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Abstract: Insects are good examples of ground locomotion because they can adapt their gait pattern
to propel them in any direction, over uneven terrain, in a stable manner. Nevertheless, replicating
such locomotion skills to a legged robot is not a straightforward task. Different approaches have
been proposed to synthesize the gait patterns for these robots; each approach exhibits different
restrictions, advantages, and priorities. For the purpose of this document, we have classified gait
pattern generators for multi-legged robots into three categories: precomputed, heuristic, and bio-
inspired approaches. Precomputed approaches rely on a set of precalculated motion patterns obtained
from geometric and/or kinematic models that are performed repeatedly whenever necessary and
that cannot be modified on-the-fly to adapt to the terrain changes. On the other hand, heuristic
and bio-inspired approaches offer on-line adaptability, but parameter-tuning and heading control
can be difficult. In this document, we present the K3P algorithm, a real-time kinematic gait pattern
generator conceived to command a legged robot. In contrast to other approaches, K3P enables the
robot to adapt its gait to follow an arbitrary trajectory, at an arbitrary speed, over uneven terrain. No
precomputed motions for the legs are required; instead, K3P modifies the motion of all mechanical
joints to propel the body of the robot in the desired direction, maintaining a tripod stability at all
times. In this paper, all the specific details of the aforementioned algorithm are presented, as well as
different simulation results that validate its characteristics.

Keywords: hexapod robot; kinematics; gait pattern generation

1. Introduction

Locomotion is the act of moving from place to place. To move forward, legged animals,
as do insects, use their limbs in a gait pattern. When considering each leg individually,
a cycle of the gait pattern is divided into two phases: swing and support. In the swing
phase, the limb rises from the ground and moves in the desired direction of movement; the
support phase begins when the limb lands and supports a fraction of the total weight of
the animal. During the whole cycle, static and/or dynamic equilibrium conditions must be
kept for the gait pattern to be stable.

Static stability is achieved when the projection on the ground of the robot’s center
of mass (CoM) falls inside the support polygon, defined as the convex hull of all feet in
support phase [1,2]. Dynamic stability occurs when the zero moment point (ZMP)—the
point with respect to which reaction forces at the contacts between the feet and the ground
do not produce any moment in the horizontal direction—is maintained inside the support
polygon throughout the gait. Gait patterns whose stability is determined by dynamic
conditions allow for faster displacements of the robot because the CoM projection can be
located outside of the support polygon for short periods of time [3,4]. Therefore, in order
to guarantee stable locomotion, gait synthesizing algorithms must coordinate all limbs of
the robot to make it move in the desired direction, while satisfying the static or dynamic
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equilibrium condition. In general, the stable locomotion is achieved by using precomputed
gait patterns for given trajectory and terrain conditions, or by using parametric-adjusting of
the gait by heuristic or bio-inspired approaches to cope with trajectory and terrain changes.

The algorithm we propose, called K3P for kinematic tripod, is a real-time kinematic
gait generator capable of on-the-fly computing of the limb motions of a legged robot in
order to move along an unknown arbitrary trajectory on uneven terrain, while maintaining
static equilibrium, maximizing horizontal displacement of the feet contact points, and
avoiding collisions between two consecutive limbs. In this paper, we describe some related
approaches, analyze the performance of K3P in a virtual test scenario, and use torque
estimations to measure the viability of the synthesized gait pattern.

2. Related Work

Legged robots perform different gait patterns depending on the desired horizontal
speed and stability criteria [5–8]. Figure 1a shows a simplified view of the robot limb and
the two phases of the gait. Complementarily, Figure 1b shows a complete gait cycle for
what is known as static fast gait; as it can be observed, a minimum of three limbs (a tripod)
support the robot during walking. The ratio of duration of the support phase to the total
cycle duration defines the duty factor β of a gait cycle [9], Figure 1b displays gait cycle for
a duty factor β = 0.5. Medium speed gaits (or ripple gait) allow for two legs on opposite
sides of the robot to be in the swing phase. In slow gait (or tetrapod gait), only one limb
at a time performs the swing phase while the rest support the robot; therefore, it is the
most stable of the three gaits [10]. So, the problem of synthesizing a gait pattern consists of
defining the best sequence of movements for all the robot limbs, where each limb features
from one [11,12] up to four degrees of freedom [10,13].

(a)

(b)

Figure 1. The gait cycle of an hexapod robot. (a) Side view of a leg performing a gait cycle: During the
swing phase, the end side of the limb describes a curve or a triangular trajectory. Every DoF is marked
with a circle; thus, the limb displayed above has 3 DoF. (b) Fast gait diagram: The beginning and end
of the lines, marked with a circle, correspond to the landing and lifting of every limb, respectively.
Every limb is marked as a combination of (T)op, (B)ottom, (M)iddle, (L)eft, and (R)ight, according
to its position. When the surface is flat and every trajectory for the legs is precomputed, this gait
sequence is sufficient [10].

For the purpose of this work, we have classified the related works according to the
use of precomputed, heuristic, or bio-inspired approaches to generate the gait.
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2.1. Precomputed Approaches

In these approaches, closed mathematical models (geometric and/or kinematic) are
used to compute, in advance and for each limb, a sequential set of joint configurations
that, when performed, will propel the robot body forward during the support phase, while
during the swing phase, the limb tip describes a given parametric trajectory to the next
support point, using most commonly sine, Bezier, and triangular trajectories [6,14–17].
During locomotion, these trajectories are repeated in a logical sequence; in some cases, the
trajectory during the swing phase can be adapted to increase or decrease the horizontal
travel distance and/or clearance of the gait (see Figure 1b). Furthermore, depending on the
chosen mathematical model, actions such as jumping, main body orientation and clearance
control may be considered [7]. Another option to a mathematical model are Probabilistic
Graphical Models (PGMs) that can be trained and sampled to infer a walking gait [18].

A different paradigm consists of a footstep planning before the actual locomotion.
For example, the robot ATHLETE, designed at the Jet Propulsion Laboratory (Pasadena,
CA, USA), computes in advance the most useful support points across the terrain before
performing any movement [19]. This planning implies that the robot must be able to accu-
rately build a model of its surroundings, using exteroceptive sensors such as rangefinders,
increasing the complexity and the total computational cost required for the robot’s loco-
motion. In contrast, other approaches embrace the uncertainty of the terrain, not focusing
on planning the position of all support points beforehand, and instead propelling low-
dexterity hexapods with a fixed gait and focusing their efforts on correct state estimation
under high-uncertainty circumstances [12].

These approaches allow us to obtain a precise estimation of energy consumption
during the locomotion through, for example, a two-layer hierarchical cooperative control
scheme [20]. A top-level controller determines the forces and torques that every limb
should exert on the body of the robot, so that the robot can follow a given trajectory, while
low-level controllers independently command every leg of the robot to exert such forces.
Because energy consumption may vary depending on the type of surface the robot is
walking on, the travel speed can be adapted by performing slow, medium, or fast gaits,
depending on the energy consumed by the actuators driving every limb [15]. Another
approach to hierarchical control is to use a top-level exteroceptive methodology to observe
and evaluate the terrain and command a low-level routine to switch among precomputed
gait patterns, with the objective of maximizing the stability of the robot when traversing
uneven terrain [21].

2.2. Heuristic Methods

The major drawback of purely mathematical models is the complexity of the model
itself; therefore, roboticists turned to heuristics to generate a gait pattern while still using
the precomputed trajectories from an external optimization process under energetic criteria
or faulty conditions.

In order to use a simpler model during the gait generation, heuristic approaches
enclose a biological notion of locomotion learned from analyzing the movement of animals,
expressed as simple rules for the movement of legged robots. Heuristics such as genetic
algorithms (GA) can help to generate the walk pattern for a virtual legged robot [22,23],
where the main criterion for fitness calculation is the stability of the robot while walking
in a straight line over a flat surface, within preset borders and stability [2]. The energy
efficiency, traveled distance, and deviation of trajectory from the straight line are used as
feedback information for the GA [24]. The final result is a set of static gait patterns for the
robot, learned without an explicit mathematical model, from which the robot can choose
during locomotion.

Also, Finite State Automata (FSA) can be used to generate walking patterns [25] as
well as flow charts [6], as these models can encode a sequence of movements for every limb
used during locomotion maneuvers. By definition, these approaches are also static, and
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adaptability to faulty conditions comes at the cost of increasing the complexity of the FSA
or the flow chart.

These approaches can also emulate reflexive motions using a reactive control scheme,
allowing a legged robot to react to the irregularities of the terrain it is walking on. These re-
flexes are triggered when a limb or foot collides unexpectedly with the terrain or an obstacle.
The collision detection can be performed with a set of touch sensors [14] or by measuring
the electric current, forces, and torques consumed by the actuators on every joint [10].

Heuristics allow for blind-walking, i.e., the robot is able to walk through irregular terrain
based only on proprioceptive information [26]. Neural networks can be implemented in
hardware with miniaturization and energy efficiency as the main objective [27]. The Virtual
Model Control [27] is one of the most relevant heuristics in order to obtain a model from
experimental data, simulating the same dynamic behavior of complex mechanical systems
using much simpler components such as springs, dampers, masses, etc. The resulting
model is less complex but accurate enough to compute the forces acting on the robot
body [28,29].

2.3. Bio-Inspired Methods

Most bio-inspired approaches for synthetic gait generation are based on central pat-
tern generators (CPGs). CPGs are oscillators that can generate rhythmic patterns from
non-rhythmic signals or no inputs at all. When applied to legged locomotion [23,30–32],
the rhythmic output of CPGs corresponds to the gait pattern, in response to inputs as a
gait velocity command and the proprioceptive sensor information from the limbs of the
robot; this means that sensory information plays an important role in CPG-based gait
generation [33]. The biggest difficulty with regard to CPGs is determining the correct range
of values for the input as well as tuning the internal oscillator parameters, so that the output
corresponds to the desired movement of the limbs and the transition between different
gaits is smoothly performed [34]. Tuning such parameters is usually performed by trial
and error, and some authors have even turned to GAs to tune CPGs [35]. Furthermore, in a
decentralized scenario, where there are as much CPGs as limbs, an additional higher-level
control is required [36]. In recent works, CPGs can generate a dynamic walking pattern,
based on the turning radius of the desired trajectory and switch from tripod, ripple, and
tetrapod gaits [37].

2.4. Main Features of K3P Algorithm

The K3P algorithm, the approach we propose for generating the walking gait for
legged robots, is based on a centralized kinematic planner. This algorithm performs a
steadily fast gait cycle while also being able to drive the robot at an arbitrary speed by
dynamically adjusting the duty factor β. Also, K3P blurs the differentiation between
slow, medium, and fast walks under static stability conditions. Basically, K3P moves the
robot’s limbs in tripod configurations, keeping a support tripod while swinging the second
tripod to a new location, according to the actual desired speed and trajectory of the robot’s
center of mass.

The main differences between K3P and other approaches are as follows:

1. K3P is self-contained and makes it possible for a legged robot to walk at an arbitrary
speed along an arbitrary trajectory over uneven terrain, within the physical limitations
of the robot.

2. K3P does not require any precomputed limb trajectories for straight or turning maneu-
vers; instead, it computes the limb trajectories in real-time, to make the robot move
straight ahead or in a sharp or wide curve, according to the terrain level.

3. Since K3P moves the robot’s center of mass from a supporting tripod to the next one,
K3P guarantees static equilibrium during the march while controlling the clearance of
the robot to ground level.

4. The kinematic planner behind K3P also guarantees slip-free locomotion and collision
avoidance among limbs.
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Despite the mathematical complexity behind K3P, its use is fairly simple: it requires
as input the physical dimensions of the robot and some PD controller gains. We must
highlight that none of the limb displacements is computed beforehand, as in most of the
mathematical or heuristic approaches; instead, K3P can change robot displacement at any
moment. K3P takes into account the actual position and velocity of the center of mass of the
robot, as well as its target trajectory, in order to compute the best position for landing the
swinging legs to place the next supporting tripod. Furthermore, K3P verifies the stability
of the gait by measuring how close the projection of the center of mass is to the support
polygon’s edges.

In comparison to precomputed approaches, K3P exhibits flexibility by allowing the
dynamic adjustment of the gait pattern during execution in accordance with the specified
trajectory. For example, it enables modifications to the body clearance over varied terrain.
Moreover, while precomputed methods enforce minimal fixed curvature for the robot’s
trajectories, K3P overcomes this constraint by adapting the gait pattern to ensure that the
instantaneous turning radius of the robot matches the specified trajectory. Unlike many
heuristic methods that demonstrate comparable performance, K3P distinguishes itself
through its ease of tuning, facilitated by the concrete nature of all its parameters.

3. Robot Description and Nomenclature

In this section, we will describe the radial hexapod robot on which the K3P algorithm
was tested, as well as the nomenclature used (see Table 1). Figure 2a shows the structure
of the robot, the main body is circular and the six limbs are evenly distributed along its
perimeter; with the center of mass (CoM) at the origin of the B reference frame [14,19,29].
Each limb has three DoF as shown in Figure 2b. By convention, all Z axes are coaxial
with the rotation’s axis of each joint. With respect to B, the mounting point for the i-th
limb is denoted by the Mi reference frame. The first joint provides the protraction and
retraction movements, marked by the variable θs in the S reference frame. The L reference
frame is located in the second DoF, denoted as θL; it provides the depression and elevation
movements. The third DoF is marked as θk in the K reference frame, providing flexion and
extension movements. The length of every link are lc, l f , and lt for the coxa, femur, and
tibia, respectively. The supporting point SP is at the point where the limb makes contact
with the ground, supporting the body of the robot.

Table 1. Nomenclature.

Parameter Description

Physical parameters of a limb

θs, θl , θk The three DoF of a limb.
lc, l f , lt Length of the coxa, femur, and tibia, respectively.

Physical parameters of the gait

lh Body clearance.
lmax Maximum length of the gait.

lg Limb clearance.

Gait state variables

η Swing tripod is landing, moving, or taking off ∈ {−1, 0, 1}.
κ Parity ∈ {−1, 1}.
P Support positions for the even and odd limbs.
ρ Instantaneous turning radius.
Z Touch sensor located at SP.
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Table 1. Cont.

Parameter Description

K3P input variables

vc Velocity command vector.
BXk The k-th current position of the legged robot.
Kp The proportional gains for the PD controller.
Kd The derivative gains for the PD controller.

Thresholds and work ranges

lρ Turning radius threshold.
φL Angle threshold for two consecutive limbs.
θl Range of movement for the swing joint.
θk Range of movement for the knee joint.

(a)

(b)

Figure 2. The mechanical description of the radial hexapod tested with K3P. (a) The radial hexapod
as tested with the K3P algorithm. (b) A detailed mechanical description for one of the legs of the
radial hexapod.

The six limbs are divided into two subsets, three non-contiguous limbs form the odd
legs subset, while the rest are grouped in the even legs subset (see Figure 2a). Each subset
defines a tripod support structure with its own reference frame, E and O, for the even and
odd subsets, respectively. The subset supporting the robot defines the parity of the gait κ; if
κ = 1, even limbs support the robot.
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To deal with spatial relationships between two reference frames, say frame b with
respect to frame a, we used rigid body transformations in homogeneous coordinates
denoted as

b
aA =

[b
aR bta
0 1

]
where b

aR ∈ SO(3) denotes the rotation matrix of frame b with respect to a and bta is the
position vector of origin of b, also with respect to a.

From the mounting point of the i-th limb, marked as Mi in Figure 2b, the links and
joints of each limb form a kinematic chain. The corresponding Denavit–Hartenberg (DH)
parameters [38] are summarized in Table 2. Since all limbs are equal, these parameters are
valid for all limbs of the radial hexapod. These parameters allow us to compute the rigid
body transformation between link n with respect to n− 1, n

n−1A. Finally, the rigid body
transformation from frame N with respect to the base link (n = 0) is given by

N
0A =

N

∏
n=1

n
n−1A

Therefore, with these relations, we can compute from the six sets of joint parameters
θs, θL, θk, the position of all six leg tips SPi with respect to B. Also, the inverse kinematic
model can be solved for each leg, so the joint parameters can be obtained from the position
of each point SPi. Moreover, thanks to these physical dimensions and parameters, we can
predict the maximum extension of the gait lmax, given a desired body clearance lh and limb
lg clearance over the floor.

Table 2. Denavit–Hartenberg parameters for every leg.

Kinematic Chain

n D-H Parameter Description
d θ a α

0 0 0 0 0 The mounting point for the leg Mi.

1 0 θs 0 0 The swing DoF.

2 d2 0 lc π
2 The length of the coxa

3 d4 θl − π
2 l f 0 The lift DoF

4 d5 −θk lt 0 The knee DoF, tip of leg (OSP)

4. The K3P Algorithm

In this section, the K3P algorithm will be described (see Algorithm 1), beginning with
the description, the objectives of the algorithm, and finally, a global overview. Subsections
A to H will discuss the details of every phase of the algorithm.

The main objective of the K3P algorithm is to drive the CoM along an arbitrary
trajectory at an arbitrary speed vc, while the two subsets of limbs perform a cyclic gait
pattern, swing–support, to follow the movement of the robot’s CoM and to maintain the
static stability criteria. The real-time operation of the K3P algorithm is obtained by an
update rate ∆t at which the position of every limb is computed and updated. At the
initial state, the two subsets of legs are landed and supporting the body of the robot. The
movement begins with the odd subset starting the swing phase, while the even subset
remains in the support phase of the gait cycle and propels the CoM B along the desired
trajectory by updating the even tripod configuration according to the given velocity vc.
Concurrently, K3P also drives the tripod on the swing phase forward ahead in the direction
encoded by vc.
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Algorithm 1 K3P

Require: ṙd, BXk, lh, lmax, lg, Kp, Kd, lρ, lφ, θl , θk
1: if κ = 1 then zk ← mean([EBA Pe]z)

2: m
BAk ← O

BA, f
BAk ← E

BA
3: else zk ← mean([OBA Po]z)

4: m
BAk ← E

BA, f
BAk ← O

BA

5: if η = 0 then

6: DXk ← BXk + [ṙ∆t, lh − zk, 0, 0, ψ̇∆t, vx, vy,
lh − zk

∆t
, 0, 0, ψ̇]T

7: else DXk ← BXk

8: ek =
DXW,k − BXW,k

9: u← Kpek + Kd
∂ek
∂t

, BXk+1 = BXk + u∆t

10: B
WAk ← Υ(BXk), B

WAk+1 ← Υ(BXk+1),
mXB,k ← Υ−1(m

BAk)

11:
f
BAk+1 ←

B
WA−1

k+1{ B
WA f

BA}k

12: ρ← ∥ ṙ ∥
[q̇]ψ

, θr ←
lmax

2 ρ

13: LXB,k ←


[

1
2 lmax, 0, lg, 01×9

]T
if |ρ| ≥ lρ[

1
2 lmax cos θr, sign(θr)

1
2 lmax sin θr, lg, 01×9

]T

14: eL,k ← LXB,k − mXB,k

15: uL ← KpeL,k + Kd
∂eL,k

∂t
16: mXB,k+1 ← mXB,k + uL∆t
17: ∆z ← [mXB,k+1]z − [mXB,k]z
18: if η = −1 ∧ any(Zi) then [pi]z ← [pi]z + ∆z
19: else if η = −1 ∧ all(Zi) then κ ← (−1)κ, η ← 1
20: else if η = 1 then highest

(
[pm]z

)
← highest

(
[pm]z

)
− ∆z

21: else if η = 1 ∧ none(Zi) then η ← 0
22: if κ = 1 then O

BAk+1 ← Υ(mXB,k+1), E
BAk+1 ← f

BA

23: else E
BAk+1 ← Υ(mXB,k+1), O

BAk+1 ← f
BA,

24: Θs, Θl , Θk ← Inverse kinematics
(

O
BAk+1, E

BAk+1, P
)

25: m
f A← m

BA f
BA−1, lgait ←∥ mr f ∥

26: ri =
O
BA p{1,3,5}, ri =

E
BA p{2,4,6} φi = arccos(ri • ri−1) ∀ i ∈ [1, 6]

27: if lgait ≥ lmax ∨ any(φi ≤ lφ)∨ any(ΘL /∈ θL)∨ any(ΘK /∈ θK) then
28: η ← −1
29: Execute

(
Θs, Θl , Θk

)
The act of landing the swing tripod to receive the robot’s weight and to allow the

other tripod to take off is called a phase shift of the gait cycle. These phase shifts must
be performed in such a way that the projection of the CoM on the ground remains at
the interior of the supporting polygon at all times, and the total number of phase shifts
along the trajectory is kept at minimum, so the step length is maximum. To decide a
phase shift of the gait cycle, the algorithm K3P makes use of three different criteria, named
K3P1, K3P2, and K3P3, in order to minimize the number of phase shifts during walking
while guaranteeing a static stable gait. These criteria are described in subsection F.

The KP3 algorithm uses different frames to describe the configuration of the hexapod
robot and to compute the gait: the main reference frame B attached to the robot’s body and
CoM, a frame E to describe the tripod formed by the even subset of limbs, and a frame O
to describe the odd subset. While in the support phase, any of the two subsets defines a
tripod-supporting structure, standing on the ground, so the support polygon corresponds
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to a triangle at ground level. All support points SPi are described with respect to either E
or O reference frames, depending on whether they belong to the even or odd subset (see
Figure 2a). As will be shown later, the actual configuration of the robot can be computed
from these frames at any time.

In the following subsections, we will introduce some key aspects that give shape to
K3P, starting by describing how the CoM is propelled forward along the desired trajectory,
given an arbitrary speed command vc. We will also cover how K3P seamlessly distinguishes
the forward and turn maneuvers and how K3P performs the phase shift of the gait cycle
using the three aforementioned criteria.

4.1. Gait Cycle

From the odd and even subsets of limbs, the supporting tripod of the gait cycle is
determined by the parity κ of the gait cycle. If κ = 1, the even subset is fixed to the ground,
supporting the body of the robot, while the odd subset is moving over ground level, further
ahead of the CoM, in a swing motion; the opposite occurs for κ ̸= 1. For each case, the
rigid body transformations at time instant k of the swing m

BA and supporting legs f
BA can

be obtained using the position of frames E and O, both with respect to B, using the inverse
kinematic models of the limbs (lines 1 and 3 of Algorithm 1).

4.2. Propelling Forward the Body of the Robot

The position and orientation of the robot’s body frame B, as well as their corresponding
derivatives, with respect to the world reference frame W, describe the desired trajectory of
the robot. This target trajectory can be expressed by the state vector:

BXW,k = [r, q, ṙ, q̇]T

where r = (x, y, z)T corresponds to the three-dimensional coordinates of B, while vector
q = (θ, ϕ, ψ)T contains the three Euler angles that define the orientation of the robot’s body,
both with respect to the world frame W.

K3P works at a fixed rate, so after every time step ∆t, the desired position DXW,k for
the CoM of the robot is determined by the commanded velocity vector ṙd = (ṙ, q̇)T and
the current position of the robot (see line 7 of Algorithm 1). This is only carried out if the
robot is moving η = 0, otherwise DXW,k remains the same. The [ṙ]z component is updated
to manage any elevation changes of the terrain. To determine [ṙ]z with respect to B, the
difference between the average height of the leg tips SP of the supporting tripod (see lines 1
and 3 of Algorithm 1), and the commanded clearance height is divided by ∆t.

The spatial difference between BXW,k and DXW,k defines an error metric (line 10 of
Algorithm 1), which is fed to a PD controller; the result is a control command u to propel
B in the direction encoded in vc (line 11 of Algorithm 1). Diagonal matrices Kp and Kd
contain the proportional and derivative gains.

4.3. Tripod in Support Phase

Given the desired position of the center of mass BXk+1 (line 11 of Algorithm 1) and
the current tripod supporting the robot B

f Ak (lines 1 and 3 of Algorithm 1), K3P defines the
new configuration for the support tripod (line 13 of Algorithm 1) constrained by

W
f Ak =

W
f Ak+1. (1)

Such a constrain implies that all limbs corresponding to the support tripod remain
fixed to the ground with respect to W. In consequence, the gait generated is slip-free and
none of the limbs loses contact with the ground. We can solve for B

f Ak+1:
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{W
BA B

f A}k = {W
BA B

f A}k+1

B
f Ak+1 = W

BA−1
k+1{W

BA B
f A}k

where W
BAk and W

BAk+1 are determined by the present and desired poses of B. From these
matrices, the inverse kinematic model for the supporting legs can be solved.

4.4. Tripod in Swing Phase

As described earlier, K3P defines dynamically the desired position for the CoM; thus,
K3P also defines dynamically the desired position for the tripod during the swing phase.
The target position L for the swing tripod is defined with respect to B based on three
different parameters: the maximum gait distance lmax (see Figure 3a); the instantaneous
turning radius of the hexapod ρ; and the swing tripod clearance lg.

(a)

(b)

(c)

Figure 3. The position in the XYW plane and the orientation ψ of the robot, while traversing the lem-
niscate on uneven terrain. (a) The theoretical maximum gait for the radial hexapod. (b) The dexterous
work envelope of two opposite limbs (represented with dotted lines). (c) The shaded area represents
the best trade-off between clearance and longest horizontal travel.

The first parameter lmax is determined by the dexterous work envelope of two opposite
limbs. Figure 3b displays such a dexterous work envelope when θk ∈ [0,−3π/4] and
θL ∈ [−π/4, π/2]. The envelope defines the horizontal travel distance that a limb can perform.
In order to keep phase shifts at minimum, a good compromise between body clearance lh
and the maximum gait distance lmax has to be found. In Figure 3c, we plot the maximum
limb extension vs. the clearance; the shaded area represents the range of walk heights for
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which the K3P algorithm can guarantee a horizontal travel distance of 70% of maximum
limb extension. Therefore, K3P considers lmax to be equal to the 70% of the theoretical
maximum extension of the legged robot (see Figure 3a), with a walking height within the
shaded range in Figure 3c.

The second parameter that determines the location of frame L is based on the in-
stantaneous turning radius ρ of the CoM B. Such a turning radius is given by the ratio
between the current velocity ṙ =∥ ẋ, ẏ, ż ∥ and the angular velocity around the ZB axis
[q̇]ψ (line 12 of Algorithm 1). If ρ is above a given threshold lρ, then L is located straight
ahead 1

2 lmax meters from B in the direction of ṙ (see Figure 4a); otherwise, it is located over
the instantaneous circular trajectory such that the arc length from B to L is equal to 1

2 lmax
(see Figure 4b). Determining the most suitable position for L based on the magnitude of
the instantaneous turning radius ρ is how the algorithm differentiates from straight and
turning maneuvers.

(a)

(b)

Figure 4. The two situations that may occur when driving the subset of legs during the swing phase
of the gait. (a) Gait forward, ρ ≥ lρ, reference frame E moves towards L, which is located straight
ahead from B, along the x axis, dmax meters. (b) Turning gait, ρ < lρ. Reference frame L is located
dmax meters ahead over the momentaneous trajectory around the turning point C.

The third and last parameter lg represents how high the tripod will be raised during
the swing phase. This parameter is expressed as a percentage of clearance lh and it can be
changed dynamically, depending of the roughness of the terrain.

The desired position for the tripod in the swing phase is computed in line 13 of
Algorithm 1. Similar to Section 4.2, an error metric eL,k is fed to a PD controller to generate a
control command uL over the subset legs in the swing phase, lines 14 and 15 of Algorithm 1,
respectively. Then, the position of the tripod performing the swing phase at time instant
k + 1 can be computed (line 16 of Algorithm 1).

4.5. Joint Reconfiguration

In lines 9 and 16 of Algorithm 1, the new positions of the body body frame B and both
tripods O and E are obtained, using PD controllers on their target positions.
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After the corresponding location for the tripods in the support and swing phases have
been updated to follow the movement of the CoM B, their corresponding state vectors
BXW,k+1, OXB,k+1 and EXB,k+1 define the spatial relationships between reference frames W,
B, O, and E. From here, it is possible to obtain the positions of each leg tip SPi with respect
to the robot’s body and, using the inverse kinematics of the 3 DoF RRR limb (line 24 of
Algorithm 1), we can compute the values for all articular joints [θs, θl , θk]1,2,...,6 [6].

At this moment, K3P tests the stability of the arrangement at time instant k + 1 by
measuring the Euclidean distance from the projection of B on the support polygon to all
edges; in case the minimum distance falls below a predefined threshold lthd, K3P will
command the robot to come to a halt. This rarely occurs because the phase shift tests
K3P1,2,3, which will be introduced in the following section, were designed to guarantee a
stable gait.

4.6. Phase Shift

While the robot is walking, a phase shift occurs when the two tripods toggle the phase
of the gait they are in. The tripod in the support phase takes off to begin the swing phase
and the swing tripod lands to start supporting the main body of the robot. In order to
maintain the robot in static equilibrium throughout the walking cycle, the K3P algorithm
determines when to shift phases based on three different criteria, named K3P1, K3P2, and
K3P3. In particular, K3P1 and K3P2 ensure a collision-free gait pattern.

The first condition K3P1 ensures that every step is as long as mechanically possible for
the robot, before the CoM approaches the border of the support polygon too closely, and
the gait becomes unstable. For the tripod in the swing phase, K3P1 measures the horizontal
traveled distance from the starting point to the current position of its origin, if the traveled
distance reaches the maximum travel distance lmax (see Figure 5a), K3P1 will trigger a phase
shift (line 25 of Algorithm 1).

The second condition K3P2 avoids collisions between two consecutive limbs during a
turning maneuver (line 26 of Algorithm 1). K3P2 works by measuring the angle φ, formed
by the projections on the XYB plane of two consecutive position vectors SP,itB. If φ is smaller
than a certain threshold, this criterion triggers a phase shift (see Figure 5b).

Together, the criteria K3P1 and K3P2 reduce the number of phase shifts when the robot
is walking, allowing it to make big steps while advancing and/or turning; additionally,
these criteria are enough to control the robot in open-loop blind-walking if all position
controllers driving each joint are accurate enough. That said, K3P incorporates the inherent
position information of all limbs as a third criterion, named K3P3, to make sure they are
working properly. K3P3 tests the stability of the inverse kinematics solution; so all joint
angles of every limb [θs, θl , θk]1,2,...,6 remain within a certain range of operation, avoiding
the proximity to the mechanical limits and singularities that otherwise could lead to an
unstable walking pattern.

If any of these criteria are met, then the algorithm K3P commands a shift phase of the
gait cycle (line 27 of Algorithm 1). The CoM stops its motion to wait for the subset of legs
in the swing cycle to land on the ground and begin the stand phase; while the opposite
occurs for the subset of legs in stand phase.
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(a)

(b)

Figure 5. First two criteria that trigger a phase shift. (a) K3P1. The linear distance between centroids
at start and end positions is limited to lmax meters. (b) K3P2. As the even legs turn counter-clockwise,
the angle φ cannot be smaller than φm.

4.7. Uneven Terrain

When a phase shift has been triggered, the tripod in the swing phase has to land. If
the surface is uneven, the limbs have to adapt to the elevation changes of the surface. In
contrast to the tripod control strategy, where the three legs are commanded simultaneously,
during landing, each limb is controlled individually and the three landing events are
treated separately. By utilizing interoceptive information, the position of each leg is always
known. K3P considers that the swing phase has ended only when all three limbs of the
swinging tripod have touched the surface, and therefore, it can begin the support phase of
the gait cycle (line 19 of Algorithm 1). To adapt to changes in elevation, K3P must receive
information when every SP has touched the surface and updates their height with respect
to its corresponding reference frame (E or O). The update process is carried out according
to the displacement ∆z performed by the tripod in swing phase while landing (lines 18 and
20 of Algorithm 1). The displacement update ∆z for the i-th limb (line 17 of Algorithm 1)
is expressed as the difference of the z components of two consecutive state vectors of the
moving tripod.

The swing phase ends when all limbs have landed, and at this moment, their posi-
tions with respect to B have been adapted to the elevation of the terrain below the robot.
In order to perceive ground contact, we consider using inexpensive ToF distance sensors
(for example, VL53L0X by ST semiconductor). Eventually, when a tripod restarts its swing
phase, the limbs take off, starting from the lowest limb (line 20 of Algorithm 1). The update
process ∆z is applied only to those limbs at the same elevation with respect to B, making
the limbs separate from the ground in the opposite order on which they landed and move
at unison once all the limbs of the tripod have taken off.
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Using this approach, the K3P algorithm does not require prior information about the
terrain texture. In the Results section, simulations obtained with predefined values of lh
and lg are shown. However, it is possible to adapt these parameters during execution
based on information obtained, for example, from visual data regarding terrain conditions,
allowing a higher-level trajectory planning module to modify these parameters.

However, it is important to highlight the limitations of the algorithm: the gait pat-
tern generator will fail when encountering obstacles of significant height, such as large
debris or stairs. Additionally, the terrain must be rigid; hence, viscous terrains cannot be
considered either.

4.8. Torque Estimation

To test the mechanical viability of the K3P algorithm driving the hexapod robot, we
estimated the torques exerted on the knee K, swing S, and lift L joints, as they represent
the electric actuators which exert a torque to drive every limb in the commanded direction.
Considering that every limb consists of one or more concentrated masses mj, the way to
estimate the torque τττS,i for the any given joint, say ϑ, is

τττϑ,i =
J

∑
j=1

CoG,jtϑ ×mjg (2)

where g is the gravity vector with respect to W, mj is the mass for the j-th link, and CoG,jtϑ

is the position vector for the CoM of the j-th link with respect to reference frame ϑ. Table 3
lists the three joints of interest along the CoM coordinates for every concentrated mass
mj that exerts a torque on the j-th joint. Using Equation (2), the torques on the knee,
swing, and lift joints were estimated, and the results will be shown when we describe the
simulation process.

Table 3. Parameters for torque estimation with respect to listed reference frames.

Torque Variables

J Reference Frame Link CoG

1 K, Knee Tibia [1/2lt, 0, 0]T

2 L, Lift Femur [1/2l f , 0, 0]T

3 S, Swing Coxa [1/2lc, 0, 0]T

5. Test Results

In this section, we show the test results of the K3P algorithm when commanding an
hexapod robot with a radial base of 0.65 m in a virtual uneven terrain. The numerical values
for all physical dimension and parameters are listen in Table 4. The results shown in this
section were obtained from computations on Matlab in order to simulate the kinematics of
the robot.

During the simulation, the speed commands vc for the robot were generated so that
it describes a lemniscate trajectory. We chose the lemniscate trajectory because it defines
two turns in opposite directions and two almost straight segments for the robot to travel.
The parametric equations of the lemniscate rd(s) is shown in Equation (3):

rd(s) =


xd(s)

yd(s)

zd(s)

ψd(s)

 =


a sin( s

ϵ )

b sin( 2s
ϵ )

c sin( 3s
ϵ )

arctan 2(ẏd, ẋd)

 (3)
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Table 4. Simulation parameters.

Hexapod

θl [−2π/9, 2π/9] θk [−π/4, π/4]
lmax 0.165 m φL 15◦

lc 0.06 m l f 0.16 m
lt 0.16 m vB 0.15 m/s

BXW,0 = [0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

Controller gains

Kp = diag(2, 2, 2.5, 0, 0, 0.9, 0, 0, 0, 0, 0, 0)
Kd = diag(0.05, 0.05, 0.1, 0, 0, 0.05, 0, 0, 0, 0, 0, 0)

Lemniscate parameters

a 1.75 b 1.15
c 0.0 ϵ 30

For this numerical example, the robot is commanded to follow a lemniscate covering
a rectangular region of 3.5 m long and 2.3 m wide; the values for all parameters of the
lemniscate equations are listed in Table 4. For a given speed value vB and time step
∆t, we iteratively computed the increment for the parameter ∆s that yields an equal
incremental displacement ∆rd = vB∆t. This incremental displacement is then used as the
input command for the K3P algorithm vc (Section 4.2) as

vc =


vx
vy
vz
ψ̇

 =


ẋd(s + ∆s )
ẏd(s + ∆s )
żd(s + ∆s )

arctan 2(ẏd + ∆s, ẋd + ∆s )


Figure 6a shows how K3P drove the hexapod around the lemniscate trajectory over

uneven terrain, as well as the trail of all limbs; the initial state of the robot was

BXW,0 = [0, 0, 0.16, 01×9]
T

Figure 6b shows the trajectory described by the CoM of the robot, overlapping the
desired trajectories in the XYW plane. Figure 6c shows the transient response at the
beginning of the trajectory when the hexapod aligns itself with the lemniscate trajectory
from its initial state; the shaded areas represent the moments at which the even subsets of
legs are at the swing phase of the gait cycle. The reader can verify that after every phase
shift is triggered, the desired angle of orientation ψd(t) equals ψ(t); this causes the robot
to stop spinning while the swinging tripod lands. Figure 6d displays how K3P adapts to
the elevation of the terrain zd(t) as measured from right below B. K3P tries to maintain
a constant walking height z(t) with respect to the surface elevation ≈0.16 m (Section 4.7).
Figure 7 shows several footprints of the hexapod right after a phase shift occurs, and
both subsets of legs are touching the ground. The corresponding locations of B1,2,...,15 are
shown to display that the gait is stable because B is within the support polygon of the
vehicle. Furthermore, Figure 7 shows where the turning radius is smaller than the threshold
ρm = 0.8 m used in the simulation to better determine the desired location L for the swing
tripod, as discussed in Section 4.4.
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Figure 6. K3P driving the hexapod robot over uneven terrain, describing the lemniscate trajectory.
(a) Walk gait around the lemniscate over uneven terrain (lighter colors indicate higher elevations of
the terrain). (b) Desired (xd(t) and yd(t)) and actual (x(t) and y(t)) trajectories. (c) The transient ψ

response. (d) Walking height z(t) vs. terrain elevation zd(t).

Figure 7. The stability of the walking gait. Consecutive orange dots over the trajectory represent the
location of B where ρ < 0.8 m.

Figure 8a represents the first 40 s of simulation when the hexapod traverses the
lemniscate trajectory; the shaded areas show when the even tripod is in the swing phase,
while the white areas show where the odd tripod is performing the swing phase of the gait
cycle. At every change in shading, the graph shows the criterion triggering the phase shift
at the specific moment in time it occurred: number 1 for K3P1, number 2 for K3P2, and
3 for K3P3. At the beginning of the simulation, when the hexapod robot aligns with the
lemniscate, K3P2 triggers the phase shift because the legs were getting too close to each
other during the turning maneuver; this corresponds to the transient response in the ψ
angle as displayed in Figure 6c. Then, K3P1 triggers the phase shift because the traveled
distance of the swinging tripod is longer than lmax. The dotted lines correspond to the
thresholds 1

2 lmax and φm, for the maximum gait distance and minimum angle between two
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consecutive legs, respectively. Moreover, to display that K3P is capable of commanding
the robot to move at an arbitrary velocity through an arbitrary trajectory, the graph in
Figure 8a displays a change in velocity, commanded right after the fourth phase shift at
t ≈ 22 s. The velocity is doubled from v = 0.02 m/s to v = 0.04 m/s; the change in velocity
can be observed from the duration of the swing phase, where they become narrower after
t ≈ 22 s because it takes less time for the robot to cover the maximum traveled distance lmax.
Note, however, that the change in speed can be commanded at any given time, changing
immediately the duty factor β.
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Figure 8. The phase shifts and torques generated when the hexapod robot traverses the lemniscate.
Only the first 40 s of simulation are shown. (a) The phase shifts triggered during the first 40 s of the
simulation. The commanded speed starts at v = 0.02 m/s; after the fourth phase shift (t ≈ 22 s),
it was changed to v = 0.04 m/s. (b) For the odd tripod, the torques exerted on the L and K joints
around the z axis.

After running the simulation, we estimated the torques exerted on every joint of the
robot. We modeled the robot as a set of discrete masses, listed in Table 5, whereby the
overall mass of the robot is approximately 1.6 kg. Figure 8b shows the resulting torques on
the knee and lift joints for the odd subset of limbs during the same period of time and phase
shifts as previously discussed for Figure 8a. Torques for the even subset of limbs are in the
same order of magnitude, since the robot is symmetrical. Because the axis of rotation of the
knee and lift joints are coaxial with the two axes [K]z and [L]z, in Figure 8b, we only show
[τττL,i]z and [τττK,i]z. We omitted the torque exerted on the swing joint, because [τττS,i]z ≈ 0. As
it can be observed, the maximum torques exerted on the lift and knee joints occur when the
even tripod is in the support phase of the gait cycle; furthermore, the maximum absolute
values were 1.36 Nm and 0.60 Nm for the [τττL,i]z and [τττK,i]z axes, respectively, which are
manageable for commercially available servo motors.
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Table 5. Discrete masses that form the robot.

Mass Distribution of the Robot

Qty. Link Unit Mass [gr] Subtotal

1 Main body 640 640
6 Coxa 80 480
6 Femur 53 318
6 Tibia 26 156

Total weight 1594

As mentioned in Section 4.4, the K3P algorithm can command the swing tripod to
increase or decrease the maximum clearance of the robot. Figure 9 displays two different
values of clearance when the robot travels in a straight line uphill: the first (see Figure 9a)
with a clearance equal to 50% of lh and the second with a clearance of 90%. The latter
causes the support point SP to travel almost as high as the CoM B. If required, the walk
clearance can be updated at any moment to better adapt to the terrain’s changes in elevation.
Section 4.4 also shows the profile of every gait cycle that the K3P algorithm describes. Right
after a phase shift is triggered, the limbs are taken to land to begin the support phase of the
gait cycle.
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Figure 9. The trajectories of SP1 when K3P drives the hexapod uphill (black solid line) at two different
settings for the maximum height. The hexapod robot moves from left to right, the trajectory of B is
also shown. For simplicity, we only show the trajectory for leg number 1. (a) The limbs are swinging
at 50% of clearance. (b) The limbs are swinging at 90% of clearance.

6. Conclusions

In this article, the K3P algorithm is proposed as a novel approach for dynamic gait
generation for hexapod robots. This new algorithm is based on a kinematic planner for the
legs organized as tripods. The core of K3P are three shift phase conditions, K3P1,2,3, that
ensure the static slip-free stability of the robot throughout its operation, without requiring
any precomputed paths or trajectories whatsoever.

The methodology and numerical results are presented for a radial hexapod traversing
a lemniscate trajectory, shown as a versatile methodology when commanding an hexapod.
Compared to other approaches, K3P does not require any precomputed information from
the trajectory to be followed, nor the trajectory for every support point SPi, nor precom-
puted gait patterns. Instead, all trajectories for every tripod were dynamically generated in
real-time and made possible that B described a smooth arbitrary trajectory at an arbitrary
velocity while the support points remained still over the uneven surface that the robot was
walking on. Additionally, K3P is able to dynamically change the clearance of the robot, and
we studied the trade-off between clearance vs. step length, given the physical dimensions
of the robot.
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The K3P algorithm is executable on commercially available embedded computers,
using fast linear algebra computation libraries, such as Lapack. Modern CPUs support
instruction sets enabling parallelization, such as Single Instruction Multiple Data (SIMD),
while GPUs can further enhance the algorithm’s execution speed. The possibility of
implementing the algorithm on an FPGA can also be considered. Consequently, K3P
algorithm finds application in real-time scenarios for robot control. However, it can also
be utilized in offline contexts. For example, K3P could serve as a teaching tool for neural
networks, with K3P criteria employed to reinforce the learning process of walking.

Because the K3P algorithm performs at real-time and under static stability, it can
change the direction of movement of the robot at any given moment. This can be useful
if the robot performs in an ever-changing environment with static and dynamic obstacles,
e.g., humans or other mobile robots. Such is the case in collaborative robotics; in this
emerging research field, robots perform alongside humans or other robots [25]. K3P can
offer a development opportunity in collaborative robotics because it can make the robot
stop or perform an immediate change in direction of movement when close to a moving
obstacle or in a dangerous situation.

The viability of the algorithm is proven by estimating the torques exerted on the knee
and lift joints, which are below the maximum torque of commercially available electric
servo motors.

As it was shown in the previous section, the K3P algorithm can drive a hexapod
robot over irregular terrain without planning in advance every step of the robot at an
arbitrary speed. This key design choice for K3P has an important implication: a higher-
level trajectory planner can determine the most suitable path for the robot to follow, so that
all traversed portions of the terrain can support a footstep. Therefore, K3P can be described
as a low-level kinematic planner for a hexapod robot operating in open loop. Its features
would allow us to use it alongside different abstraction models of a hexapod to make the
robot change its shape when walking in confined environments [39]. Changing the shape
of the robot when walking can be useful to adapt to not only uneven terrain as shown here,
but to also adapt to constrained and unstructured environments such as a tunnel.

7. Future Work

As future work, we plan to test K3P with an actual robot. The main purpose will
be to integrate this algorithm as a low-level feature, allowing for higher-level algorithms
to plan the desired trajectory for the robot. Additionally, we plan to integrate an Inertial
Measurement Unit as a loop back sensor to work in a closed-loop scheme for the position
and pose of the robot; this would make it possible for the robot to display some level of
adaptation to sudden external perturbations (mud, gliding, external agents, etc.).
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