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Abstract: Current advancements in biosignal-based user recognition technology are paving the
way for a next-generation solution that addresses the limitations of face- and fingerprint-based user
recognition methods. However, existing biosignal benchmark databases (DBs) for user recognition
often suffer from limitations, such as data collection from a small number of subjects in a single session,
hindering comprehensive analysis of biosignal variability. This study introduces CSU_MBDB1 and
CSU_MBDB2, databases containing electrocardiogram (ECG) and electromyogram (EMG) signals
from diverse experimental subjects recorded across multiple sessions. These in-house DBs comprise
ECG and EMG data recorded in multiple sessions from 36 and 58 subjects, respectively, with a time
interval of more than one day between sessions. During the experiments, subjects performed a
total of six gestures while comfortably seated at a desk. CSU_MBDB1 and CSU_MBDB2 consist of
three identical gestures, providing expandable data for various applications. When the two DBs are
expanded, ECGs and EMGs from 94 subjects can be used, which is the largest number among the
multi-biosignal benchmark DBs built by multi-sessions. To assess the usability of the constructed DBs,
a user recognition experiment was conducted, resulting in an accuracy of 66.39% for ten subjects. It is
important to emphasize that we focused on demonstrating the applicability of the constructed DBs
using a basic neural network without signal denoising capabilities. While this approach results in a
sacrifice in accuracy, it concurrently provides substantial opportunities for performance enhancement
through the implementation of optimized algorithms. Adapting signal denoising processes to the
constructed DBs and designing a more sophisticated neural network would undoubtedly contribute
to improving the recognition accuracy. Consequently, these constructed DBs hold promise in user
recognition, offering valuable research for future investigations. Additionally, DBs can be used in
research to analyze the nonlinearity characteristics of ECG and EMG.

Keywords: multi-session data; benchmarking biosignal; electrocardiogram; electromyogram; user
recognition

1. Introduction

In today’s advanced society, user recognition technologies are increasingly important
for safeguarding personal information. Among these technologies, biosignal-based user
recognition stands out as a solution to the shortcomings of conventional methods, such as
facial, fingerprint, and iris recognition, which are susceptible to replication. This technology
is actively researched as the next-generation approach to user recognition [1]. Biosignals
encompass information that measures the microcurrents generated by human physical
activity, including electrocardiogram (ECG), electromyogram (EMG), and electroencephalo-
gram (EEG) signals. As biosignals exhibit the unique physiological characteristics of an
individual, they remain imperceptible to the naked eye from the outside. Leveraging
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the advantages of being unforgeable and variable, biosignals address the challenges of
conventional user recognition methods [2].

To measure such biosignals, a sensor must be attached to the body, as shown in
Figure 1 [3]. ECG is a biosignal originating from the heartbeat, producing a signal composed
of PQRST waves. ECG signals can be acquired from both hands and both feet following
the standard 12-lead method, as shown in Figure 1a. EEG is a biosignal generated by brain
activity and can be measured at specific locations using the international 10–20 system,
positioned based on front–back or left–right distance on the skull, as shown in Figure 1b.
EMG is a signal that measures the microcurrents generated when a muscle moves, and the
signal can be acquired by attaching a sensor to a muscle in the body, as shown in Figure 1c.
Since biosignals are measured by attaching sensors to the body, subjects may experience
discomfort and repulsion when constructing the database (DB). To conduct user recognition
research using biosignals, a substantial DB (comprising a large number of subjects and
repetitions) is essential. However, open access benchmark biosignal DBs used in previous
studies have typically featured a limited number of subjects and repetitions. Furthermore,
despite the fluctuation in biosignals over time, data in most benchmark biosignal DBs
are recorded in a single session (usually one day or less), posing the challenge of limited
analyzability.
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To solve this issue, we present two large Chosun University Biosignal Databases
(CSU_BIODBs) designed for user recognition in this study. These databases, referred to as
CSU_MBDB1 and CSU_MBDB2, encompass datasets that concurrently acquire both ECG
and EMG signals. CSU_MBDB1 comprises ECG and EMG data recorded over multiple
sessions (2 days or more) while 36 subjects performed six hand gestures at intervals
exceeding one day. Similarly, CSU_MBDB2 includes ECG and EMG data recorded across
multiple sessions with 58 subjects executing six hand gestures at intervals exceeding one
day. To evaluate the effectiveness of constructed DBs, we conducted a user recognition
experiment.

The paper’s structure is outlined as follows: Section 2 analyzes open access bench-
mark DBs used in conventional biosignal-based user recognition research. Section 3
presents CSU_MBDB1 and CSU_MBDB2, two extensive multi-session electrocardiogram–
electromyogram DBs introduced in this study. Section 4 analyzes the usability of the
constructed benchmark biosignal DBs, and Section 5 concludes the paper.

2. Related Work

In open access benchmark DBs, biosignal types include ECG, EMG, and EEG signals.
Among them, ECG and EMG DBs are prominently used in user recognition research.
However, the majority of ECG DBs have focused on healthcare applications, such as disease
detection, using data acquired within a single session. Conversely, EMG DBs have been
constructed with a limited number of subjects, geared towards applications in human–
computer interfaces (HCIs) and motion recognition.
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2.1. Benchmarking ECG DBs

The MIT-BIH Normal DB [4,5] comprises ECG signals recorded from 18 subjects, all
in good health. The MIT-BIH Arrhythmia DB [6,7] comprises ECG signals recorded from
47 subjects. The Arrhythmia DB was developed for arrhythmia detection. ECG data were
recorded in two channels while the subjects were walking. The MIT-BIH ST Change DB [8]
comprises ECG signals recorded from 28 subjects over varying time spans. To create a DB
with signals recorded over extended periods, data from five of these subjects were recorded
during an exercise stress test.

The QT DB [9] comprises ECG signals representing various QRS and ST changes. This
DB encompasses 105 records of ECG signals sourced from a total of seven DBs, including
15 MIT-BIH Arrhythmia records, 6 MIT-BIH ST Change records, and 10 MIT-BIH Normal
Sinus Rhythm records. The Abdominal and Direct Fetal ECG DB [10] contains 5 min signals
recorded from five pregnant women. The signals were recorded at a sampling rate of
1 kHz, with each record containing four abdominal signals from a pregnant woman and
one simultaneous recording of fetal ECG signals from the fetal scalp.

The PTB Diagnostic DB [11] contains data obtained from Frank XYZ leads in addition
to the standard 12-lead positions, totaling 14 leads. ECG data were recorded at a maximum
sampling rate of 10 kHz, featuring 290 subjects inclusive of both able-bodied subjects and
heart disease patients. The ECG-ID DB [12] contains 310 lead I records gathered from
90 subjects. The signals were generated at a sampling rate of 500 Hz. The number of signal
measurements for each subject ranged from 2 (collected on a single day) to 20 (collected
periodically over six months).

The CSU_ECG DB [13] comprises ECG signals recorded in both static and dynamic
situations. ECG data were obtained from 506 subjects engaged in four static and three
dynamic situations, and the DB was established by acquiring data across three sessions.
ECG lead I was recorded at a sampling rate of 2000 Hz using a Biopac MP160 instrument
(Biopac Systems Inc., Goleta, CA, USA). Table 1 shows a summary of the benchmarking
ECG DBs. In Table 1, the benchmark DBs built for user recognition research include ECG-ID
and CSU_ECG DB.

Table 1. Benchmarking ECG DB description.

Category DB Name Channels Session
Type

No. of
Subjects

1 MIT-BIH
Normal [4,5] 2 Single 18

Arrhythmia [6,7] 2 Single 47
ST Change [8] 2 Single 28

2 QT [9] 2 Single 105
3 Abdominal and direct fetal ECG [10] 5 Single 5
4 PTB Diagnostic [11] 14 Single 290
5 ECG-ID [12] 1 Multi 90
6 CSU_ECG [13] 1 Multi 506

2.2. Benchmarking EMG DBs

The sEMG Basic Hand Moves Upatras [14,15] is an EMG DB comprising data recorded
from two channels in the extensor carpi radialis and flexor carpi ulnaris muscles. This DB
contains records of EMG signals generated when subjects aged 20 to 22 performed six hand
gestures. It consists of two datasets in total. In Set 1, five subjects repeated each gesture
30 times within a single session, while in Set 2, one subject repeated each gesture 100 times
across multiple sessions. For each set, band pass filter (BPF) and notch filter (NF) were
employed to eliminate noise present in the signals.

NinaPro comprises subdivided DBs. DB1 [16] was created by collecting data from
27 subjects who repeatedly executed 52 gestures, each performed 10 times. Each gesture
lasted five seconds with a 3 s rest between gestures. EMG was measured by placing
electrodes at the height of the radio-humeral joint, utilizing eight channels around the
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forearm and one channel each on the flexor digitorum superficialis and extensor digitorum
superficialis. The DB consists of three sets: basic finger gestures, hand and wrist gestures,
and grip and functional gestures. DB2 is a DB constructed with 12 channels of EMG,
featuring the participation of 40 subjects who performed 49 gestures. Sets 1 to 2 of DB2 [17]
correspond to Sets 2 to 3 of DB1, while Set 3 contains data acquired during the execution
of finger gestures. Each gesture was repeated six times, lasting 5 s. DB5 [18] is a DB
constructed with 16 channels of EMG, involving 10 subjects who performed 52 gestures. In
DB5, all gestures mirrored those in DB1, with each gesture being repeated six times and
lasting 5 s.

CapgMyo [19,20] is a DB of high-density sEMG (HD-sEMG) recorded from the skin
using a two-dimensional array. The EMG data were acquired through 128 channels using
an 8 × 16 electrode array. The DB comprises two sets, where DB-a contains records of
EMG data obtained from 18 subjects performing eight isometric and isotonic hand gestures
(gestures 13–20 of Ninapro DB1). In DB-b, 10 subjects performed the same gestures as in
DB-a, and EMG measurements were taken in two sessions separated by at least 1 week.
Each gesture was maintained for 3 to 10 s, repeated 10 times.

The Anglese EMG DB [21] was designed to predict future knee flexion angles during
gait, using knee flexion angles and knee muscle EMG signals. The EMG data were obtained
using 12 electrodes placed on the tensor fasciae latte, rectus femoris, vastus medialis,
vastus lateralis, biceps femoris, and semitendinosus muscles on both thighs. Recorded at
a sampling rate of 1111 Hz, the EMG data involved ten subjects, who repeated the gait
gesture of walking a distance of 20 feet 15 times. Motion artifacts (less than 20 Hz) and
high-frequency aliasing effects (greater than 500 Hz) were eliminated using a Butterworth
filter.

ISRMyo-I [22] involved six subjects who participated in data collection across
five sessions. Each session was repeated twice a day with a 30 min interval. Throughout
the same session, the electrode positions remained unchanged, arranged in the form of
two lines with eight channels each in the upper and lower positions of the forearm muscles.
The subjects maintained a total of 12 gestures, each held for 10 s, and the EMG data were
obtained at a sampling rate of 1000 Hz.

GrabMyo [23] is an EMG signal DB recorded using 28 channels (16 channels on the
forearm and 12 channels on the wrist) in 43 subjects. Forearm sensors were positioned at
one-third of the forearm length from the elbow, and wrist sensors were located 2 cm from
the ulnar styloid. Each participant repeated seven cycles of performing all 16 gestures,
consisting of finger and wrist gestures, once, with a 10 s rest between cycles. The EMG
signals were measured at a sampling rate of 2048 Hz, and a 10–500 Hz BPF was applied to
the recorded EMG to eliminate noise from the signals.

CSU_sEMG [24] is a DB of EMG data collected from the right arms of 200 subjects.
The signals were recorded across three sessions with intervals of at least one day. EMG
sensors were attached to the palmaris longus and extensor digitorum, and the signals
were recorded at a sampling rate of 2000 Hz using Biopac MP160. Twelve gestures were
performed, comprising seven static gestures with a single movement and five dynamic
gestures involving continuous movement. Subjects were instructed to sustain each gesture
for at least 1 s, and a total of 30 signals were recorded. Table 2 shows a summary of the
benchmarking EMG DBs. In Table 2, the benchmark DB built for user recognition research
is CSU_sEMG DB.

2.3. Benchmarking Multi-Biosignal DBs

MeganePro MSD1 [25] involved 15 subjects with transradial amputation and 30 able-
bodied subjects, all performing 10 different grasping tasks. During these tasks, data on
EMG, video, and gaze tracking were recorded. EMG signals were recorded at a sampling
rate of 148 Hz, with eight sensors placed equidistantly from the radio-humeral joint and
four sensors positioned 45 mm away. Video and gaze tracking was recorded through
eye-tracking glasses.
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Table 2. Benchmarking EMG DB description.

Category DB Name Channels Session
Type

No. of
Subjects

No. of
Gesture

1
sEMG Basic Hand Movements

Upatras [14,15]
2 Single 5 6
2 Multi 1 6

2 Ninapro [16–18]
DB1 10 Single 27 52
DB2 12 Single 40 49
DB5 16 Single 10 52

3
CapgMyo

[19,20]
DB-a 128 Single 18 8
DB-b 128 Multi 10 8

4 Anglese EMG [21] 12 Single 10 1
5 ISRMyo-I [22] 16 Multi 6 12
6 GrabMyo [23] 28 Multi 43 16
7 CSU_sEMG [24] 2 Multi 200 12

The DEAP dataset [26] captured EEG, electrooculogram (EOG), and EMG signals
while 32 subjects watched 40 one-minute videos. Facial images were additionally recorded
for twenty-two of the subjects during video observation. The data were obtained at a
512 Hz sampling rate, with 2 channels for EOG sensors positioned vertically and horizon-
tally, 2 channels for EMG sensors on the trapezius and zygomaticus major, and 32 channels
for EEG. The recorded biosignals were down-sampled to 128 Hz, and noise was eliminated
by applying a 4–45 Hz BPF.

The DREAMER dataset [27] is a DB constructed for emotion recognition using EEG
and ECG signals. Biosignals from 25 subjects were recorded in response to audio–visual
stimuli generated through 18 videos, which portrayed nine different emotions, such as
joy, excitement, and happiness, with varying durations ranging from 1 to 393 s. EEG was
measured using an Emotiv EPOC wireless EEG headset (EMOTIV, San Francisco, CA,
USA), covering 14 channels, while ECG was measured using Shimmer2 ECG sensors. In
the constructed DB, data from two subjects were omitted due to inappropriate content.

Stress Recognition in Automobile Drivers [28] is a DB designed for detecting stress in
driving situations. Various driving situations were incorporated, including a rest period
(low stress), highway driving (moderate stress), and city driving (high stress). During
these scenarios, subjects had their ECG, EMG, and electrodermal activity (EDA) recorded
while refraining from listening to the radio. Each subject engaged in driving for durations
ranging from 50 to 90 min, with ECG sensors attached to the Lead II positions, the EMG
sensors attached to the trapezius, and EDA sensors attached to the left hand and foot. While
six subjects had their biosignals recorded during a single driving session, three subjects
underwent repeated biosignals over several days.

The MAHNOD implicit-tagging DB [29] captures user responses to multimedia con-
tent. Thirty subjects wore six video cameras, a head-mounted microphone, a gaze tracker,
and sensors measuring ECG, EEG (32 channels), respiration, and skin temperature while
watching movies and images. Two experiments were conducted. In the first experiment,
participants viewed short videos from movies and were instructed to tag their emotional
state using valence and arousal. In the subsequent experiment, images or videos were
shown alongside tags, and subjects were prompted to press the green button if they agreed
with the displayed tag and the red button if they disagreed. Table 3 shows a summary of
the aforementioned benchmarking multi-biosignal DBs. The benchmark DBs written in
Table 3 were built for research on prosthesis control, emotion recognition, etc., not for user
recognition research.

Due to the inconvenience of attaching sensors to the body for biosignal recording,
conventional biosignal DBs used in benchmarking for user recognition involve a limited
number of subjects, as shown in Tables 1–3. Furthermore, a significant issue arises from the
inability to analyze the variability in biosignals due to the data being recorded in a single
session. To solve these problems, this study presents extensive multi-session ECG-EMG
DBs (CSU_MBDB1 and CSU_MBDB2).
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Table 3. Benchmarking multi-biosignal DB description.

Category DB Name Biosignal Types Session
Type

No. of
Subjects

1 MeganePro MDS1 [25] EMG, video, gaze
tracking, etc. Single 45

2 DEAP dataset [26] EEG, EOG, EMG, etc. Single 32
3 DREAMER dataset [27] EEG, ECG Single 25

4 Stress Recognition in
Automobile Drivers [28] ECG, EMG, EDA, etc. Multi 9

5 MAHNOD-implicit-tagging [29] ECG, EEG, gaze
tracking, etc. Single 30

3. Measured Method of Multi-Session Biosignal Benchmarking DBs

The multi-biosignal DB for user recognition research was constructed by simultane-
ously measuring ECG and EMG in subjects. During the execution of a specific hand gesture
by each subject, the EMG signal from the muscle was recorded using two channels, while
the ECG signal generated from the heart was recorded using one channel. Given that the
constructed multi-biosignal DB contains simultaneously recorded signals, we have the
flexibility to use the signals either in the form of multi-biosignal data or individually for
each signal. The benchmarking multi-biosignal DB introduced in this study comprises two
datasets (CSU_MBDB1 and CSU_MBDB2). CSU_MBDB1 includes ECG and EMG data
recorded as 36 subjects performed six hand gestures, while CSU_MBDB2 encompasses
ECG and EMG data recorded as 58 subjects performed the same six hand gestures.

3.1. Multi-Biosignal Measurement Method

In the case of CSU_MBDB1, signals were recorded during the performance of six hand
gestures (Table 4) by each participant. These gestures include the following: (1) clenching
the fist, (2) pressing the index finger with the thumb while clenching the fist, (3) simul-
taneously flexing the index, middle, and ring fingers, (4) flexing the wrist, (5) extending
the wrist outward, and (6) rotating the wrist 90 degrees to the left. The construction of
CSU_MBDB1 involved the active participation of 60 subjects.

Each hand gesture followed a rest period–gesture period–rest period sequence, re-
peated 10 times within a single session. The gesturing method for each gesture was
specifically standardized in certain steps to ensure consistency across all subjects. Figure 2
shows an example of the rest period–gesture period–rest period situation during a single
execution of the gesture. The ECG and EMG were measured across two sessions, with
the DB’s construction including a minimum one-week interval between the sessions to
facilitate the analysis of biosignal variability.
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Figure 2. Examples of DB recording method (an example of the biosignal recording procedure for the
fist-clenching gesture).

We used the Biopac MP160 as the biosignal construction equipment, measuring ECG
with one channel and EMG with two channels. When ECG and EMG were acquired simulta-
neously, interference occurred between the ECG sensor and the EMG sensor. Therefore, we
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attached the EMG sensor to the position where the muscles are activated while performing
hand gestures, changed the ECG sensor location, as shown in Figure 3, and checked for
interference between sensors. The location where the final ECG and EMG sensors were
attached was where interference between the sensors was minimized. ECG sensors were
positioned under the left and right biceps brachii, with the GND attached above the left
biceps brachii. For EMG, Ch1 was attached to the flexor carpi radialis, Ch2 to the extensor
indicis proprius, and GND to the outside of the upper arm. Figure 4 shows the ECG and
EMG sensor positions. The signal bandwidth was set to 0.5–35 Hz, the sampling rate to
2000 Hz, and the ADC resolution to 16 bits.

Table 4. Six hand gestures from CSU_MBDB1.
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For CSU_MBDB2, signals were recorded as each subject performed six hand gestures,
outlined in Table 5: (1) clenching the fist, (2) flexing the wrist, (3) extending the wrist
upward, (4) rotating the wrist 90 degrees to the left, (5) rotating the wrist 90 degrees to the
right, and (6) raising the cell phone 90 degrees. The DB was designed for expansion since
CSU_MBDB2 has the same three hand gestures as CSU_MBDB1 (CSU_MBDB1: gesture no.
1 and CSU_MBDB2: gesture no. 1; CSU_MBDB1: gesture no. 4 and CSU_MBDB2: gesture
no. 2; CSU_MBDB1: gesture no. 6 and CSU_MBDB2: gesture no. 4). Each hand gesture was
repeated 10 times in one session, following the same rest period–gesture period–rest period
procedure as in CSU_MBDB1. Signals were recorded across two sessions with an interval
of at least one week. A hundred subjects participated in the construction of CSU_MBDB2.
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EMG ch2 was attached to the extensor carpi radialis longus of the right arm. EMG ch1,
ECG sensor, signal bandwidth, and sampling rate were set the same as CSU_MBDB1.
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3.2. Multi-Biosignal DB Verification and Segmentation

In order to minimize the variability in the sensor location while proceeding with the
measurement protocol, hand gestures were performed when attaching the EMG sensor to
confirm the location where the muscles were activated (moved). Additionally, in order to
maintain the same force and duration, the DB construction procedure was explained to
the subjects, which they had to learn. Information such as the duration and amplitude of
ECG and EMG measured newly (Day 2) from the same subject was reviewed by comparing
similarity with signals from other sessions (Day 1). However, due to technical problems,
an incomplete signal was confirmed. Various types of incomplete signals were observed,
including (1) Bluetooth communication instability between the measurement PC and
Biopac MP160 during the gesture period, (2) interference between EMG and ECG sensors
during the gesture period, (3) resistance in the connection cable between the sensor and the
measurement device during the gesture period, and (4) destruction of the signal waveform
due to body movement during the rest period. In CSU_MBDB1, data from 24 subjects
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are incomplete, meaning that data from 36 subjects can be used. In CSU_MBDB2, data
from 42 subjects is incomplete, so data from 58 subjects can be used. Therefore, the final
CSU_MBDB1 consists of the ECG and EMG signals obtained from 36 subjects, while
CSU_MBDB2 consists of those obtained from 58 subjects.

Table 5. Six hand gestures from CSU_MBDB2.
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The ECG and EMG data underwent visual inspection, and division was carried out
to ensure the preservation of the PQRST waveform in the ECG after the gesture was
performed. Figure 5 shows the segmented ECG and EMG waveforms. Data segmentation
occurred only for the segments longer than or equal to 0.5 s, considering both before/after
data acquisition. The introduced benchmark DBs, CSU_MBDB1 and CSU_MBDB2, consist
of raw signals, including R-peak positions and division points that facilitate the division
process, as shown in Figure 5.

Table 6 shows a summary description of the constructed CSU_MBDB1 and CSU_MBDB2.
In contrast to Table 3, which summarizes existing multi-biosignal DBs, CSU_MBDB1 and
CSU_MBDB2 were designed as multi-session data with a substantial number of subjects.
An advantageous feature of CSU_MBDB1 and CSU_MBDB2 is their expandability, as they
share three identical gestures, resulting in multi-session databases with a total of 94 subjects.
This expansion allows for more subjects compared to the benchmark DBs of ECG (Table 1)
and EMG (Table 2), excluding CSU_ECG and CSU_sEMG. The databases can be actively
used for research on biosignal variability and user recognition.
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Table 6. Description of CSU_MBDB1 and CSU_MBDB2.

DB Name CSU_MBDB1 CSU_MBDB2
Biosignal types ECG, EMG ECG, EMG

Session type Multi Multi
No. of

participants/construction
subjects

60/36 100/58

No. of channels ECG 1ch, EMG 2ch ECG 1ch, EMG 2ch
No. of gestures 6 6
Sampling rate 2000 Hz 2000 Hz

Remark In the form of raw signals. The R-peak positions and the divide
points that facilitate the signal division are provided.

4. User Recognition Method, Results, and Discussion

A user recognition experiment was performed to confirm the usability of CSU_MBDB1
and CSU_MBDB2, the benchmark DBs constructed in this study. The experiment employed
a pre-existing designed network [30], depicted in Figure 6. This designed network consists
of two sub-networks, with each sub-network featuring six convolutional layers and two
max-pooling layers. Within the convolutional layers, features are extracted by configuring
8, 16, and 32 filters of size [1 × 3]. After the convolutional layer, batch normalization is
performed. The pooling layer is a filter of size [1 × 2] and reduces the feature dimension
with padding 0 and stride [1,2]. Sub-network 1 utilizes as input data a size of [1 × 5000],
representing an ECG signal, while sub-network 2 uses an input data size of [1 × 5000],
representing an EMG signal. Both sub-networks share the weights of the convolutional
layers during training. The features calculated from sub-network 1 and sub-network 2 are
concatenated and input to the fully connected layer. The fully connected layer consists
of 2048, 256, and 36 (number of classes) to recognize users. The experiment is conducted
using a batch size of 256, epoch 100, learning rate of 0.001, and activation function rectified
linear unit (ReLU).
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In the experiment, the multi-session signals are divided into Each Data and Cross
Data. Each Data are used to confirm the variability in biosignal analysis. As shown in
Figure 7, this method uses signals recorded in different sessions for both training and
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testing. Specifically, the Each Data method uses the ECG and EMG data recorded on Day 1
for training and ECG data recorded on Day 2 for testing. However, Cross Data are used
to analyze the validity of the constructed DB. As shown in Figure 7, this method divides
signals recorded in different sessions in a 70:30 ratio using them as training and test data,
respectively. The Cross Data method uses 70% of the ECG and EMG signals recorded on
Days 1 and 2 as training data and 30% of the ECG and EMG signals recorded on Days 1 and
2 as test data. The experiment was conducted with 10 and 36 people of CSU_MBDB1 and
10 and 58 people of CSU_MBDB2. To analyze hand gestures suitable for user recognition in
the two constructed databases, the same number of subjects (10 subjects) was used.
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Table 7 shows the experimental results of Each Data and Cross Data using CSU_MBDB1.
The experiment involved ECG and EMG data from 10 and 36 subjects. The results from
the Each Data showed an accuracy of 45.11% for the 10-subject dataset and an accuracy
of 35.28% for the data of 36 subjects. In the Cross Data experiment, the accuracy reached
63.42% for the 10-subject datasets and 45.37% for the 36-subject datasets. The experimental
results indicate that the user recognition accuracy of the Cross Data method surpassed
that of the Each Data method. The heightened performance of the Cross Data method,
using biosignal data from two sessions, underscores the significance of biosignal variability,
specifically in ECG and EMG signals. This underscores the necessity of constructing a large
DB spanning multiple sessions to effectively analyze the variability for these biosignals.

Table 7. User recognition result using CSU_MBDB1.

Category Round 1 (%) Round 2 (%) Round 3 (%) Mean (%)

Each Data
10 subjects 46.62 43.67 45.05 45.11
36 subjects 34.18 36.29 35.37 35.28

Cross Data
10 subjects 62.44 62.22 65.61 63.42
36 subjects 46.01 45.59 44.52 45.37

Table 8 shows the experimental results of Each Data and Cross Data using CSU_MBDB2.
The experiment involved ECG and EMG data from 10 and 58 subjects. In the Each Data
experiment, the accuracy was 48.44% for the 10-subject datasets and 27.71% for the 58-
subject datasets. Meanwhile, the Cross Data experiment yielded an accuracy of 66.39% for
the 10-subject dataset and 49.42% for the 58-subject dataset. Similar to CSU_MBDB1, the
experimental results showed that the user recognition accuracy of the Cross Data method
in CSU_MBDB2 surpassed that of the Each Data method. In addition, it was confirmed
that the three hand gestures performed in CSU_MBDB2 were suitable for user recognition
compared to the three hand gestures performed in CSU_MBDB1 (excluding the three
identical hand gestures).
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Table 8. User recognition result using CSU_MBDB2.

Category Round 1 (%) Round 2 (%) Round 3 (%) Mean (%)

Each Data
10 subjects 48.33 47.17 49.83 48.44
58 subjects 29.14 26.43 27.56 27.71

Cross Data
10 subjects 67.67 65.17 66.33 66.39
58 subjects 50.19 49.49 48.59 49.42

Figure 8 shows the data distribution using CNN features, referring to a previous
study [31], using the ECG and EMG of 10 CSU_MBDB2 subjects. In Figure 8, it can be
seen that the biosignals of subject 1, subject 2, subject 3, and subject 7 are well clustered.
However, it can be seen that many feature areas overlap when the data distribution of four
subjects (subject 5, subject 8, subject 9, subject 10) uses the CNN features from Figure 6.
These results are a result of the variability in ECG and EMG constructed in a multi-session
and indicate the need for research on feature extraction technology for user recognition
using CSU_MBDB1 and CSU_MBDB2.
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Table 9 shows the experimental results of the extended DB using the same three hand
gestures (CSU_MBDB1: gesture no. 1 and CSU_MBDB2: gesture no. 1; CSU_MBDB1: ges-
ture no. 4 and CSU_MBDB2: gesture no. 2; CSU_MBDB1: gesture no. 6 and CSU_MBDB2:
gesture no. 4) from CSU_MBDB1 and CSU_MBDB2. The experiment used ECG and EMG
from 94 subjects as Cross Data. As a result of the experiment, 94 people were recognized
with an accuracy of 27.05%. In addition, to show the development potential of the con-
structed DB, an experiment was conducted using filtering (noise removal), which is widely
used in existing research. ECG noise was removed using BPF with a bandwidth of 0.5 to
40 Hz. EMG noise was removed using BPF with a bandwidth of 5 to 500 Hz. The experi-
mental results showed an accuracy of 30.94%, confirming that the accuracy was improved
by 3.89% compared to before removing noise (with noise).

The user recognition experiment using the constructed biosignal DB showed a rela-
tively low accuracy of 66.39%. Notably, the ECG signals displayed a significant amount
of noise, as shown in Figure 9 (red box), due to the simultaneous measurement of ECG
and EMG during gesture performance. It is crucial to note that the user recognition experi-
ment in this study was conducted using raw signals without noise removal or relatively
simple noise removal. The network employed for user recognition utilized a straightfor-
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ward model, contributing to the observed low accuracy. The presented CSU_MBDB1 and
CSU_MBDB2 have limitations as they involve the measurement of ECG and EMG exclu-
sively in healthy subjects, rendering them unsuitable as DBs for patient user recognition.
Furthermore, given the focus on user recognition during the DB construction, ECG (1ch)
and EMG (2ch) were measured with a limited number of channels, posing a drawback
in terms of the analysis of various biosignals’ information (e.g., spatio-temporal analysis
of HD-sEMG). Nevertheless, by expanding the DB using the same three hand gestures
from CSU_MBDB1 and CSU_MBDB2, it was shown that user recognition experiments were
possible with ECG and EMG for 94 subjects acquired in multi-sessions, and performance
was improved by performing noise removal (BPF). The two built DBs (CSU_MBDB1 and
CSU_MBBD2) have the advantage of being able to acquire ECG and EMG in multi-sessions
and analyze the nonlinearity characteristics of biosignals that occur over time.

Table 9. User recognition result using CSU_MBDB1 and CSU_MBDB2.

Category Round 1 (%) Round 2 (%) Round 3 (%) Mean (%)

Cross Data
(94 subjects)

With noise 25.89 27.42 27.84 27.05
Without noise 30.14 31.86 30.83 30.94
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Table 10 shows the calculation of consistency determination to analyze the efficiency
and comfort of the constructed DB, referring to existing research [32]. If the consistency
determination is higher than 0.5, it is an appropriate gesture for user recognition, and if it is
lower than 0.2, the gesture needs improvement. As a result of the experiment, all gestures
from CSU_MBDB1 and CSU_MBDB2 showed values close to 0.5, confirming their suitability
for user recognition. Furthermore, when comparing the consistency determination of the
three hand gestures from CSU_MBDB1 (gesture no. 1, gesture no. 4, and gesture no. 6)
with those of CSU_MBDB2 (gesture no. 1, gesture no. 2, and gesture no. 4), CSU_MBDB1
yielded an average of 0.4447, while CSU_MBDB2 produced an average of 0.4606. Therefore,
it was confirmed once again that the three hand gestures from CSU_MBDB2 are more
suitable for user recognition than the three hand gestures from CSU_MBDB1.
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Table 10. Consistency determination of CSU_MBDB1 and CSU_MBDB2.

DB Name Gesture
No. 1

Gesture
No. 2

Gesture
No. 3

Gesture
No. 4

Gesture
No. 5

Gesture
No. 6

CSU_MBDB1 0.4766 0.4555 0.4462 0.4524 0.4324 0.4718
CSUMBDB2 0.4607 0.4492 0.4583 0.4574 0.4656 0.4580

5. Conclusions

Various benchmarking biosignal DBs have been established for user recognition re-
search using biosignals. However, these DBs encountered limitations as the variability in
signals could not be adequately analyzed, either due to their construction based on a limited
number of subjects or the recording of biosignals in single sessions. This study address this
gap by introducing CSU_MBDB1 and CSU_MBDB2, constructed by recording biosignals
from numerous subjects across multiple sessions. The participant count for constructing
the DBs was 60 and 100, respectively, with sensors attached to both the left and right arms
for recording ECG and EMG signals during the execution of six hand gestures. Despite
technical challenges in the measurement protocol, the DBs ultimately comprised data from
36 and 58 subjects. Since these two benchmarking biosignal DBs share three identical hand
gestures, they can be expanded into a combined DB covering 94 subjects. To analyze the
usability of the constructed DBs, we conducted a user recognition experiment using a neu-
ral network designed in a previous study. Following the experiment, the user recognition
accuracy stood at 66.39% (Cross Data and 10 subjects from CSU_MBDB2). This relatively
lower accuracy is attributed to the use of a straightforward neural network without the
removal of noise from the signals. The introduced DBs (CSU_MBDB1 and CSU_MBDB2)
hold potential as benchmark DBs for user recognition research, given their recording of
ECG and EMG signals in multiple sessions. By expanding the DB using three gestures from
the multi-session DB for user recognition, we showed that user recognition experiments
were possible with ECG and EMG from 94 subjects acquired simultaneously. Additionally,
it was confirmed that performance improved when using a preprocessed signal (without
noise) rather than a raw signal (with noise). There is a prospect of improving user recogni-
tion accuracy by implementing noise removal techniques on the constructed multi-session
biosignal DBs and designing an optimal neural network. Lastly, by measuring ECG and
EMG in multi-sessions, the nonlinear characteristics of biosignals that occur over time can
be analyzed, and through this, user recognition research that is robust to volatility can be
conducted. Future research endeavors will include investigating the variability analysis of
the multi-session biosignal DBs and exploring techniques for noise removal from biosignals
to further improve user recognition accuracy.
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