 6 (deciduous
broad leaves) (p = 0.007), with a mean of 63 ± 50 days for Cluster 4 and 120 ± 68 days for
Cluster 6 (Figure 9). A difference in total annual precipitation (m) among these clusters was
also found, being highest in Cluster 6 (mean of 0.91 ± 0.46 m), while in contrast, the annual
maximum values of the SPI were found to be significantly higher in Cluster 4 (mean of
1.72 ± 0.80) (ANOVA p = 0.002).
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3.5. Post-Fire Water Quality Assessment

To determine whether a change in average concentration of Chl-a and turbidity hap-
pened after a fire in the catchment of our studied lakes for the period 2017–2020, we
calculated the mean Chl-a and turbidity concentrations over a six-month period after
a maximum fire occurrence and compared with mean concentrations over the same six
months either without or with smaller fires. From the initial number of 106 lakes, 7 lakes
have been excluded from the analysis because the occurrence of their major fires was
close to the end of the studied period (end of year 2020). Thus, the period following the
major fire was shorter than six months, leaving a final number of 99 lakes analyzed for
this assessment.

Figure 10 shows the global distribution of lakes in different classes according to
positive or negative changes (in percentage) of Chl-a and turbidity. For Chl-a, 28 lakes
showed an increase (>10%), 33 lakes had no relevant change (range −10 to +10%), and
38 lakes showed a decrease (>−10%) in Chl-a concentration six months after maximum fire
occurrence. For turbidity, 37 lakes showed an increase, 38 lakes had no relevant change,
and 24 lakes showed a decrease in turbidity concentration six months after maximum
fire occurrence.
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There are no evident geographical patterns of increases or decreases in the concentra-
tion of parameters, except for a prevalence of a percentage increase in turbidity in African
lakes (Figure 10b). Regarding lake characteristics, hypereutrophic lakes showed the most
relevant positive changes (mean percentage difference in Chl-a of 29%).

In order to see which explanatory variables might influence the trends in Chl-a and
turbidity, we carried out a multinomial logistic regression using the lakes grouped as stable
(=no change), increasing, and decreasing. The pool of predictors was increased sequentially
starting with just latitude and altitude, then landcover types were added, and finally also
total annual rainfall and the maximum fire peak were included. However, none of the
included parameters were found to be significant in determining the trend in either Chl-a
or turbidity (Table S3 in the Supplementary Materials).
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3.6. In-Lake Interactions between Chl-a and Turbidity

The time series plots showed some cases where peaks in water turbidity concentration
occurred and corresponded, or might have led, to lake Chl-a concentration decreases
(Figure 11). These interactions were observed in diverse lake typologies according to depth
such as Lake Togo (Africa) (a shallow lake), Lake Mtera (Tanzania, Africa) (a medium
lake), and Lake Hirakud (India) (a deep lake). The succession of events is particularly
evident in the shallow Lake Togo where a fire occurred at the beginning of 2019 and then
eight months after a period of high precipitation occurred and was followed by a peak of
turbidity (above 10 NTU) and a depression of Chl-a which then increased to maximum
values when turbidity stabilized to lower values (mean 3.3 NTU). In Lake Mtera, after a
major fire in 2019 was followed by a precipitation period, turbidity greatly increased (above
25 NTU) while Chl-a remained suppressed for the rest of the entire period considered (from
annual mean concentration of 45.1 mg m−3 during 2018 to 14.3 mg m−3 during 2020). In
Lake Hirakud, a time series is clearly shown every year with a correspondence between
the occurrence of turbidity peaks and Chl-a concentration decline.
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Chl-a (mg m−3), and turbidity (NTU) in Lake Togo (Togo), Lake Mtera (Tanzania), and Lake
Hirakud (India).

4. Discussion

The unique datasets from the Lakes_cci and Fire_cci projects, providing global long-
term consistent data at high temporal resolution, allowed us to develop one of the first
studies into how the water quality of lakes responds to fire impacts via the terrestrial
pathway at a global scale. The use of the SPR approach allowed for the identification of
lakes that were potentially more prone to be affected in their water quality by fire-derived
substances (burned materials and released nutrients) transported via terrestrial pathways
in their catchments.

We investigated the effects of wildfires on lake water quality using different data
analysis approaches to identify parameters that could help in explaining lake responses
in terms of Chl-a and turbidity variations. These included the calculation of lake Chl-a
and turbidity concentrations and peaks during the study period (2017–2020), as well as
calculation of successive peaks in Chl-a and turbidity that developed after a fire occurred
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in a lake catchment. In addition, with the purpose of detecting fire-induced short-term
changes in lake water quality, we compared pre- and post-fire values of Chl-a and turbidity
within six months after a major fire occurrence in their catchment. Time series plots of
indicative parameters for fires, catchments, weather (SPI), and lake water quality responses
were also generated, with graphical analysis used to investigate the temporal succession of
events in the catchment of the selected lakes and to support global findings.

Among the large number of hydro-morphological lake characteristics considered in
the analysis, we found that lake average depth was a significant factor for determining
the Chl-a concentration of maximum peaks, as values differentiated among three lake
depth typologies (shallow, medium, and deep), being typically higher in shallower lakes.
This result was confirmed by multiple linear regression, since lake depth was a significant
negative parameter for predicting maximum Chl-a peaks concentration, followed by lake
latitude (+), mean ratio BA/A (+), which is a proxy for the extension of the fire event,
and mean SPI (−). The results of our study, finding higher Chl-a in shallower lakes than
in deeper lakes, are in agreement with other studies [56,57] concluding that water trans-
parency and Chl-a concentration in European lakes were greatly related to lake depth, with
shallow lakes having higher Chl-a and deep lakes having higher transparency. Shallow
lakes typically have higher production per unit area when compared to deep lakes with
similar phosphorus and total dissolved matter concentrations, as a result of faster nutrient
cycling and better mixing and lighting conditions [58,59]. For fire-burned materials and
soil-released nutrients transported via a terrestrial pathway, especially by increased runoff
in a lake catchment after precipitation events, the morphology of the final receptor lake is
therefore a determinant for the internal process dynamics and ultimately for lake primary
production [8]. It is long acknowledged that lake basin morphology plays a key role in
modulating lake water quality, and in particular depth has important consequences on
mixing regimes, light, and nutrient availability, affecting biological production and pro-
cesses within a lake. Early studies on lake eutrophication such as that by Vollenweider [60]
developed empirical relationships between lake mean depth and tolerable phosphorous
loading, with mean depth also important in representing a general indicator of hydraulic
residence time [61]. The inclusion of latitude as a positive influence on the Chl-a maximum
peak was surprising as the higher temperatures in the tropics lead to more efficient nutrient
cycling and higher primary production [62]; however, concentrations of phosphorous
and nitrogen have been reported as around double that of the tropics at mid-temperate
regions and this may explain the positive relationship [63]. In addition, in broader terms,
other secondary impacts of relevance for lake ecosystems include the reduction in oxygen
concentrations which can result not only from an increase in chlorophyll-a levels but are
also regulated by dissolved organic matter and lake area [64,65].

In general, we found weak global relationships between burned areas in catchments
and lake Chl-a or turbidity concentrations in our study. Finding strong relationships also
proved to be difficult in other studies of wildfire impacts on freshwater systems [5], as
findings suggested that the percentage of area burned did not affect the extent to which
nutrient concentrations would increase after a fire. In a recent study of 15 lakes in the
Superior National Forest in Minnesota [28], no post-wildfire changes were found in Chl-a
despite significant increases in total phosphorous and total nitrogen in lakes with burned
watersheds. However, in our SMLR analysis, we found that the inclusion of the mean ratio
of burned area/burnable area as a secondary factor potentially represented an indication
of fire impact on Chl-a peaks (+), likely induced by the input of nutrients to lakes released
after a fire. Within a restricted group of lakes affected by important and regular fires,
located in Africa, again depth was the most significant factor influencing Chl-a peaks and
the burned area closer to the lake (calculated as level 0–4 in our study) was a secondary,
although negative (−), weak factor. In this restricted lake group, the water residence time
(+) was also a significant positive factor in determining Chl-a maximum peaks. A higher
water residence time is generally related to greater primary production, with a longer time
available for phytoplankton to utilize nutrients, and the persistence and the entirety of
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fire effects on lake ecosystems may increase with water residence time [3], with potential
consequences on Chl-a increases.

The results for lake turbidity responses to fires indicated a potential dependence on
lake catchment and local weather conditions, with the precipitation index (SPI) in the
SMLR analysis as a significant primary but weak factor for predicting turbidity maximum
peak development. Within the restricted group of African lakes, additional catchment
characteristics such as lake elevation (−) and the ratio catchment area/lake area (+) were
significant. For turbidity, the location and the size of the lake catchment and how efficiently
burned materials produced by wildfires are transported to a lake are key factors, since
increases in turbidity concentration (especially when detected by satellite images) might be
related to the load of burned material and sediments to a lake. River sediment yield has been
estimated to increase with increases in area burned [66]. The ratio catchment area/lake area
was also important for lake turbidity conditions and responses since lakes with larger ratios
catchments/lake area tend to be more affected by catchment characteristics and dynamics,
with stronger influences on their water chemistry. These lakes would be also more prone to
the effects of wildfires, since post-fire hydrological processes in their drainage area, such as
increased runoff and transport of burned material via terrestrial pathways, will be more
effective in determining lake turbidity conditions and variations. In our dataset for instance,
Lake Henrik (South Africa) has a large catchment area (70,460 km2), a high ratio catchment
area/lake area (239), and very turbid waters (annual mean of 35 NTU), developing major
peaks of turbidity concentration (up to a maximum of 202 NTU). Although precipitation
generally promoted an increase in lake turbidity, on the other hand direct precipitation on
the lake surface might dilute terrestrial inputs, resulting in an overall decrease in turbidity
concentration. Lathrop [67] found that larger lakes have a greater capability of diluting the
inputs of transported material from burned areas, even when a significant proportion of
the lake catchment area was burned (25%). When evaluating fire effects on global lakes
via terrestrial pathways after precipitation events, the increased turbidity from post-fire
runoff might thus be difficult to detect consistently, due to the concurrent diluting effect of
precipitation, especially for lakes of large surface area.

The impact that wildfires have on soil properties is intricate and depends on soil
characteristics, fire intensity, and duration [68], with soil type and texture having an
important role in influencing erosion [69]. A previous study found erodibility was a
more important factor than hydrological changes in particulate export from a deforested
catchment where regrowth was prevented but the influence of erodibility was only clearly
visible after two years, complicating the timescale over which the full range of impacts may
be expected [23]. In this study, soil type data were not available at global scale and could
not be included in our analysis, thus limiting the interpretation of our findings for water
quality responses.

Our study gave an indication of the timing of Chl-a and turbidity peaks occurring after
a fire: the first detected turbidity peak and maximum Chl-a peak can highlight a succession
of events in a lake catchment generated by terrestrial transport of burned materials and
possibly of nutrients to the lake, inducing phytoplankton responses detected as Chl-a
concentration changes. We found that lakes with a ratio BA/A > 0.25 and a burned area
closer to the lake basin (level 0–4) tended to show a faster response to fire in developing a
maximum Chl-a peak (90 days), suggesting a promoted and accelerated primary production
by nutrient input to the lakes, possibly derived from the release of burned and eroded soils
after fire occurrence. The peak timing in our results agree with Raoelison et al. [5], since
nutrient concentration increase after a fire was generally significant within a year.

In our study, when considering global responses to fire occurrence in the less produc-
tive lakes (mean Chl-a < 5 mg m−3), they were seen to respond slightly faster in terms of the
timing of Chl-a development (days) after a fire, but with lower peaks in concentration than
lakes at higher trophic conditions. A faster response in oligotrophic lakes might be related
to their natural condition of nutrients limitation, with potential input from fire-induced
runoff stimulating prompt phytoplankton growth. Although the maximum Chl-a concen-
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tration reached was found to be proportional to lake trophic status (Figure 8b), it should be
remembered that a relatively small increase in Chl-a concentration in a low productivity
lake could be very ecologically relevant, promoting changes in the nature of the whole
ecosystem. Some reasons for observing weaker Chl-a increments in oligotrophic lakes after
a fire might be due to light reduction caused by fire-derived burned materials, as these
lakes generally have high transparency (excluding humic lakes). These may be related
to short-term reductions in light availability, which could inhibit phytoplankton growth
during the first vegetative period after a fire, regardless of increased nutrient inputs [70,71],
and oligotrophic clear lakes might be more sensitive to light attenuation caused by burned
materials and increased dissolved organic carbon from runoff [26] than already less trans-
parent and more turbid eutrophic lakes. Our findings align with recent studies [28] in
shallow oligo-mesotrophic lakes, suggesting that clear unproductive lakes could experience
post-fire increases in primary productivity, but also that post-fire dynamics of nutrients and
light limitation are important factors. Results from studies on ecological assessments of
European lakes [56] suggested that light conditions and mineral availability are significant
drivers of Chl-a concentrations in oligotrophic lakes.

In our dataset, although the effects of wildfires on eutrophic lakes seemed to be
translated into relatively higher Chl-a peaks, it is however difficult to partition the influence
of fires from other sources, given their often very dynamic phytoplankton communities.
Post-fire Chl-a increases associated with high rainfall may be derived as much or more
from other catchment point and non-point sources as from wildfires.

Regarding land cover vegetation, we found differences among clusters of burned
vegetation types in relation to Chl-a development timing after a fire, suggesting that
vegetation communities might be an important factor in mediating responses in water
ecosystems. However, precipitation events have likely played a concurrent role, as the
highest maximum SPI was found for the vegetation cluster (Cluster 4—evergreen boreal
forests) which had the fastest responses of Chl-a in lakes. Moreover, lakes included in
the different clusters were located in diverse geographic areas (see map in Figure 1),
with coniferous forests in Canada and North America (Cluster 4) and mixed deciduous
broadleaves in the southern hemisphere (Cluster 6), indicating that biomes and their
climatic variables, including related precipitation patterns, would be key factors for the
temporal response of Chl-a.

Our last analysis aimed at comparing pre- and post-fire water quality conditions in
our studied lakes. During a six-month period after a major fire, lake Chl-a either increased
or decreased in a similar number of lakes, indicating that lake specific ecological context is
important to explain and predict potential responses to fires. In other studies investigating
the effects of wildfires on lakes, post-fire changes in lake concentrations (i.e., nutrients)
were not regularly observed. De Palma-Dow et al. [27] did not find a substantial change
in total phosphorous concentrations up to three years post-fire and found no changes in
relation to smaller fires when analyzing Clear Lake (California), despite the very large
burned area and its proximity to the lake (40% of the watershed burned at 1 km from the
shoreline). A study of boreal Alaskan lakes [24] found that nutrient concentrations were
not sensitive to wildfires up to two years after the event.

As climate change is a major contributor to significant wildfire events, floods, and
extreme droughts, the effect on lake water quality conditions is in many ways unpre-
dictable [72]. We analyzed in detail responses to fire occurrence in two African lakes with
the largest burned areas recorded in this study and having different lake morphologies, the
deep Lake Volta and the shallow and very large Lake Chad. In the former, lake Chl-a and
turbidity concentrations remained stable with modest peak development, while in the latter
more pronounced fluctuations were observed. Although Lake Volta had a greater ratio
BA/A than Lake Chad, the response to wildfires was not accordingly more pronounced,
likely due to lake morphology. Wildfire effects on lakes can be indeed highly site-specific,
regardless of similarities in the geographical, morphological, and fire characteristics of lakes.
In our study, for instance, we compared two African lakes in Zambia (Lake Mweru) and in
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Congo (Lake Mukenge) sharing very similar morphological and ecological characteristics
and also affected by comparable fires. While responses for turbidity were similar in the
two lakes, patterns in Chl-a were different, with Lake Mweru showing greater and faster
responses and with an overall increase in Chl-a six months after the major fire occurrence
(+16%) while Lake Mukenge had a Chl-a decrease (−22%).

We observed that on occasion turbid conditions in lakes did not lead necessarily
to successive Chl-a increases. Although lake turbidity might increase after wildfires as
a result of increasing runoff and transport of burned material to the lake, this will not
necessarily correspond to a related input of nutrients, as the majority of materials (debris,
ashes, suspended material) will not be suitable for direct use by phytoplankton. Moreover,
the increased water turbidity could reduce light availability for phytoplankton growth,
resulting in an overall Chl-a decrease, as observed in our study for different lake typologies.
Other studies investigating the effects of wildfires on lakes reported significantly reduced
lake water transparency primarily due to increases in dissolved organic carbon [26,28] and
in turbidity. Subsequent changes in primary productivity would be mediated by both light
availability and nutrient conditions, making the ultimate response of lake water quality to
wildfires unpredictable.

We have also to acknowledge that hydro-morphological features should be integrated
to consider soil properties, such as type, moisture, and texture, as they have been shown
to be important in determining the hydrological responses of landscapes following wild-
fires [73]. However, as our study had a more ecological rather than a hydrological modelling
approach, the lack of inclusion of soil properties was considered less crucial.

5. Conclusions

This study intended to contribute to the global study of the effects of wildfires on
lake water quality, including a large number of lakes in many regions worldwide and
covering different lake types and ecological settings. To this aim, the satellite derived
Lakes_cci and Fire_cci datasets were used and the SPR approach was applied to identify
lakes most influenced by their catchment and likely to be more impacted by wildfires
via a terrestrial pathway. Satellite derived Chl-a and turbidity variables were considered
as indicators of changes in water quality induced by wildfires. The lakes affected by
the biggest wildfires, in terms of burned areas extension, were located in the African
continent and were characterized by regular annual fires. Lake morphology was important
in determining lake responses, as among a large number of hydro-morphological lake
characteristics, lake depth was found to be significant in determining Chl-a concentration
peaks, with higher peaks in shallower than in deeper lakes. The standardized precipitation
index was a candidate parameter for determining maximum turbidity peaks, with the
probability of developing higher peaks in wetter conditions.

When analyzing globally the entire set of lakes, it was a challenging task to identify
significant relationships between fires and lake water responses in terms of Chl-a and
turbidity changes. When focusing on a restricted group of lakes (regular burning, in the
African region) we found more significant relationships; therefore, partitioning lakes by
location and wildfire frequency and intensity may aid in the understanding of relationships
that are distinct globally. We finally found that during a six-month period after a major
fire, lake Chl-a and turbidity either increased or decreased in a similar number of lakes,
suggesting that lake specific ecological and hydro-morphological context is important to
interpret potential responses to fires. Our findings are in agreement with previous local
studies on the effect of fires on lakes, since comparison of pre- and post-fire lake water
quality variables detected either changes or stability in lake conditions.

Defining lake responses to fires at global scale and generalizing findings proved to
be difficult because of the many interactions among the variables involved, resulting in
complex hydrological and ecological dynamics in lakes, eventually translated into wa-
ter quality condition changes. Moreover, lake biological responses to fires are extremely
complex and inconsistent among relevant studies, likely because organisms respond to
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opposing factors that can simultaneously enhance or inhibit primary productivity. Nu-
trients flushing from soils in burned areas through runoff have the potential to promote
primary production in a lake, while a reduction in light availability by increased turbidity
can reduce phytoplankton growth.

Ideally, future studies should incorporate information on seasonal nutrient dynamics
over a long timeframe so that loads derived from wildfires and other sources can be
partitioned and related with greater confidence to in-lake responses in Chl-a and turbidity.
Moreover, future works should combine remote sensing data with hydrological modelling
to better quantify the role of precipitation, soil type, and runoff in explaining water quality
changes due to fire effects. There exists an opportunity to pair with local authorities and
practitioners to help further understand relationships. The incidence and intensity of
wildfires is increasing globally, which together with increasing pressure on water quantity
and quality in lakes is threatening many global communities who depend on them. This
study underlines that the responses within lakes are dependent on factors such as lake
depth and trophic conditions, as well as the timing and magnitude of the drought–fire–
precipitation cycle. In many cases, however, no clear response was identified, indicating
that some lakes may be resilient, probably depending on specific catchment properties
and in-stream or in-lake processes. Although satellite remote sensing remains the most
feasible approach for global analysis, delivering data at the required frequency and spatial
scales needed, it might provide better ecological insights when combined with datasets
from different sources.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/app14062626/s1, Table S1. Indicator values for cluster analysis car-
ried out on 2011 burned vegetation types (100% = perfect indicator i.e., Land Cover (LC) burn occurs
in only that cluster); Table S2. List of 106 selected lakes (list and maps at this link: https://gws-access.
jasmin.ac.uk/public/cds_c3s_lakes/CCI_LAKES/CCI_LAKE_LIST_v2/LAKE_LIST_MASK_CCI_v2
_UoR_fv1.0.html accessed on 1 March 2022); Table S3. Results of the multinomial logistic regression
analysis between category changes (increase, decrease) in chlorophyll-a (Chl-a) or turbidity and
geographical factors, land cover, fire extension, and rainfall; Figure S1. Graphs of the percentage of the
106 lakes in each class of the following lake characteristics: mean chlorophyll-a (Chl-a) concentration
for the period 2017–2020 (A), mean turbidity concentration for the period 2017–2020 (B), lake area
(C), lake total volume (D), residence time (E), elevation (F); Figure S2. Result graphs of the boosted
regression analysis to investigate the drivers of timing of first and maximum peaks of chlorophyll-a
(Chl-a; upper graphs) and turbidity (lower graphs) after a fire occurrence.
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