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Abstract: Deep learning-based segmentation models have made a profound impact on medical pro-
cedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable
performance. Yet, even with these advances, these models are found to be vulnerable to adversarial
attacks, a problem that equally affects automatic CT segmentation models. Conventional adversarial
attacks typically rely on adding noise or perturbations, leading to a compromise between the success
rate of the attack and its perceptibility. In this study, we challenge this paradigm and introduce a
novel generation of adversarial attacks aimed at deceiving both the target segmentation model and
medical practitioners. Our approach aims to deceive a target model by altering the texture statistics
of an organ while retaining its shape. We employ a real-time style transfer method, known as the
texture reformer, which uses adaptive instance normalization (AdaIN) to change the statistics of an
image’s feature.To induce transformation, we modify the AdaIN, which typically aligns the source
and target image statistics. Through rigorous experiments, we demonstrate the effectiveness of our
approach. Our adversarial samples successfully pass as realistic in blind tests conducted with physi-
cians, surpassing the effectiveness of contemporary techniques. This innovative methodology not
only offers a robust tool for benchmarking and validating automated CT segmentation systems but
also serves as a potent mechanism for data augmentation, thereby enhancing model generalization.
This dual capability significantly bolsters advancements in the field of deep learning-based medical
and healthcare segmentation models.

Keywords: adversarial attacks; realistic adversarial samples; deep learning-based segmentation;
computed tomography (CT) segmentation; data augmentation

1. Introduction
1.1. Background

Deep learning-based segmentation models have significantly enhanced a variety of
medical procedures, including brain tumor detection [1,2], breast cancer screening [3,4],
organ segmentation [5,6], and skin lesion analysis [2,7,8]. Furthermore, these models con-
tribute to the synchronized monitoring of medical devices and patients, exemplified by the
detection of artificial ventilation usage [9]. U-Net based models, in particular, have shown
exemplary performance in the domain of computed tomography (CT) segmentation [5,6,10].
These advanced models, however, are not immune to adversarial attacks [11–13], a vulner-
ability that extends to automatic CT segmentation models as well [14–16].
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1.2. Limitations of Current Works

Current adversarial attacks frequently involve injecting perturbations or noise [17,18],
a method that amplifies the target model’s loss by manipulating the image gradients.
However, this approach presents a notable trade-off between successful deception and per-
ceptibility of alterations. Specifically, existing approaches manually control the perturbation
size, often denoted as step size [17–19]. Goodfellow et al. [17] introduced a one-step attack
that applies the perturbation directly to the original image, whereas Kurakin et al. [18] ap-
plied the perturbation iteratively. Although these methods attempt to limit the perturbation
size, the induced noise increases and eventually becomes perceptible, aiming to enhance
the attack success rate. Additionally, Qi et al. [19] proposed to regularize the noise using
a Gaussian kernel during the generation of adversarial images. However, this method
still suffers from the trade-off between perceptibility and attack success rate. This is visu-
ally depicted in Figure 1. While an unaltered CT image (Figure 1a) seamlessly integrates
with the automatic segmentation system, an adversarial sample introduced by an intruder
(Figure 1b) may be easily spotted by a medical professional due to the conspicuous noise.
Thus, the earlier methods focusing on noise addition prove insufficient for benchmarking
automatic segmentation systems. To address this, our goal is to pioneer a novel class of
adversarial attacks that can effectively mislead both the target segmentation model and the
medical practitioners.

(a) (b)

Figure 1. (a) A standard CT image smoothly interacts with the automatic segmentation system, while
(b) a conspicuous noise makes an adversarial sample, introduced by an intruder, readily noticeable to
a healthcare practitioner.

1.3. Overview of Proposed Method

CT images are a valuable diagnostic tool, derived from processing X-ray scans of a
patient’s body. These images offer crucial organ-related information, thanks to the CT
scanner’s ability to produce cross-sectional images using rotating X-ray tubes [20]. In our
research, we delve into scenarios where diagnostic decisions are predominantly driven
by the organ’s shape rather than its texture. Our proposed method aims to confuse the
target model by intentionally transforming the feature statistics, while leaving its shape
unaltered. We leverage a texture reformer [21], a real-time style transfer technique that
utilizes adaptive instance normalization (AdaIN) to modify an image’s texture. As AdaIN
is designed to align the source and target image distributions, we tweak it to intentionally
transform the statistics. Our experimental findings affirm that our adversarial samples
convincingly passed as genuine in blind tests with physicians. In addition, the experiment
demonstrates that our method can be utilized for data augmentation to enhance model
generalization. We anticipate that our proposed method can be a potent addition to the
tools used for benchmark testing and contribute substantially towards validating automatic
CT segmentation systems.
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Our contributions are summarized as follows: We present a novel generation of
adversarial attacks designed for medical applications, focusing on transforming the feature
statistics of the target image, in contrast to traditional noise addition techniques.

Following our main contribution, our rigorous experiments demonstrate that medical
practitioners perceive our adversarial samples as more realistic compared to those generated
by existing state-of-the-art methods. Additionally, our technique can be applied for data
augmentation, thereby improving model generalization.

2. Proposed Methods
2.1. Problem Statement

In this study, we focus on a deep learning-based segmentation model tailored for
analyzing computed tomography (CT) images and their associated organ segmentations.
Our primary objective is to generate adversarial examples that successfully deceive the
model into making incorrect segmentation predictions. Specifically, the model processes CT
images, which comprise continuous pixel values that not only delineate organ boundaries
but also represent the distinct characteristics of each organ. These segmentations are
represented by integer values that correspond to different organ segments, maintaining the
same dimensions as the original CT images. Our foremost aim is to create highly realistic
adversarial examples that lead the model to misclassify organ segments. Additionally, we
aim to utilize these adversarial examples to improve the performance of the target model
as a form of data augmentation.

2.2. Generating Adversarial Images Using Transformation Statistics of Features

Our method for generating adversarial samples is predicated on transforming the
statistics of the target organ such that it appears different to the segmentation model,
resulting in misclassification of the organ. This concept can be actualized through style
transfer, a technique used for transfer the texture from its original domain to a different one.
Accordingly, we incorporate a texture transfer system in our approach. In the following part
of this subsection, we will discuss the foundational components of our methodology, which
are built upon adaptive instance normalization (AdaIN) [22] and the texture reformer [21].

2.3. Generation of Adversarial Sample Using Dynamic Adaptive Instance Normalization

AdaIN has been proposed to align the mean and standard deviations of the feature
statistics from the source and target images, respectively [22]. AdaIN can be formulated
as follows.

AdaIN( ft, fs) = σ( ft)

(
fs − µ( fs)

σ( fs)

)
+ µ( ft) (1)

where ft and fs represent the feature statistics of the target and source samples, respectively,
while µ and σ denote the mean and standard deviation (SD), respectively.

The formula indicates that the source features undergo standard normalization using
its own mean µ( fs) and standard deviation σ( fs), and subsequently become unnormalized
using µ( ft) and σ( ft) derived from the target input features. As such, AdaIN does not
require learning any parameters during model training. Rather, its computation occurs
solely during inference, thereby enabling rapid style transfer without the need for prede-
fined styles [21,22]. For these reasons, AdaIN is widely employed in various style transfer
models [21,23–25].

Given the challenge of predicting the feature statistics of an adversarial sample before
its creation, we propose a method influenced by AdaIN for the targeted adjustment of
input feature statistics. We designate this method as dAdaIN (Dynamic Adaptive Instance
Normalization), which facilitates the manual selection of suitable transformation factors.
These factors are chosen based on human judgment to balance the adversarial impact with
the authenticity of the generated samples. It is important to note that while an intruder
can assess the extent to which the adversarial sample deceives the model and evaluate its
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visual realism, expertise in CT imaging is not a prerequisite. The transformation of feature
statistics in this study is defined as follows:

dAdaIN( fx, fxadv) = ασ · σ( fx)

(
fxadv − µ( fxadv)

σ( fxadv)

)
+ αµ · µ( fx) (2)

where fx and fxadv represent the features of the target image and the adversarial sample,
respectively. The parameters αµ and ασ are transformation factors for the mean and
standard deviation (SD), respectively, with αµ = 1 and ασ = 1 preserving the original
statistics. It is worth noting that since the features of the adversarial sample cannot be
predetermined, fx = fxadv . However, as these identical features are fed into different
branches of the encoder structure, as detailed in the remainder of this subsection, we
differentiate the terms as described. For example, we demonstrate the transformation of
the target feature’s statistics in the yellow box shown in Figure 2. Between the encoder
and decoder, the statistics of features denoted fx and fxadv undergo transformation using
Equation (2) as illustrated in the figure’s lower diagram. In the diagram, the brown and
orange bars represent the mean values and standard deviation (SD) values for each feature
channel, respectively.

Figure 2. This figure depicts an example of the transformation process of the feature statistics from
the source image. Note that E3 and D3 represent the third encoder and decoder, respectively, in a
series of five cascaded auto-encoders, as shown in Figure 3.

Although AdaIN accomplishes high performance for style transfer, plugging it in
any encoder-decoder structure does not guarantee it will generate realistic adversarial
images to fool a segmentation model as well as physicians. Therefore, we consider the
state-of-the-art style transfer model which is the texture reformer [21]. The texture reformer
is a patch-based style transfer model which receives two pairs of the image and associated
segment to be the source and the target.

Since our main goal is not the style transfer but the transforming statistics of features,
our modified texture reformer accepts only a pair of original CT images and associated seg-
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ment. While the original CT image is given to source image and target image, the associated
segment image is given to the source segment and target segment as well. The insertions of
them are depicted as the black line and the green line, respectively in Figure 3.

As shown in Figure 3, the first two levels of encoder-decoder which include blue
blocks, generate a realistic image considering aspects of global information and local
information using View-Specific Texture Reformation (VSTR) [21]. In the final three levels
of encoder-decoder which have yellow blocks also in the figure, the modified texture
reformers create images from the transformed features using dAdaIN. However, since the
use of modified texture reformers with dAdaIN can still produce images with artifacts
or unusual brightness, we introduce pre-processing and post-processing methods. These
methods are detailed in the following sections and are applied to the first two encoder-
decoder pairs numbered 5 and 4 as well as shiftDist (purple box) components, respectively,
in Figure 3.

Figure 3. This figure presents the complete structure, based on the texture reformer, that is used to
generate adversarial samples with the proposed method, dAdaIN, followed by shiftDist for post-
processing. Essentially, our method adopts the texture transfer technique [21], which utilizes cascaded
auto-encoders and processes the inputs in reverse order, from 5 to 1.

2.3.1. Pre-Processing to Stabilize Statistics of Pixels of Organs

In spite of the fact that the texture reformer outperforms the encoder-decoder struc-
tured style transfer methods, there is a challenge caused by VSTR when applied to our
problem. Since VSTR modules (depicted as blue blocks in Figure 3) consider the aspects of
global information and local information simultaneously, the skewed distribution of the
image causes a negative impact on the process, particularly affecting the encoder-decoder
pairs numbered 5 and 4 in the figure.

We plot histograms of pixel values which are segmented into a non-annotated organ
in Figure 4. In the figure, the black region represents the non-annotated organ in Figure 4a
and the gray bars indicate the distribution with respect to pixel values. As shown in the
figure, the pixel values are very skewed. Therefore, the texture reformer generates visual
artifacts as depicted in the red box.

To overcome this problem, we separate the non-annotated region into zero value
pixels and non-zero value pixels as appears in the purple region and the yellow region,
respectively. We plot the histograms of pixel values for each region in Figure 4b. As we can
see in the red box, the generated adversarial sample is realistic without visual artifacts.
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(a)

(b)

Figure 4. Comparison of processes between (a) an adversarial sample without preprocessing of pixel
distribution, where the x-axis of the histogram represents pixel values within non-annotated organs
(black area), revealing a skewed distribution that introduces artifacts in the generated image (red
box), and (b) an adversarial sample with pixel distribution segmented into zero-value (purple) and
non-zero-value pixels (yellow), which effectively eliminates these artifacts, as indicated in the red box.

2.3.2. Post-Processing to Generate Realistic Image

In addition, the distribution of the generated image is also moved from the original
CT image which is pictured as green bars in Figure 2. Therefore, the generated image is
brighter than the original one.

To address this problem, we adjust the image by shifting the distribution named
shiftDist as defined below.

shiftDist(xadv) = |xadv − β| (3)

where β is an adjustment parameter and it is designed to darken the image. The adjustment
parameter is calculated as the difference between the zero-value pixel regions, which
represents the background of the CT image, in both the original and generated images.

Figure 5 presents an illustrative example of this adjustment, where the output from
the final decoder, D1, is overly bright. β is specifically determined by the pixel values in the
background region, ensuring that it reflects actual background characteristics rather than
being arbitrarily chosen based on the lowest pixel value, a common practice in min-max
rescaling techniques.

Subsequently, any negative pixel values that emerge from the shiftDist operation are
adjusted to zero, maintaining the integrity of the image’s visual quality. This adjustment
not only preserves the original quality but also enhances it, as demonstrated with shiftDist
(purple box) in Figures 3 and 5.
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Figure 5. This figure shows the pixel values before and after shifting, determined by the background
pixel value.

3. Experiments

All experiments in this work were conducted on a workstation equipped with an
AMD Ryzen 7 3700X 3.6 GHz processor, 16 GB of main memory, and an NVIDIA GeForce
RTX 3080 GPU card. Furthermore, the implementations for these experiments were carried
out using PyTorch 2.0 [26] in Python 3.9. The remainder of this section offers a detailed
description of the datasets and methods implemented, along with extensive experiments
validated by medical professionals, limitations, potential applications, and a case study.

3.1. Data Description and Preprocessing

We downloaded organ data publicly accessible from the “Multi-Atlas Labeling Beyond
the Cranial Vault—Workshop and Challenge” (BTCV) dataset [27]. The dataset was com-
piled with the objective of developing efficient segmentation algorithms and was gathered
during a workshop and challenge hosted by MICCAI in 2015. It comprises 50 abdominal CT
scans, collected under the supervision of an Institutional Review Board. BTCV labeled the
following organs: spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach,
aorta, inferior vena cava, portal vein and splenic vein, pancreas, right adrenal gland, left
adrenal gland as well as non-annotated organs. Abbreviations for these organs are as
follows: SP for spleen, RK for right kidney, LK for left kidney, GB for gallbladder, ES for
esophagus, LV for liver, ST for stomach, AO for aorta, IV for inferior vena cava, PVSV
for portal vein and splenic vein, PA for pancreas, RA for right adrenal gland, LA for left
adrenal gland, and BG for non-annotated areas.

We clip pixel values of CT images in the range from −135 to 215. In addition, we
normalize pixel values and resize them to 256 × 256. We split 75% and 25% for training and
test sets by patient. Because there is no image which has all organs at the same time, we
select images which have more than seven organs. Consequently, we acquire 821 images for
training and 228 images for testing. In Figure 6, we present a plot showing the count of images
corresponding to each organ. As illustrated in the figure, the background appears (BG) in all
821 images in the training set. In contrast, the esophagus (ES) appears in only 120 images,
and the two adrenal glands (RA and LA) appear in 242 and 279 images, respectively.

3.2. Implemented Models
3.2.1. Implemented Target Model

Our target which is a segmentation model is U-Net [28] which shows outstanding
performance of CT segmentation [5,6,10]. The model features a stacked encoder-decoder
architecture enhanced with skip connections. Following the design outlined in the original
U-Net paper, we employ four encoders and an equal number of decoders, adhering to the
hyper-parameters specified in the foundational work. The model undergoes training using
the dataset detailed in Section 3.1. We trained 200 epochs with the 16 batch size, using the
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AdamW optimizer [29] and the learning rate is 0.0001. Moreover, we set the loss function
to minimize the combination of cross entropy and dice loss between the true segmentation
and the predicted segmentation.

Figure 6. The number of images corresponding to each organ.

3.2.2. Implemented Attack Methods

We compare our method with existing adversarial attack methods that are most com-
monly used in automated medical image diagnosis [30]: the fast gradient sign method
(FGSM) [17], basic iterative method (BIM) [18] and stabilized medical image attacks
(SMIA) [19]. We have implemented these adversarial methods for the comparison. The con-
cepts for the models are outlined as follows:

• Our attack method: We adopt the structure of the texture reformer [21] as depicted
in Figure 3 and we reimplement the final three levels to transform the statistics as
described in Equation (2). The model is based on stacked autoencoders. It contains the
five separate encoder-decoder components. Encoder layers consist of convolutional
layers similarly VGG19 [31] to extract features from the source image. Decoder layers
are structured as flipped encoders using the nearest neighbor interpolation to generate
the target image. We exploit open source and pre-trained weights provided by the
official implementation (https://github.com/EndyWon/Texture-Reformer, accessed
on 25 July 2022). The source code for our framework is available at https://github.com/
hyerica-bdml/adversarial-attack-transformation-statistics (accessed on 17 March 2024).

• FGSM: It calculates gradients given input image x and corresponding class y. The gra-
dients act as a direction for maximizing the loss function J of the target model. The di-
rection is added into original image x to generate the adversarial sample xadv. We
formulate the attack as below:

xadv = x + ε · sign
(
∇x J(x, y)

)
where ε is the step size.

• BIM: It is an iterative method while FGSM is a one-step method. The difference is
that BIM maximizes the loss repetitively (for instance, K times) and adds stacks of
the gradients xi

adv to the original image. BIM is defined as the following equation for
our problem:

xi+1
adv = π

(
xi

adv +
1
K
(
∇x J(xi

adv, y)
))

where initial x0
adv is the input image x and π is the clipping function to avoid exceeding

pixel values in the range from x− ε to x + ε.
• SMIA: It is specialized to fool models in only the medical domain whereas FGSM

and BIM are for general purposes. Unlike how those models produce noisy results,
SMIA reduces noise. The key idea is that while adversarial samples tend to be noisy,

https://github.com/EndyWon/Texture-Reformer
https://github.com/hyerica-bdml/adversarial-attack-transformation-statistics
https://github.com/hyerica-bdml/adversarial-attack-transformation-statistics
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SMIA adds a stabilization function into the loss function to force the noisy sample
close to the blurred sample obtained by a Gaussian kernel. The stabilization loss for
maximization is formulated for our problem as follows:

L = L
(

M(xadv), y
)
− α · L

(
M(xadv), M(x + W ∗ η)

)
where W is the Gaussian kernel to convolutional operation with the perturbation noise
η (= xadv − x) and α is the scalar balancing factor for the loss terms.

3.3. Evaluation Metric

The performance of the target model is evaluated using the Dice score in this study.
This metric quantifies the degree of overlap between the predicted region and the actual or
ground truth region. The metric is calculated as follows:

Dice Score =
2(P ∩ G)

|P|+ |G| (4)

Here, P and G stand for the predicted and ground truth regions, respectively, while
| · | represents the size of the region. According to the definition of this metric, a score
of 1 indicates the best performance of the segmentation model, whereas a score of 0 indi-
cates the poorest performance. It is noteworthy that the main objective of an adversarial
attack is to reduce the Dice score.

3.4. Qualitative Evaluation by Physicians

We train the target model based on U-Net, as detailed in Section 3.2.1. This yields a
target model with a Dice score of 0.4524. We then create adversarial samples using FGSM,
BIM, SMIA, and our method, using these to attack the target model.

For qualitative evaluation, we assess whether our method generates realistic images
that both fool the target model and deceive physicians. We curated a set of 50 questions
featuring adversarial samples from the proposed method in this work and the baselines,
asking the question: “Which among the four adversarial images appears most like the
genuine one?” Given the trade-off between attack success rate and perceptibility identified
in prior research, we have deliberately selected a success rate range that navigates between
barely perceptible attacks (with a Dice score of 0.03, which can be challenging to detect
at a glance) and highly effective, yet clearly noticeable attacks (indicated by a Dice score
of 0.001). Consequently, each question was accompanied by four different adversarial
images, one from each method, with Dice scores controlled within the range of 0.001 to 0.03.
For fair comparisons, we randomly selected adversarial images generated by the baseline
methods, ensuring they all fell within the same range of Dice scores.

Figure 7 presents random samples of two questions. As evident in the figure, the Dice
scores across the methods have been maintained at similar levels. The order of the images
was randomly altered for each question and the corresponding Dice scores were hidden.

Two medical doctors participated in this blind test, selecting our images as genuine
26 and 47 times, respectively, out of the 50 questions that were randomly shuffled.

We conducted a binomial test to statistically validate these results. This choice was
made because each question offers a discrete outcome whether an image is selected as
the most realistic or not. Furthermore, the number of questions is fixed at 50 for each
doctor, and the probability of randomly selecting any one image as the most realistic is
consistently 0.25.

We defined our hypotheses as follows:

• Null hypothesis: The adversarial images produced by our method are no more
convincingly realistic than those produced by other methods.

• Alternative hypothesis: The adversarial images produced by our method are signifi-
cantly more convincing in their resemblance to real images than those produced by
other methods.
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We set the significance level at 5%, adhering to conventional standards. Given that each
doctor was presented with 50 questions, and the selections favoring our images numbered
26 and 47, respectively, we proceeded with the analysis. Considering the expected ratio
of 0.25 for random selections, the calculated p-values were 4.80× 10−5 and 4.26× 10−25.
Based on these results, we reject the null hypothesis and conclude that our method produces
adversarial samples that are significantly more convincingly realistic than those generated
by competing methods.

(a) (b)

Figure 7. Examples of two questions used to assess image quality by physicians. (a,b) are randomly
selected from the set of 50 questions used for the quality evaluation experiment. (a) Controlled Dice
score: 0.0001–0.0003. (b) Controlled Dice score: 0.0551–0.0584.

3.5. Limitations and Comparative Analysis

In this section, we delve into the limitations of our method, discuss the underlying
reasons for these limitations, and present samples to compare our outcomes with the
established baselines.

Figure 8 shows instances where our method encountered some issues, specifically
white noise, blurring, and darkening. For example in Figure 8a, the images we generated
tend to be blurry and darker. Furthermore, as seen in Figure 8b, our image shows white
noise at the bottom, which is absent in the original.

We attribute these issues to the following causes:

• Some values of transformation factors αµ and ασ tend to create darker samples.
By adopting factor values less than 1, the transformed features contribute to a restored
image with higher pixel values and smaller variance compared to the input image.
This results in a final image adjusted by shiftDist that is darker than the original.

• The instances of white noise and blurring appear to stem from the high variance seen
in the non-zero pixel values in regions that were not annotated, as evidenced by the
yellow bars in the histogram in Figure 4b. This leads the VSTR modules of the texture
reformer to blend the pixel values of the bone and the organ.

Despite these limitations, our method has proven effective in producing image differ-
ences that are less noticeable to physicians compared to the baselines. As illustrated via
randomly selected samples in Figure 9, when Dice scores are kept constant for adversarial
samples (for each row excluding the original image in the first column), samples generated
by our method are less perceptible, while the baselines tend to display noticeable noise.
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(a) (b)

Figure 8. The figure depicts the limitations of our method. As observed in image (a), the adversarial
sample is darker and more blurred than the original image, and in image (b), white noise is evident
at the bottom of the adversarial sample.

Figure 9. This figure illustrates the comparison of the proposed method with baseline approaches.
The transformation factors are set at αµ = 0.3 and ασ = 0.3, whereas the baselines’ hyperparameters
are tuned based on Dice scores.

3.6. Application of the Proposed Method: Data Augmentation

In this section, we explore the potential uses of our proposed method for data augmen-
tation. To evaluate data augmentation effectiveness, we increased the size of the dataset
by 25% during the model training phase by adding new samples to the original training
set. These additional samples are randomly generated, their αµ and ασ values adhering
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to the (0.9, 1.1) range as specified in Equation (2). This augmentation strategy yields an
improvement in the Dice score: it climbs from an initial score of 0.4524 to an improved
score of 0.4819.

As demonstrated in Table 1, our method significantly enhances the model’s generaliza-
tion capabilities, particularly evident in segmenting the esophagus (ES), inferior vena cava
(IV), and both adrenal glands (RA and LA). Models trained with our data augmentation
approach exhibit improved segmentation for these organs. Notably, for the ES, RA, and LA,
models trained without data augmentation fail to segment these organs entirely. As previ-
ously mentioned in Section 3.1, the training set comprises only 120, 242, and 279 images
featuring the ES, RA, and LA, respectively, out of a total of 821 images. Furthermore, it
was noted that the pixel count representing these organs in each image is relatively low in
the original dataset. Nonetheless, our data augmentation method successfully increases
the variability of pixel representation for these organs, addressing the issue of limited data
availability that was previously hindering the segmentation model’s learning efficacy.

Table 1. Dice score changes with data augmentation.

Organ Pre-Augmentation Post-Augmentation Difference

Background (BG) 0.9856 0.9861 +0.0004
Spleen (SP) 0.6454 0.6599 +0.0145

Right Kidney (RK) 0.5710 0.5708 −0.0003
Left Kidney (LK) 0.5618 0.5796 +0.0177
Gallbladder (BG) 0.1803 0.1626 −0.0177
Esophagus (ES) 0.0000 0.0640 +0.0640

Liver (LV) 0.9371 0.9379 +0.0008
Stomach (ST) 0.4870 0.4881 +0.0011
Aorta (AO) 0.8744 0.8901 +0.0157

Inferior Vena Cava (IV) 0.5351 0.6405 +0.1054
Portal and Splenic Vein (PVSV) 0.2536 0.2467 −0.0069

Pancreas (PA) 0.3018 0.3003 −0.0015
Right Adrenal Gland (RA) 0.0000 0.1103 +0.1103
Left Adrenal Gland (LA) 0.0000 0.1098 +0.1098

3.7. Case Study: Visualization of Adversarial Samples and Predictions

We display both adversarial samples and prediction by each method with regard
to diverse hyper-parameters which is randomly sampled. In Figure 10, the original CT
image, the ground truth and the prediction by the target segmentation model are de-
picted. Moreover, we show adversarial samples generated by our method in Figure 11 and
corresponding predictions in Figure 12.

Figure 10. Ground truth and target model’s prediction, presented with the corresponding Dice score
of 0.4254.

It is worth noting that the target model achieves a Dice score of 0.425400, as depicted
in Figure 10. However, when our method is applied with αµ and ασ values of 1.2 and 0.9,
respectively, as shown in Figures 11 and 12, the Dice score increases to 0.519836. This
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improvement suggests that our method effectively reduces false positives in the segmen-
tation model. Thus, our approach can serve the dual purpose of launching attacks on a
segmentation model and enhancing its prediction performance.

Figure 11. Our adversarial samples.

Since αµ and ασ serve as transformation factors for the mean and standard deviation
of the feature vectors, respectively, their values significantly influence the appearance of
the generated images. The results, as illustrated in the figures, indicate a trend where
extreme values for the mean transformation factor (around 0.3 and 1.5) coupled with a
relatively small standard deviation transformation factor tend to effectively compromise
the model, as evidenced by a decrease in the Dice score. Furthermore, the generation of
realistic images is often achieved when αµ and ασ maintain a similar ratio. This obser-
vation suggests a strategy for optimizing the search for suitable pairs of transformation
factor values by maintaining a consistent ratio between them, potentially accelerating the
optimization process.

3.8. Discussion

To validate the proposed method in this work, we demonstrate its attack performance
in comparison with existing baselines, including FGSM, BIM, and SMIA. As detailed
in Section 3.4, our approach demonstrably surpasses these baselines in terms of attack
performance, as corroborated by medical professionals using a real-world CT dataset
targeted at a deep learning-based segmentation model. Moreover, Section 3.5 addresses the
limitations inherent to our method, noting that despite these constraints, the adversarial
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samples it generates maintain a higher degree of realism compared to those produced by
the baseline methods, even when Dice scores are controlled across comparisons.

Figure 12. Prediction of our adversarial samples.

Further expanding the utility of our method, Section 3.6 explores its potential as a novel
technique for data augmentation, aimed at bolstering the robustness of deep segmentation
models. This is particularly significant given the increasing reliance on deep learning in
medical imaging analysis. Additionally, Section 3.7 presents a series of adversarial samples
generated using a variety of transformation factors, accompanied by their respective
Dice scores, providing insight into the method’s versatility and the nuanced impact of
different transformations on model deception and segmentation accuracy. Through these
discussions, we aim to underscore the multifaceted contributions of our work to the field
of medical image analysis and its implications for the development of more resilient deep
learning models.

4. Conclusions

In this study, we present a novel adversarial attack approach that simultaneously
targets the deception of a segmentation model and medical practitioners. Unlike existing
methods that involve trade-offs between success rates and perceptibility, our approach
overcomes this limitation by transforming the statistics of features instead of adding noise.
Through rigorous experimentation, we validate the superior realism of our adversarial
samples compared to state-of-the-art methods. Furthermore, we demonstrate the versatility
of our method by applying it to data augmentation. This additional application expands
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the potential of our approach as a benchmark test for validating automated CT segmenta-
tion systems in the future. We believe that our work will contribute to the advancement
and evaluation of such systems in the medical field. Additionally, the outcomes of our
research may offer paths to enhance the robustness of medical segmentation models by
integrating other data augmentation methods that are orthogonal to ours. In future work,
we aim to extend the proposed approach for broader application across various modali-
ties, including Magnetic Resonance Imaging (MRI), Digital Radiography, Mammography,
and Nuclear Medicine.
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