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Abstract: Objective: This study aims to introduce and assess a novel AI-driven tool developed for
the classification of orthodontic arch shapes into square, ovoid, and tapered categories. Methods:
Between 2016 and 2019, we collected 450 digital dental models. Applying our inclusion and exclusion
criteria, we refined our dataset to 50 models, ensuring a focused and detailed analysis. Plaster
casts were digitized into 3D models with AutoScan-DS-EX. Three trained evaluators then measured
mesiodistal and arch widths using MeshLab. The development of DentalArch was undertaken in
two versions: the first version incorporates 18 input parameters, including mesiodistal widths (from
the first molar to the first molar, totaling 14) and arch widths (1 intercanine, 2 interpremolar, and
1 intermolar, totaling 4); the second version uses only 4 parameters related to arch widths. Both
versions aim to predict the arch shape. An evaluation of 28 machine learning methods through a
k = 5-fold cross-validation was conducted to determine the most effective techniques. Results: In
the tests, the performance evaluation of the DentalArch software in detecting arch shapes revealed
that version 1, which analyzes 18 parameters, achieved an accuracy of 94.7% for the lower arch and
93% for the upper arch. The more streamlined version 2, which assesses only four parameters, also
showed high precision with an accuracy of 93.0% for the lower arch and 92.7% for the upper arch.
Conclusions: DentalArch provides a tool with potential use in orthodontic diagnostics, particularly
in the task of arch shape classification. The software offers a less subjective and data-driven approach
to arch shape determination. Moreover, the open-source nature of DentalArch ensures its global
availability and encourages contributions from the orthodontic community.

Keywords: arch dental form; orthodontics; artificial intelligence; DentalArch software; AutoScan-DS-EX;
machine learning; open source

1. Introduction

Since the inception of the term “computer-aided diagnosis” over six decades ago
by physician Gwilym S. Lodwick [1] in a chest radiography study, artificial intelligence
(AI) has revolutionized information processing. AI has emerged as a permanent fixture,
enhancing human deductive reasoning and observational skills [2–4]. This technological
breakthrough is grounded in emulating our cognitive processes across various domains,
such as image processing and pattern recognition, and led to the development of Artificial
Neural Networks (ANNs) [5]. ANNs have found extensive applications in medicine [6,7].
Significant advancements have been made in medical imaging [8,9], given the vast amount
of information, storage requirements, and creation of image databases that need rapid
and efficient analyses, enabling physicians to make decisions based upon the experience
coded in such large datasets. In orthodontics and dentistry, one key assessment is the
identification of the arch shape, as it provides a basis to the expectations that can be set
during treatment and a path to carry it out.
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Orthodontists and dentists utilize the arch shape as a tool to ascertain a patient’s arch
type. Preserving the arch shape or minimizing alterations during orthodontic treatments
results in an improved stability during the retention phase. This was corroborated in
1995 by Cruz et al. [10], who conducted a long-term study on post-treatment dental arch
shape changes, concluding that patients experiencing greater post-retention relapse have
a direct correlation with an increased transversal magnitude [10]. Recent studies support
this hypothesis, demonstrating higher relapse rates in arches that initially had a narrow
shape and underwent increased transversal lengths [11,12].

Arch shapes can be categorized into three primary forms: square, ovoid, and ta-
pered. This classification generally relies on the expert’s subjective evaluation through
human vision and/or other tools, such as millimetric templates employed for diagnos-
tic examinations in orthodontics. However, this approach is susceptible to human error
and observer bias—which have been evidenced and measured—leading to inaccurate or
observer-dependent results [13,14].

Individual variations in arch configurations [15] pose challenges to the classification
task. Several studies have tackled this problem using different approaches, including
geometric analyses, mathematical shapes, and computerized methods to facilitate dental
arch shape representation [16–18]. Various arch shapes have been proposed, such as the
trifocal ellipse, catenary curve, parabola, U shape, modified sphere, and others [19,20]. Gen-
erally speaking, the dental arch shape and size exhibit significant diversity among different
human groups, leading to the introduction of morphometric templates by orthodontists
and commercial companies [21,22].

The accurate determination of the dental arch shape is important in orthodontics,
greatly impacting the effectiveness and success of treatments [23]. This aspect is partic-
ularly significant in the context of utilizing memory wire arches, where the conformity
of the wire to the patient’s specific arch shape can dramatically affect the outcome of the
treatment [24]. The compatibility between the arch shape and the applied corrective device
is essential for achieving the desired dental alignment and occlusal harmony. Consequently,
orthodontists rely on arch shape classification to tailor treatment plans that align with the
unique dental structures of their patients. Innovations in diagnostic technologies, including
the application of artificial intelligence for arch shape prediction, have markedly enhanced
the accuracy and reliability of these classifications, promising improved treatment outcomes
and patient satisfaction [25].

The intersection of artificial intelligence (AI) with orthodontic arch shape prediction
has seen significant growth in interest and research [26]. Early methods for classifying arch
shapes depended heavily on manual measurements and subjective evaluations, introducing
considerable variability in results. However, the rise of AI and machine learning models
has begun to change this landscape, offering innovative insights and methods for arch
shape classification.

McKee and Molnar [27] utilized mathematical methods to categorize variations in
dental arch shape among an Australian Aboriginal population, highlighting the diversity
in arch forms and the challenges in their classification. Arai and Will [28] explored the
correlation between subjective classifications of dental arch shape and objective analyses,
shedding light on potential discrepancies and the need for more precise methodologies.
Lee et al. [29] proposed a novel method to classify dental arch forms, employing clustering
algorithms to sort arch shapes based on their goodness of fit and clinical applicability,
demonstrating a shift towards more objective, data-driven classification methods. Taka-
hashi et al. [30] developed an AI system using a convolutional neural network (CNN) to
classify partially edentulous arches, marking a significant advancement in the AI-assisted
design of removable partial dentures. Their system achieved high diagnostic accuracies,
showcasing the potential of AI in dental arch classification. Qiu et al. [31] introduced
DArch, a dental arch prior-assisted method for 3D tooth instance segmentation. By lever-
aging the dental arch structure, they enhanced the accuracy of tooth segmentation in 3D
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dental models, emphasizing the value of incorporating dental arch priors into AI models
for orthodontic applications.

In addition to these research efforts, commercial software solutions like Dolphin
Imaging & Management Solutions® and Nemotec® have incorporated tools for dental
arch analysis within their orthodontic planning and imaging suites [32]. While offering
sophisticated imaging and diagnostic capabilities, it is important to note that these programs
facilitate assisted rather than fully automatic arch shape detection. Practitioners use these
tools to analyze and evaluate dental arches, but expert input is required to interpret and
apply the software’s findings in treatment planning. This distinction underscores the
ongoing need for advancements in AI that can further automate and refine the process of
arch shape classification and that aim to reduce the reliance on manual assessments and
subjective evaluations.

These contributions collectively highlight the significant impact of AI on orthodontic
arch shape classification and prediction, with “DentalArch” and similar AI-driven tools
offering alternatives to traditional methods, alongside the assisted capabilities provided by
existing commercial software.

The remainder of this document outlines the study structure, covering related work;
materials and methods, encompassing data collection, arch form classification, software
development, and machine learning technique evaluation; the main results attained with
the tool; a brief discussion; and the principal conclusions drawn from our findings.

2. Materials and Methods
2.1. Data Collection

The dataset for this study initially comprised 451 complete dental cast models, both
maxillary and mandibular, collected between 2016 and 2019. These models were sourced
from patients at the Faculty of Dentistry, Universidad Nacional de Colombia, who sought
dental care services. The fabrication of these models was obtained from impression taken
with alginate and crafted from Type III and Type IV plaster. The original plaster models
were obtained from a group of patients, all residents of Bogotá, who were of both sexes and
were aged 18 years and older.

Following the application of the inclusion and exclusion criteria detailed in Table 1,
the dataset was narrowed down to 50 models. This selection was not without its challenges,
including label deterioration due to prolonged storage and the inherent fragility of the
dental models, which occasionally resulted in a tooth loss or model disintegration, as
depicted in Figure 1. These challenges underscore the complexities of assembling a high-
quality dataset for dental research.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Complete dentitions from the first molar to the
first molar Missing teeth within the maxilla or mandible

High-quality digital plaster models with clear
visibility of all teeth

Incomplete or altered digital dental models
(e.g., errors from scanning)

Legal adults aged 18 years and older Restorations affecting the normal size and
shape of teeth
Congenital dental defects or tooth
malformations
Severe or moderate crowding

This study received approval from the Ethics Committee of the Faculty of Dentistry at
Universidad Nacional de Colombia on 28 September 2020 (Acta 20–20 B.CIEFO-154-2020).
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Figure 1. Challenges encountered during the model selection process, including label deterioration
and model fragility. The red circles and arrows are used to indicate specific issues. In (C), the red
circle indicates a plaster model where a piece of tooth was detached due to manipulation. In (D), the
red circle highlights poor digitization.

2.2. Arch Form Classification

In the assessment of dental models, three orthodontic evaluators were enlisted, each
with specific qualifications and levels of experience. These evaluators were responsible for
measuring 19 parameters related to mesiodistal widths and arch shapes, which included
14 mesiodistal widths, 1 intercanine width, 2 interpremolar widths, 1 intermolar width,
and the overall arch shape. Evaluator 1 and Evaluator 2 were residents specializing in
orthodontics and maxillofacial orthopedics; Evaluator 3 was a general dentist. To ensure
uniformity and dependability in their evaluations, all evaluators underwent calibration
by an expert orthodontist before commencing this study. To establish the arch form, a
consensus-based approach was implemented. The arch form classification was determined
through a majority vote among the three evaluators, effectively mitigating the potential
subjectivity inherent in individual assessments. This consensus approach not only ensured
a comprehensive evaluation but also provided a robust and reliable reference for arch
form classification.

MeshLab was developed by the ISTI-CNR research center and initiated at the Univer-
sity of Pisa in 2005 [33]. For the purposes of this study, the “measuring tool” feature of
MeshLab was utilized to conduct manual assessments of 18 parameters on dental models,
as illustrated in Figure 2. These measurements were carefully executed twice by the evalua-
tors, with a fifteen-day interval between sessions, to guarantee the precision and reliability
of the data collected. Furthermore, to enhance the consistency and validity of their assess-
ments, the evaluators underwent specialized training conducted by an orthodontic expert
prior to the commencement of this study.

The arch forms were categorized into three types: ovoid, square, and tapered. The
classification criteria did not prescribe a minimum number of evaluators for consensus, but
the aim of using three evaluators was to enhance the reliability of the classification process.

The chosen arch form classifications—ovoid, square, and tapered—were compatible
with common clinical practice in orthodontics [34,35]. These shapes provide a practical
and recognizable framework for describing variations in dental arch forms, facilitating
communication among orthodontic professionals.
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Figure 2. MeshLab measurement examples: (A) shows the dental model with measurements captured
in MeshLab, and (B) provides an alternate view of the same model with measurements. Note: The
arch shape parameter was determined using conventional assessment methods.

2.3. Tool Development

The development of the DentalArch tool, tailored for arch shape detection, resulted in
two distinctive versions:

• DentalArch v1: Incorporating a detailed set of 18 input parameters—comprising
mesiodistal widths for each tooth from the first molar on one side to the first molar on
the opposite side (14 parameters), along with widths for 1 intercanine, 2 interpremolars,
and 1 intermolar—this version offers an exhaustive approach to analyzing arch shapes.
This comprehensive parameter set facilitates a nuanced assessment of dental arches.

• DentalArch v2: This iteration simplifies the input to just 4 critical parameters—
1 intercanine width, 2 interpremolar widths, and 1 intermolar width. With a singular
output parameter, DentalArch v2 simplifies the diagnostic process, emphasizing an
ease of use and practicality without compromising the accuracy of its outputs. This
version is designed for efficiency, making it particularly suitable for quick assessments
while retaining the reliability expected of orthodontic diagnostic tools.

Both versions were developed using MATLAB® R2023B, ensuring a robust and ef-
ficient implementation. This choice of platform not only secures a high-performance
tool solution but also promotes compatibility and seamless execution across diverse sys-
tems [36].

An essential feature of DentalArch is its user-friendly interface, allowing orthodontic
professionals to manually input the necessary measurements. This intentional user-centric
approach enhances the software’s accessibility and ensures its seamless integration into the
clinical practices of orthodontic professionals.

Furthermore, DentalArch exhibits Windows compatibility, being executable on any
Windows-based computer, enabling orthodontic professionals to incorporate DentalArch
into their practice without concerns about operating system constraints.

Machine Learning Techniques

In order to develop DentalArch, a comprehensive analysis of 29 different machine
learning techniques was conducted. These techniques were systematically evaluated to
determine the most suitable method for the task of classifying dental arch shapes. The
selection process aimed to identify a technique that could provide high accuracy in this
classification task.

The machine learning techniques were categorized into various groups, including
decision trees, discriminant analysis, naive Bayes classifiers, support vector machines,
nearest neighbor classifiers, ensemble classifiers, and neural network classifiers. These
categories were chosen to encompass a wide range of methodologies and capture diverse
approaches to classification.

The performance of each technique was assessed based on its accuracy in classifying
dental arch shapes. By comparing the results obtained from these techniques, we were able
to identify the most effective approach for the development of DentalArch.

Table 2 provides a summary of the machine learning techniques analyzed in this study,
along with their respective categories.
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Table 2. List of machine learning techniques tested in this work.

Category Techniques

Decision trees Fine tree
Medium tree
Coarse tree

Discriminant analysis Linear discriminant
Quadratic discriminant

Naive Bayes classifiers Gaussian naive Bayes
Kernel naive Bayes

Support vector machines Linear SVM
Quadratic SVM
Cubic SVM
Fine Gaussian SVM
Medium Gaussian SVM
Coarse Gaussian SVM

Nearest neighbor classifiers Fine KNN
Medium KNN
Coarse KNN
Cosine KNN
Cubic KNN
Weighted KNN

Ensemble classifiers Boosted trees
Bagged trees
Subspace discriminant
Subspace KNN
RUSBoost trees

Neural network classifiers Narrow neural network
Medium neural network
Wide neural network
Bilayered neural network
Trilayered neural network

2.4. Data Augmentation and Dataset Composition

In the process of training the DentalArch software, a total of 200 data points with cor-
responding labels were utilized. These data points were derived from meticulous manual
evaluations conducted by orthodontic professionals, including their manual measurements.

To enhance the robustness of the dataset and facilitate more effective model training,
data augmentation techniques were employed. Specifically, measurements of the same
dental models at different time points were incorporated as part of the augmentation
process. This temporal variation in the dataset allowed for the representation of natural
changes that may occur over time, contributing to a more dynamic and comprehensive
training set.

The decision to refrain from introducing synthetic data was made to prevent any
potential contamination of the dataset and to maintain a high level of relevance to the
clinical context [37]. All data points used in the training process accurately represented the
variations and complexities encountered in actual orthodontic practice.

Furthermore, the augmentation process, utilizing measurements from different time
points, enabled the expansion of the dataset without compromising its authenticity [38].
This approach contributed to a more comprehensive and diverse set of training examples,
reflecting the dynamic nature of dental arch shapes over time.

By leveraging these carefully collected and temporally augmented datasets, Denta-
lArch was trained on a rich and varied array of real-world scenarios, enhancing its ability
to generalize and make accurate predictions in a clinical setting.
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2.4.1. Model Selection and Implementation

After evaluating the machine learning techniques, the method with the highest accu-
racy was selected for the implementation of DentalArch.

2.4.2. Model Validation

To validate the developed DentalArch software, we employed a k-fold cross-validation
with a value of k equal to 5. This approach was chosen to rigorously assess the model’s
performance while preventing overfitting and ensuring its generalizability. In k-fold cross-
validation, the dataset is divided into five distinct subsets, or “folds”. The model is trained
on four of these folds and tested on the remaining one in each iteration. This process is
repeated five times, with a different fold serving as the test set in each iteration.

While k-fold cross-validation is computationally demanding, it offers several advan-
tages. It maximizes the use of available data, making it particularly valuable when dealing
with limited sample sizes. By evaluating the model’s performance across different subsets
of data, we obtain a robust measure of its effectiveness and its ability to generalize to new,
unseen data.

2.5. Performance Metric

The performance metric for measuring DentalArch’s effectiveness was accuracy. The
method with the highest precision was chosen for the development of the tool.

2.6. Statistical Analysis

To ensure the accuracy of arch shape classifications in our study, we used Minitab® 21.4,
a data analysis software suite developed at Pennsylvania State University [39]. Within
Minitab® 21.4, the Cohen’s kappa test was applied to statistically assess the agreement
among evaluators on arch shapes and our method at a 5% significance level. This approach
ensured that our classifications were consistent and reliable, with the standard for classifi-
cation established through a consensus method known as weighted majority voting, where
the most common classification among evaluators was adopted as the criterion. Moreover,
to evaluate the reliability of our measurements and the consistency of assessments made
by our evaluators, a Gauge Repeatability and Reproducibility (Gage R&R) analysis was
performed.

2.7. Upper and Lower Arch Analysis

The maxillary (upper) and mandibular (lower) arches were analyzed independently.
Consequently, separate algorithms were developed for the upper and lower arches in each
version of DentalArch. The efficacy of both versions was assessed by a third-year resident
from an orthodontics and maxillofacial orthopedics program.

3. Results
3.1. Repeatability and Reproducibility

The Gage R&R analysis from our study, which focused on arch widths, revealed the
following key findings: Total Gage R&R variance contributions ranged from 4.74% to 9.20%,
indicating the extent of the measurement system variability. Repeatability errors were
minimal, with percentages between 0.58% and 1.22%, suggesting consistent measurements
across repeated evaluations. Reproducibility errors, reflecting the evaluators’ variability
and their interaction with the models, were more significant, contributing 1.37% to 8.21%
to the total variance.

3.2. Evaluating Performance of Machine Learning Techniques across Dental Arches

In this study, we evaluate the efficiency of various machine learning models applied to
the analysis of dental arches, specifically DentalArch v1 and v2. A diverse set of models was
employed, the performance of each being gauged in terms of accuracy. Table 3 encapsulates
the average accuracy achieved by each model.
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Table 3. Accuracy of machine learning techniques for DentalArch.

Method Models Dv1_Low Dv2_Low Dv1_Up Dv2_Up Avr.

Decision trees

1 Fine tree 80.7 78.3 79.7 80.3 79.7

2 Medium tree 80.7 77.7 80 80.7 79.7

3 Coarse tree 81 87 79.7 82 81.1

Discriminant analysis
4 Linear discriminant 82.7 76.7 77.3 77 78.4

5 Quadratic discriminant Failure 78.7 Failure 82.3 80.5

Naive Bayes classifiers
6 Gaussian naive Bayes 72.7 65 64.7 68.3 67.6

7 Kernel naive Bayes 78.7 73 73.7 78.7 75.6

Support vector machines

8 Linear SVM 81 76 76.3 76 77.3

9 Quadratic SVM 90.3 82 87.7 85.3 86.3

10 Cubic SVM 90.7 82.7 87.3 85 86.4

11 Fine Gaussian SVM 78.7 86.3 78.3 91 83.5

12 Medium Gaussian SVM 85.3 79.3 80.7 82.3 81.9

13 Coarse Gaussian SVM 76 76 76 76 76

Nearest neighbor classifiers

14 Fine KNN 92.3 93 90.7 92.3 91.6

15 Medium KNN 79.7 77 78.3 84 79.7

16 Coarse KNN 76 76 76 76 76

17 Cosine KNN 82.3 74.7 75 83 78.3

18 Cubic KNN 79.3 77 78.3 83.7 79.5

19 Weighted KNN 88.7 88.7 84 92.7 88.5

Ensemble classifiers

20 Boosted trees 82 86.3 82 83.3 83.4

21 Bagged trees 87.7 87 84.3 87.3 86.5

22 Subspace discriminant 79.3 76 76 75.3 76.6

23 Subspace KNN 94.7 86 93 87.7 90.3

24 RUSBoost trees 76 69.3 56.3 72.7 68.5

Neural network classifiers

25 Narrow neural network 88.3 86 84 83.3 85.4

26 Medium neural network 87.3 86 84.7 86.7 86.1

27 Wide neural network 88.3 85 87.7 88.7 87.4

28 Bilayered neural network 89.7 85 83.7 88.3 86.6

29 Trilayered neural network 84 82.7 77.3 86.3 82.5
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3.2.1. Lower Jaw

We provide a comparative analysis of DentalArch v1 and v2 software in their applica-
tion for lower jaw arch prediction. Visual representations of each software in action can be
observed in Figures 3 and 4, showcasing the user interface and the graphical prediction of
the arch shape.

Figure 3. Screenshot of DentalArch v1 in action. The image illustrates how the software generates the
predicted lower jaw arch shape.

Figure 4. Screenshot of DentalArch v2 in action. Similar to v1, the software graphically presents the
predicted lower jaw arch shape. However, due to its reduced complexity, the v2 interface is more
user-friendly.

In the case of the lower jaw arch, DentalArch v1 successfully identified 48 out of
50 models. Specific values corresponding to various arch shapes—square, ovoid, and
tapered—are available in Table 4. An additional validation, using 20% data unknown to
the model, resulted in a 90% accuracy rate, within a confidence interval of (55.50–99.75).
The agreement indices for these unknown data are also presented in Table 5.
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Table 4. Concordance indices for different arch shapes and unknown data with DentalArch v1.

Response
Known Data Unknown Data

Kappa SE Kappa Z Kappa SE Kappa Z

Square 1.00000 0.141421 7.07107 0.73333 0.316228 2.31900
Ovoid 0.90099 0.140726 6.40242 1.00000 0.316228 3.16228

Tapered 0.77876 0.137917 5.64660 0.73333 0.316228 2.31900
Overall 0.90909 0.108567 8.37355 0.84000 0.228035 3.68364

Table 5. Concordance indices for different arch shapes and unknown data with DentalArch v2.

Response
Known Data Unknown Data

Kappa SE Kappa Z Kappa SE Kappa Z

Square 0.787385 0.141421 5.56765 1.00000 0.316228 3.65643
Ovoid 0.890351 0.141421 6.29573 0.733333 0.316228 2.31343

Tapered 0.846390 0.141421 5.98488 0.60784 0.316228 1.91900
Overall 0.845600 0.113195 7.47027 0.753090 0.242586 3.10422

In Table 4, we display the kappa statistic, its standard error (SE kappa), and the Z-
score for both known and unknown data across the three dental arch shapes—square,
ovoid, and tapered—as well as overall. This comparative layout enables us to evaluate the
performance of DentalArch v1 on known and unknown data concurrently.

As for DentalArch v2, it managed to correctly identify 47 out of 50 models using
known data and 9 out of 10 models with unknown data. The corresponding concordance
indices for the three arch shapes—square, ovoid, and tapered—are documented in Table 5.

3.2.2. Upper Jaw

The performance of the DentalArch v1 and v2 software for the upper jaw arch was
also evaluated. Screenshots of the software while processing an upper jaw sample are
illustrated in Figures 5 and 6. These figures showcase the user interface and graphical
representation of the predicted arch shape for the upper jaw.

Figure 5. Screenshot of DentalArch v1 analyzing an upper jaw sample. The image showcases how
the software generates the predicted upper jaw arch shape.

For the upper jaw arch, DentalArch v1 correctly identified 49 out of 50 models. The
specific values for the different arch shapes, square, ovoid, and tapered, are documented in
Table 6. An additional validation was conducted with 20% data unknown to the model,
achieving an 80% accuracy rate. The agreement indices for these unknown data are listed
in Table 6.
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Figure 6. Screenshot of DentalArch v2 processing an upper jaw sample. Analogous to v1, the
software graphically presents the predicted upper jaw arch shape. The v2 interface, with its reduced
complexity, promotes ease of use.

Table 6. Concordance indices for different arch shapes and unknown data with DentalArch v1 for the
upper jaw.

Response
Known Data Unknown Data

Kappa SE Kappa Z Kappa SE Kappa Z

Square 0.95636 0.152933 6.24605 0.78034 0.31624 2.46830
Ovoid 0.91376 0.151529 6.02548 0.88923 0.31623 2.81214

Tapered 0.87183 0.146396 5.95671 0.71198 0.31624 2.25050
Overall 0.91372 0.123631 7.39016 0.79385 0.232523 3.41529

The DentalArch v2 software correctly identified 46 out of 50 models with known data
and 7 out of 10 models with unknown data. The concordance indices for different arch
shapes, square, oval, and tapered, are detailed in Table 7.

Table 7. Concordance indices for different arch shapes and unknown data with DentalArch v2 for the
upper jaw.

Response
Known Data Unknown Data

Kappa SE Kappa Z Kappa SE Kappa Z

Square 0.75100 0.141421 5.30952 0.45600 0.316228 1.44169
Ovoid 0.85776 0.141421 6.06253 0.67770 0.316228 2.14259

Tapered 0.81195 0.141421 5.74038 0.61934 0.316228 1.95807
Overall 0.80690 0.118465 6.80569 0.58435 0.226550 2.57800

This side-by-side comparison provides a comprehensive view of the performance of
both software versions for the upper jaw arch.

3.3. Computational Tool Development

Two versions of the computational tool were developed for this study:

• DentalArch v1: 18 parameters, including 14 mesiodistal widths, 1 intercanine width,
1 intermolar width, and 2 interpremolar widths (accuracy: 94.7% lower arch, 93%
upper arch).

• DentalArch v2: A reduced version with only four parameters, including one inter-
canine width, one intermolar width, and two interpremolar widths. This version
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provides a faster prognosis but with a slightly lower precision (accuracy: 93.0% lower
arch (−1.7%), 92.7% upper arch (−0.3%)).

4. Discussion

Integrating AI-driven tools like DentalArch or similar tools into orthodontic practice
for dental arch shape classification could offer significant enhancements. These tools not
only ease the diagnostic process but also achieve precision and efficiency comparable to
expert evaluations while reducing subjectivity. This is particularly valuable given the strong
link between the dental arch shape and individual growth patterns [40,41]. By accurately
assessing the arch shape, these tools can ensure treatment plans are aligned with each
patient’s unique developmental trajectory. Building upon this, the shift towards digital
models in the field represents a paradigm shift, offering substantial savings in both time
and resources. Digital models have emerged as a clinically viable alternative, embracing
the digital transformation that encompasses computational intelligence, augmented reality,
and three-dimensional printing technologies [42].

From the tests carried out with our data, DentalArch version 1 attained a 94.7%
accuracy detecting the arch shape for the lower arch and a 93% accuracy for the upper
arch. The more streamlined version 2, which assesses only four parameters, achieved
an accuracy of 93.0% for the lower arch and 92.7% for the upper arch. These results are
in line with recent trends towards data-driven diagnostics in orthodontics, which were
addressed by McKee and Molnar [27] and Arai and Will [28]. The use of machine learning,
as explored in research by Takahashi et al. [30] and Qiu et al. [31], underscores the potential
for computational techniques to enhance diagnostic precision and reduce observer bias.

When compared to established orthodontic software solutions like Dolphin Imaging
& Management Solutions® and Nemotec®, DentalArch offers a novel, semiautomated
approach to arch shape classification. Unlike these traditional platforms, which may
require manual input for detailed analyses, DentalArch leverages AI to provide objective
classifications with minimal user intervention. Furthermore, its open-source nature stands
in contrast to the proprietary models of existing software, encouraging innovation and
allowing for broader adaptation and improvement within the orthodontic community.

DentalArch v2 relies on just four key input parameters for determining the dental
arch form. This refinement stems from recent research emphasizing the critical role of
specific arch measurements, particularly the intercanine width, in predicting dental arch
shapes. Abdul Rehman et al. (2021) highlighted the strong link between the intercanine
width and the forms of mandibular dental arches, validating the approach of using a
subset of measurements for effective orthodontic analysis [43]. Motivated by such insights,
DentalArch v2 was designed to enhance diagnostic precision by focusing on essential
measurements like the intercanine width (ICW) and intermolar width (IMW), corroborated
by research [44,45], demonstrating their significant correlation with the overall arch form.
This led to a substantial reduction in input parameters, simplifying the diagnostic workflow
without compromising the prediction accuracy of dental arch shapes.

The comprehensive evaluation of 29 machine learning methodologies for the develop-
ment of DentalArch illustrates a strategic approach to enhancing orthodontic diagnostic
tools. This analysis, which spanned from decision trees to neural network classifiers,
was not only pivotal in identifying the most effective algorithms for arch shape predic-
tion but also in maintaining the high diagnostic accuracy of DentalArch v2 despite its
simplified model.

The development of DentalArch, with an aim to apply it to orthodontic diagnostics,
successfully balanced detailed accuracy and user convenience across lower and upper
jaw analyses. While DentalArch v1’s extensive parameters slightly edged out v2, the
latter offered a compelling advantage, marking a minor compromise for significantly
improved accessibility.

The preference for utilizing the concordance index, specifically the kappa coefficient,
over sensitivity in assessing DentalArch was motivated by the complexity of the evaluation
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task, which encompassed multiple categories of arch shapes. Concordance indices, such
as the kappa coefficient, are commonly applied in studies evaluating agreement between
different classification methods or observers, particularly in scenarios with more than
two potential categories. This decision was rooted in the necessity to evaluate not only
the accuracy of classification within each specific category but also the overall agreement
between the classifications and the actual categories while considering chance agreement.
Additionally, the kappa coefficient’s ability to adjust observed concordance for chance
agreement was instrumental in providing a measure of agreement beyond random chance.
Furthermore, the work by Landis and Koch (1977) emphasizes the relevance of the kappa
coefficient in evaluating agreement between classifications of categorical data, especially in
contexts with multiple categories [46].

Despite its promising utility in identifying and classifying dental arch shapes, this
study acknowledges certain limitations, including a relatively small sample size, potential
biases in evaluator evaluations, and the absence of extensive real-world testing. Valida-
tion by a single orthodontics and maxillofacial orthopedics resident may not provide a
comprehensive evaluation.

Ongoing efforts aim to address these limitations through further testing in larger
clinical settings. This study’s implications extend to the field of dental research, em-
phasizing potential advantages in utilizing artificial intelligence for dental arch shape
classification. Rigorous validation within actual clinical contexts remains a crucial focus for
future explorations.

5. Conclusions

DentalArch provides a tool with potential use in orthodontic diagnostics, particularly
in the task of arch shape classification. The tool offers a less subjective and data-driven
approach to arch shape determination. Moreover, the open-source nature of DentalArch
ensures its global availability and encourages contributions from the orthodontic commu-
nity. However, it is essential to acknowledge this study’s limitations, including a relatively
small sample size, which may affect the generalizability of these findings.

DentalArch’s evolution from version 1 to version 2 underscores the potential to en-
hance the diagnostic precision and user experience in orthodontic practice. However, it
is important to interpret these results cautiously, recognizing that DentalArch serves as a
supportive tool rather than a definitive solution. Further validation across diverse patient
groups and clinical conditions is necessary to refine its algorithms and ensure its reliable
applicability in clinical practice.

Future research should aim to address these limitations by expanding this study’s
scope to include a wider array of scenarios, thereby enhancing the robustness and reliability
of DentalArch. Integrating the tool into a broader spectrum of orthodontic and dental care
practices might offer valuable support in treatment planning and outcomes, promoting
more personalized and efficient patient care.
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