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Abstract: Ambulance vehicles face a challenging issue in minimizing the response time for an
emergency call due to the high volume of traffic and traffic signal delays. Several research works
have proposed ambulance vehicle detection approaches and techniques to prioritize ambulance
vehicles by turning the traffic light to green for saving patients’ lives. However, the detection of
ambulance vehicles is a challenging issue due to the similarities between ambulance vehicles and
other commercial trucks. In this paper, we chose a machine learning (ML) technique, namely, YOLOv8
(You Only Look Once), for ambulance vehicle detection by synchronizing it with the traffic camera
and sending an open signal to the traffic system for clearing the way on the road. This will reduce the
amount of time it takes the ambulance to arrive at the traffic light. In particular, we managed to gather
our own dataset from 10 different countries. Each country has 300 images of its own ambulance
vehicles (i.e., 3000 images in total). Then, we trained our YOLOv8 model on these datasets with
various techniques, including pre-trained vs. non-pre-trained, and compared them. Moreover, we
introduced a layered system consisting of a data acquisition layer, an ambulance detection layer, a
monitoring layer, and a cloud layer to support our cloud-based ambulance detection system. Last
but not least, we conducted several experiments to validate our proposed system. Furthermore,
we compared the performance of our YOLOv8 model with other models presented in the literature
including YOLOv5 and YOLOv7. The results of the experiments are quite promising where the
universal model of YOLOv8 scored an average of 0.982, 0.976, 0.958, and 0.967 for the accuracy,
precision, recall, and F1-score, respectively.

Keywords: ambulance detection; machine learning; YOlOv8; cloud computing

1. Introduction

In today’s fast-paced environment, we require devices that can respond swiftly to
real-time emergency calls. Ambulance vehicles, for example, face a serious, systemic
challenge in determining the best route to the desired destination. No matter how hard the
optimal path algorithms try, traffic light jamming will always be one of the ambulance’s
obstacles. By creating a model that can detect an ambulance before it arrives at the traffic
light and provide a green signal to the traffic control system to clear the road, it can pass
without having to wait and the ambulance’s travel time can be cut down to the absolute
minimum [1–4]. This approach requires two sides of implementation: one side is for
building the model that detects the ambulances, and the other side is the system that
uses this model to detect the ambulances and takes the results, and sends them to the
traffic controller.

Delay in hospitalization is the most frequent and substantial cause of fatality in
traffic accidents [1,5–7]. The injured may pass away before they reach the hospital if
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there is even a one-minute delay. Research in [7–9] found that if immediate aid is de-
layed, the victim may pass away before reaching the hospital. Since a 6% gap in reac-
tion time necessitates immediate treatment for the sufferers, it is critical to arrive at the
hospitals as soon as possible. To address this issue and identify ambulance vehicles as
quickly as feasible, numerous advancements in this field have been investigated and
tested in several scenarios. Ambulance vehicles can be found using security cameras
by employing machine learning models. A number of techniques, including a Motion
History Image (MHI), K-Nearest Neighbor (KNN), Hidden Markov Model (HMM), Multi-
Layer Perceptron (MLP), Convolutional Neural Network (CNN), Artificial Neural Net-
work (ANN), Recurrent Neural Network (RNN), Support Vector Machine (SVM), Long
Short-Term Memory network (LSTM), and others, can be used to automatically detect
ambulance vehicles [1,10–15].

The proper detection of ambulance vehicles will help emergency services to keep up
with evolving emergency calls [16,17]. To develop a proper ambulance vehicle detection
system that can detect ambulances and distinguish them from other objects, the work is
heavily dependent on data collection and training the model to detect the required objects
through the camera [1,18–20]. The YOLOv8 model is fed with a large number of object
(i.e., in this case, ambulance vehicle) values. After training the model, we will create a
system that can run the model, pass values (i.e., a video live feed or images), and return
values as a detection signal as well as information about the detection signal. Therefore, we
gathered data using crawling techniques from 10 different countries. In the early stages, we
managed to collect 40,000 images, and later we filtered them to finally have 3000 images
from 10 countries. These countries include Saudi Arabia, Japan, Italy, Russia, the United
Kingdom, Sweden, Turkey, Germany, Spain, and Norway. Then, the 3000 images were
cropped, and each image was renamed for the country that it belongs to, including a name
and a number. These images were trained with two types of models; one is a pre-trained
model, which is generally known as a faster way to train because the first layers of the
network were trained before, and the model can now know what object to look for instead
of trying to identify the shape and color of that object, which in our paper is the ambulance.
The second model is training from scratch; this approach generally will have less accuracy
than the pre-trained one. On some occasions, all of them may have the same accuracy only
if the non-pre-trained model is given the maximum epochs that it needs, but in our case,
we chose 100 epochs, so there is room left to compare both sides.

In this paper, we propose a layered architecture system to develop an ambulance
vehicle detection system that consists of four layers including (i) the data acquisition layer
(DAL), which is the camera on the traffic light. (ii) The ambulance detection layer (ADL),
which has the YOLOV8 model, will inherit the data from the DAL and process each frame.
It will then export the data for the application programming interface (API), and from
there, the API sends the data to (iii) the monitoring layer (ML). Both the ADL and ML are
connected through (iv) the cloud layer (CL) for process and storage purposes. The main
contributions of this work are summarized as follows:

• We collected and labeled 3000 images of ambulances from 10 different countries that cover
various domains and languages. The dataset can be used to train and evaluate computer vision
processing models for cross-lingual tasks.

• We proposed a novel layered architecture system that can handle multiple types of signal
detection reports from different sources and formats. The system can efficiently process, store,
and query reports using a unified interface.

• To the best of our knowledge, we are the first to use YOLOv8 to detect the ambulance to
allow the traffic signals to turn green to speed up the ambulance’s estimated arrival time to
the hospital.

• We conducted a comprehensive evaluation of the pre-trained model and the non-pre-trained
model on our dataset and compared its performance among 10 different countries. We showed
that the pre-trained model outperforms the non-pre-trained model on most metrics and achieves
state-of-the-art results.
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The remainder of the paper is structured as follows: Section 2 discusses the re-
lated work. We describe the architecture of the ambulance detection system in Section 3.
The YOLOv8 model we used is presented in Section 4, and the experiment’s results are
described in Section 5. Section 6 discusses the conclusion and future work.

2. Related Work

The issue of the detection of ambulance vehicles has recently attracted the attention
of many researchers. For instance [21], presents a system that uses two models. YOLOV3
is used as a filtering input for distinguishing whether it is a truck or a car, and then the
output goes to the CNN model to detect whether the truck is an ambulance or not. This
conventional method has more than several major problems that we can overcome. Firstly,
the two-step detection methodology suffers from the YOLOv3’s tendency to skip actual
inputs of ambulance vehicles, and in that respect, the CNN is left helpless to do anything.
Second, the system has significant input lag because it filters the data in more than one
step. Third, the system is inefficient in processing the trucks because the ratio of ambulance
vehicles to trucks is very low, causing the system to waste time filtering and processing
the data, resulting in a large waste of data and time. In solving the first matter, we will
not use a hybrid model because the YOLOv8 model has achieved outstanding speed and
accuracy. For the second matter, we would not need to filter or have input lag because
we are not using a hybrid model. Eventually, our system will be very efficient due to
the optimization of the YOLOv8 model. In [22], the authors used ResNet-50, whereas we
used YOLOv8, which is superior; they trained on 100 images, whereas we trained on over
2000 images with around 1000 background images to reduce the error rate. We used a vision
model from there and were able to identify where the ambulance came from the cameras
at the traffic light using a First In First Out (FIFO) algorithm. In [23], the authors used an
audio-model to detect the ambulance from the siren, but this approach does not work at
the traffic light because there are roads in more than one direction at the traffic light. In [24],
the authors have chosen to employ the monolithic approach in their system design, whereas
we chose the microservice development strategy because it is more adaptable and flexible
while theirs is more expensive, demanding, and incompatible with other systems. In [25],
the authors used color and blob detection on OpenCV, an extremely outdated conventional
method that lacks precision, while we employed the most cutting-edge model. In [26],
a different approach was employed, using a keypad mounted in the ambulance that the
driver used to activate the traffic light. However, this method lacks the automated system
for controlling the traffic light that we implemented by utilizing YOLOv8 to automatically
detect the ambulance vehicles and send the signal to the traffic light. In [27], it is crucial
to the proposed system to detect objects from different angles; however, our system can
detect objects from any angle even if the camera was flipped. Furthermore, to the best of
our knowledge, we are the first to use YOLOv8 to detect the ambulance to allow the traffic
signals to turn green to speed up the ambulance’s estimated arrival time to the hospital.

3. System Architecture

The system is designed to detect ambulances on the road using a camera and a YOLOv8
model and to send a signal to open the road for ambulance vehicles. The system aims to
improve the efficiency and safety of emergency services by reducing traffic congestion and
response time. The system consists of four layers: the data acquisition layer, ambulance
detection layer, monitoring layer, and cloud layer (see Figure 1).
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Figure 1. Ambulance detection system architecture.

3.1. Architecture Layers

Each layer performs a specific function and communicates with the other layers
through APIs. The system can handle multiple cameras and traffic lights simultane-
ously and can adapt to different scenarios and environments. The system architecture is
as follows:

1. Data Acquisition Layer: This layer gathers the data from the camera and breaks
it into frames.The frames are then sent to the next layer for processing. This layer is
responsible for interfacing the external data sources, such as the camera, to the system. It
also performs some preprocessing tasks such as filtering, scaling, or sampling the data.

2. Ambulance Detection Layer: This layer runs the YOLOv8 model on every frame
that is received from the data acquisition layer (i.e., for more details about the YOLOv8
model, see Section 3.2). It determines if an ambulance is present or not in each frame. If an
ambulance is detected, it posts a detection signal to its API. The ADL is connected through
the cloud layer where the processing takes place.

3. Monitoring Layer: This layer fetches the detection signal from the ambulance
detection layer and processes it. It displays the signal for the admin or the traffic light
system so that they can open the road for the ambulance. This layer also stores the signal
in the cloud for a future analysis and reporting. This layer provides a user interface for
the admin to monitor and control the system. It also communicates with the traffic light
system to send commands to change the traffic signals according to the detection signal.
This layer uses cloud services to store and access data securely and efficiently.

4. Cloud Layer: This layer provides a platform as a service (PaaS) and infrastructure
as a service (IaaS) for the other layers. It enables the communication and storage of data
among the layers through the internet. It also provides scalability, security, and reliability
for the system. PaaS is a cloud computing model that provides tools and services for
developing and deploying applications without managing the underlying infrastructure.
Meanwhile, IaaS is a cloud computing model that provides computing resources such as
servers, storage, or networks on demand without managing them.

3.2. YOLOv8 Model

The You Only Look Once (YOLO) model was originally derived from the human
visual system [28]. As the human system can glance at an image and instantly know
what objects are in it, the model performs the same in stages. The YOLO model had a
vast amount of support and was made by Ultralytics, although YOLO models are well
known to the community of computer vision. The previous versions of YOLO started with
the founders of the YOLO model [28]. From there, Joseph and Ali improved the YOLO
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to YOLOv2 or YOLO9000 [29]. The reason for calling it YOLO9000 is that it can detect
more than 9000 object categories. They also incorporate batch normalization, anchor boxes
to improve detection accuracy, and dimension clusters for visualizing the 9000 objects.
Then, further improvements were made to the YOLOv3 performance by implementing
a new, improved network architecture from Darknet-19 that was used in YOLOv2 and
was called Darknet-53 [30]. In YOLOv4 [31], the focus was on incorporating a mosaic
data augmentation, which further boosts the model’s performance by making it robust
to where the objects may appear. And in YOLOv6 [32], a different approach was taken,
where they took YOLOv5 for further optimization at the industry levels, which was made
by Meituan [33]. YOLOv7 introduced a new strategy for training that further boosts the
performance of the model [34]. To support a variety of vision tasks, including object
identification, segmentation, pose estimation, tracking, and classification, YOLOv8 uses a
backbone similar to that of YOLOv5 with a few changes to the CSP Layer, now known as
the C2f module. In this work, we choose to use the YOLOv8n (nano) based on the scale of
our study.

In order to detect ambulance vehicles, the YOLO model divides the image into an
S× S grid, and for each cell, there is a probability. These probabilities are calculated for
each cell, and if the ambulance vehicle falls in one of these cells, every cell of that ambulance
vehicle is responsible for a small part of the predicted value. Figure 2 illustrates how the
S× S grid is configured and how the ambulance vehicle is detected.

Figure 2. Ambulance vehicle detection in an S× S grid.

The YOLO model consists of several functions including the localization loss function,
the confidence loss function, and the classification loss function. Multiple sum-squared
errors make up the localization loss function. The bounding box predictions are given more
weight in the localization loss function by setting λ to 5 and the boxes devoid of ambulances
are given less weight by setting λ∆ to 0.5 in the confidence loss function. Equation (1) offers
further information about the YOLO model functions.
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As we can see in Equation (1), the first two lines represent the localization loss function.
λ denotes the coefficient that multiplies the loss for the coordinates in each grid cell ∑S2

n=0
(i.e., in the S× S (S2) grid) and in each grid box ∑B

k=0 where an ambulance can be found,
denoted as α. 1α

nk represents the identity function, set to 1 if there is an ambulance in
the nth cell, and the kth bounding box is responsible for the prediction of an ambulance
(i.e., object). The sum-squared error is aggregated for both the x and y coordinates in the nth

cells. The square root for the width (denoted as w) and the height (denoted as h) in the nth

cells are aggregated to consider the equality of small and large bounding boxes to ensure
that the error is handled uniformly across both large and small boxes. The second two lines
represent the confidence loss function, where Θ denotes the confidence score and Θ̂ the
predicted confidence score (i.e., the first line in the confidence loss function represents the
confidence error when an ambulance is detected in the cell). λ∆ denotes the coefficient
that multiplies the ambulance losses for each grid cell in the S× S grid (i.e., the second
line in the confidence loss function represents the confidence error when an ambulance
is not detected in the cell). The last line represents the classification loss function where
the conditional probability denoted as ρ is aggregated for the ambulance class c, which
is ∈ the set classes denoted as γ. We defined two different classes including an ambulance
and background.

4. Implementation

For the implementation, we used Amazon Web Services (AWS) as our cloud service
provider. AWS helped us to set up and manage our system in a reliable, fast, and scalable
manner. AWS provided us with various services and features that suited our system
needs and use cases. For example, we used AWS Elastic Compute Cloud (EC2) (https://
aws.amazon.com/ec2/instance-types/t3/ (accessed 15 December 2023)) to launch virtual
servers with different resources that we could adjust as needed. We also used AWS security
and governance services to protect our data and applications from unauthorized access
and threats. To set up and manage our system on AWS, we chose an EC2 instance, and
the configuration parameters and values are detailed in Table 1.

Table 1. List of the configuration parameters and values.

Parameter Value

Cloud service provider AWS
Instance type t3.xlarge
Operating system Windows Server 2022
CPU Intel Xeon Platinum 8259CL
RAM 16 GB
Disk size 30 GB

https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/ec2/instance-types/t3/
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After launching the EC2 instance, we installed Docker version 4.16.2 (https://docs.
docker.com/desktop/release-notes/#4160 (accessed 17 December 2023)) on the virtual
machine. We created two containers based on Arch Linux using Docker. The first container
ran the code for the data acquisition layer and ambulance detection layer of our system.
The data acquisition layer collected data from various sources, such as sensors, cameras,
GPS devices, etc. The ambulance detection layer analyzed the data and detected any
ambulances in the vicinity. This container also included a Python interpreter version 3.10.11
(https://www.python.org/downloads/release/python-31011/ (accessed 18 December
2023)) and NodeJS version 18.16.0 (https://nodejs.org/en/blog/release/v18.16.0 (accessed
18 December 2023)). Python and NodeJS helped us write and run our code for the data
acquisition layer and ambulance detection layer of our system. Python enabled us to write
concise and readable code that could handle complex tasks and data structures. NodeJS
allowed us to use JavaScript for both front-end and back-end development, simplifying
our codebase and improving performance. The second container ran the code for the
monitoring system for our system. The monitoring system enabled us to monitor the
system’s performance and status in real-time using a web-based dashboard. This container
only included NodeJS version 18.16.0. This container was used for the monitoring system
for our system.

4.1. Data Collection

We gathered data using crawling techniques from 10 different countries. Over
40,000 images were gathered, but only 3000 images were chosen because some were
irrelevant to the study purposes. The countries chosen were Saudi Arabia, Russia, Japan,
Germany, Sweden, Norway, Turkey, the United Kingdom, Italy, and Spain. Each country
received 300 images of its ambulance vehicles, 200 of which were trained on YOLOv8 and
the rest were for validation. In addition, we trained the model with 948 background images,
as our data on ambulance vehicles were small (i.e., the model would not be able to identify
the ambulance vehicles from the background). Two types of models were implemented:
one a pre-trained model and the other a non-pre-trained one. Eventually, we collected the
data for each country out of need rather than interest because there is no such thing as a
universal ambulance car; each country has its own vehicle with its own shape and color,
so we had to construct our own data. Nonetheless, we currently have 22 models. Ten are
pre-trained models, and ten are non-pre-trained models; each country has each of them,
and 2 are the crucial ones, which we term the universal model because they can work in all
of the nations that we have listed; one is pre-trained and the other is non-pre-trained. More
details regarding the dataset such as the image size, size range of the ambulance objects (in
pixels), possible number of ambulance vehicles in each image, etc., can be found in Table 2.

Data Labeling

For the training, 2000 of the obtained images were manually labeled and categorized
as ambulance vehicles. A total of 1000 images, however, were utilized for testing. One text
file per image is used to store the annotations and labeling.

https://docs.docker.com/desktop/release-notes/#4160
https://docs.docker.com/desktop/release-notes/#4160
https://www.python.org/downloads/release/python-31011/
https://nodejs.org/en/blog/release/v18.16.0
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Table 2. Dataset Specification

Country Data Type Total
Images

Total
Labels

Min. Object
Size (px)

Max. Object
Size (px)

Avg. Object Size
(px)

Min. Ambulance
Count

Max. Ambulance
Count

Avg. Ambulance
Count

All data Training 2000 2306 247.86 15,538,778.40 109,254.97 1 8 1.15
All data Validation 1000 1132 470.20 10,116,762.21 191,851.62 1 6 1.13
Ambulance—Germany Training 200 220 1007.49 1,186,804.65 51,727.80 1 8 1.10
Ambulance—Germany Validation 100 112 1491.36 3,201,209.98 275,850.71 1 4 1.12
Ambulance—Italy Training 200 203 1376.61 3,937,977.63 151,716.60 1 2 1.01
Ambulance—Italy Validation 100 111 483.85 887,085.47 122,364.63 1 4 1.11
Ambulance—Japan Training 200 211 1187.14 15,538,778.40 165,862.70 1 2 1.06
Ambulance—Japan Validation 100 113 923.05 4,434,590.25 214,963.03 1 5 1.13
Ambulance—Norway Training 200 219 812.92 8,467,322.79 153,564.89 1 2 1.10
Ambulance—Norway Validation 100 108 601.87 1,791,667.76 37,890.46 1 5 1.08
Ambulance—Russia Training 200 253 666.66 4,447,982.09 91,370.16 1 4 1.26
Ambulance—Russia Validation 100 116 1033.73 1,401,825.30 92,035.72 1 3 1.16
Ambulance—Saudi Arabia Training 200 215 247.86 313,236.73 24,322.19 1 4 1.08
Ambulance—Saudi Arabia Validation 100 104 470.20 926,459.14 138,453.29 1 2 1.04
Ambulance—Spain Training 200 233 1165.99 9,633,192.61 324,977.95 1 5 1.17
Ambulance—Spain Validation 100 114 2008.01 9,597,678.94 385,183.35 1 3 1.14
Ambulance—Sweden Training 200 216 993.95 50,081.73 25,045.00 1 4 1.08
Ambulance—Sweden Validation 100 112 1908.89 2,348,605.69 138,267.40 1 5 1.12
Ambulance—Turkey Training 200 250 398.81 5,857,812.51 71,457.92 1 6 1.25
Ambulance—Turkey Validation 100 111 1540.82 941,968.69 44,960.89 1 3 1.11
Ambulance—United Kingdom Training 200 286 481.81 5,063,227.92 46,318.38 1 6 1.43
Ambulance—United Kingdom Validation 100 131 781.50 10,116,762.21 419,075.79 1 6 1.31
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5. Experimental Results
5.1. YOLOv8 Model Performance

For YOLOv8 model performance, we have 22 different experiments, 10 of which
are pre-trained while the other 10 are non-pre-trained (i.e., two different experiments
for each country). Moreover, we conducted another two experiments, which we call the
universal model (i.e., pre-trained vs. non-pre-trained) for all of the countries that we have
listed. Figure 3 shows how the YOLOv8 model uses the bounding box in red around
the ambulance vehicles. Meanwhile, Figure 4 shows the validation of the detection of the
ambulance by drawing boxes around the ambulance vehicles with an accuracy measure that
states how confident the YOLOv8 model is regarding that detected ambulance. The training
and running time of the proposed model are detailed in Table 3.

Figure 3. The bounding box in red around the labeled ambulance vehicles.

Figure 4. The validation of the detection of the ambulance vehicles.

The results of our experiments show promising accuracy scoring. Nonetheless, we
found that some of the results took a leap down when we experimented using a non-pre-
trained scenario. For example, Figure 5 illustrates the accuracy bar charts of the non-pre-



Appl. Sci. 2024, 14, 2555 10 of 18

trained scenario for the countries Saudi Arabia (SA), Russia (RU), Japan (JP), Germany (DE),
Sweden (SE), Norway (NOR), Turkey (TR), the United Kingdom (UK), Italy (IT), and Spain
(ES). In the results for the non-pre-trained scenario, we observe that SA received the highest
score in accuracy, reaching 0.98. This is because of the high resolution and good angle of the
captured images, as well as the large logo of the ambulance vehicles. In addition, we can see
that the SE scored second (i.e., 0.976 in accuracy) because most of the types of ambulance
vehicles in the SE validation set have a higher object size than others, which contributes to
a higher accuracy. In other words, larger object sizes in pixels and large-size ambulances
with more distinguishable features tend to yield higher accuracy, whereas smaller object
sizes in pixels and medium-size ambulances with fewer distinguishable features result in
lower accuracy (e.g., Sport Utility Vehicles (SUVs)); especially the YOLOv8 model works
on dividing the image into an S × S grid.

Table 3. The Training and Running Time of the Proposed Model

Stage Time

Pre-process 10 ms
Inference 100 ms
Data Transfer Time 100 ms
Server Processing Time 200 ms
Response Time 310 ms
Data Acquisition Layer 70 ms
Monitoring Layer 30 ms
Ambulance Detection Layer 110 ms
Cloud Layer 1 650 ms

1 Response time is calculated as an average for all figures where it takes less than 1 s on the cloud.

Power BI DesktopAccuracy Of Non-pre-trained Models by Country

0.0

0.5

1.0
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ur
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SA SE UK ES RU DE TR JP IT NOR

0.980 0.976 0.972 0.958 0.957 0.956 0.944 0.938 0.903 0.895

Figure 5. The accuracy of the non-pre-trained model among 10 different countries.

On the other hand, Figure 6 illustrates the accuracy bar charts of the pre-trained
scenario for the aforementioned countries. We can see that JP received the best accuracy
rating of 0.995. The reasons behind this are that JP data have high resolution for the high
object size in pixels in the validating set and not more than a four-view angle of the captured
images, as well as the logo size and one vehicle type for the ambulance vehicles. While
SE data also have a large logo of the ambulance vehicles, which will make it easier for the
YOLOv8 model to distinguish this particular ambulance vehicle from other ones, the SE
ambulance vehicles have only two colors as well, including yellow and green.

Figure 7 depicts the results of our YOLOV8 accuracy performance for pre-trained
vs. non-pre-trained scenarios among 10 different countries. Overall, we can see that the
results in the pre-trained scenario overcome the non-pre-trained scenario in all countries’
experiments. That is because the YOLOv8 model’s first layers already knew what to look
for (i.e., ambulance vehicles’ shapes and colors). In the results for the pre-trained scenario,
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we observe that SE and RU received the best accuracy rating of 0.99 for the aforementioned
reasons. However, IT and NOR received the worst accuracy rating of 0.94; that is because
the IT dataset has different ambulance vehicle types and colors, and the NOR dataset has
low-resolution images, images taken from different angles, and medium-size ambulance
vehicles (i.e., SUVs). In other words, the medium-size ambulance will have fewer boxes
than the large-size ambulance (e.g., truck vehicles), which will affect the accuracy’s result
in a negative correlation.
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Figure 6. The accuracy of the pre-trained model among 10 different countries.
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Figure 7. Cont.
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Figure 7. Pre-trained vs. non-pre-trained accuracy performance among 10 different countries.
(a): Accuracy performance in Germany dataset. (b): Accuracy performance in Italy dataset. (c): Ac-
curacy performance in Japan dataset. (d): Accuracy performance in Norway dataset. (e): Accuracy
performance in Russia dataset. (f): Accuracy performance in Saudi Arabia dataset. (g): Accuracy per-
formance in Spain dataset. (h): Accuracy performance in Sweden dataset. (i): Accuracy performance
in Turkey dataset. (j): Accuracy performance in UK dataset.

Figure 8 illustrates the results of our universal YOLOV8 model performance for pre-
trained vs. non-pre-trained scenarios among all of the countries that we have listed. For this
experiment, we trained our YOLOv8 model using 2000 images (i.e., for all ambulance
vehicles in 10 different countries) and validated the universal model using 1000 images.
As we can see, the universal model has scored 0.98 in accuracy (see Figure 8a) for both
pre-trained and non-pre-trained scenarios, which is the highest result among all countries.
The reason for that is the universal model has the largest amount of data for training where
the model could understand the ambulance vehicles better. The reason for going with
100 epochs is to leave room to compare both the pre-trained and the non-pre-trained models.
We can also observe that the universal model reached a precision of 0.97 and 0.96 in the
pre-trained and non-pre-trained scenarios, respectively (see Figure 8b). For the recall,
the universal model has scored 0.95 in both scenarios as shown in Figure 8c. Meanwhile,
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the universal model regarding the F1-score recorded 0.96 in the pre-trained scenario and
0.95 in the non-pre-trained scenario (see Figure 8d). More details about the accuracy,
precision, recall, and F1-score results after reaching 100 epochs can be found in Table 4.
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Figure 8. Universal YOLOv8 performance. (a): Accuracy universal performance of YOLOv8. (b): Pre-
cision universal performance of YOLOv8. (c): Recall universal performance of YOLOv8. (d): F1-score
universal performance of YOLOv8.

Table 4. Performance Results Among Countries and the Universal Model

Country JP SE RU SA TR UK DE ES IT NOR Universal

Accuracy of pre-trained 95.5 99.4 99.3 99.1 98.8 98.7 95.8 96.9 94.5 94.2 98.2
Accuracy of non-pre-trained 93.8 97.6 95.7 98.0 94.4 97.2 95.6 95.8 90.3 89.5 98.0
Precision of pre-trained 99.1 100 97.1 97.0 97.3 93.2 97.8 93.3 99.0 98.8 97.6
Precision of non-pre-trained 95.8 97.3 94.8 94.8 95.6 93.5 94.8 93.8 89.8 97.7 96.3
Recall of pre-trained 99.0 97.9 98.3 98.1 99.0 98.5 91.1 98.2 91.0 87.0 95.8
Recall of non-pre-trained 89.4 95.2 87.9 92.3 89.2 90.1 87.5 93.4 85.6 78.7 95.1
F1-score of pre-trained 99.0 98.9 97.7 97.5 98.1 95.8 94.3 95.7 94.8 92.5 96.7
F1-score of non-pre-trained 92.5 96.2 91.2 93.5 92.3 91.8 91.0 93.6.6 87.6 87.2 95.7

Figure 9 shows the results of the universal model in the confusion matrix where the
actual values of true and false concerning predicted values are either positive or negative.
As we can see, the true positives reached 1093 when the model predicts that it is an
ambulance vehicle, while the true negatives are when the model predicts that it is not
an ambulance vehicle (i.e., background), which is empty in our case (i.e., because the
model is not supposed to identify non-ambulances). This means that when evaluating
the performance of an object detection model, the number of true negatives can easily
overwhelm the number of false positives and false negatives, making it difficult to compare
the performance of the models. The false positive scored 57, and it occurs when the model
predicts an ambulance but it is not present. The false negative scored 39, and it occurs
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when the model predicts there is no ambulance but there is. Based on the recorded true
positives, true negatives, false positives, and false negatives, we can easily calculate the
accuracy, precision, recall, and F1-score (i.e., more details on how to calculate the accuracy,
precision, recall, and F1-score can be found in [35]).

Figure 9. The universal model confusion matrix.

5.2. Comparison between YOLOv5, YOLOv7, and YOLOv8

To compare our proposed YOLOv8 model with other models presented in the lit-
erature [33,34], we conducted another two experiments for YOLOv5 and YOLOv7 that
represent all of the countries that we have listed (i.e., the universal model) in two different
scenarios including pre-trained and non-pre-trained.

Figure 10 depicts the results of accuracy for YOLOv5 and YOLOv7. We can observe
that both models show slightly lower accuracy scores comparatively with YOLOv8 (see
Figure 8a). YOLOv7 has achieved 0.953 for the pre-trained scenario and 0.978 for the
non-pre-trained scenario, while YOLOv5 has achieved 0.979 for the pre-trained scenario
and 0.975 for the non-pre-trained scenario. Meanwhile, YOLOv8 has scored 0.982 and 0.980
for the pre-trained and non-pre-trained scenarios, respectively.
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Figure 10. Universal YOLOv5 vs. YOLOv7 accuracy. (a): Accuracy of YOLOv5. (b): Accuracy
of YOLOv7.
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Figure 11 illustrates the results of precision for YOLOv5 and YOLOv7. YOLOv5
surpasses YOLOv7, with both pre-trained (0.960) and non-pre-trained (0.953) scenarios
exhibiting higher precision. However, YOLOv8 (see Figure 8b) has recorded an even higher
precision rate than both YOLOv5 and YOLOv7, scoring 0.976 for the pre-trained scenario
and 0.963 for the non-pre-trained scenario.
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Figure 11. Universal YOLOv5 vs. YOLOv7 precision. (a): Precision of YOLOv5. (b): Precision
of YOLOv7.

Figure 12 shows the results of recall for YOLOv5 and YOLOv7. YOLOv5 has achieved
0.951 for the pre-trained scenario and 0.938 for the non-pre-trained scenario. In addition,
YOLOv7 has achieved 0.914 for the pre-trained scenario and 0.940 for the non-pre-trained
scenario. On the other hand, YOLOv8 (see Figure 8c) has overcome both YOLOv5 and
YOLOv7 models in recall, scoring 0.958 for the pre-trained scenario and 0.951 for the
non-pre-trained scenario.
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Figure 12. Universal YOLOv5 vs. YOLOv7 recall.(a): Recall of YOLOv5. (b): Recall of YOLOv7.

Figure 13 depicts the results of the F1-score for YOLOv5 and YOLOv7. YOLOv5 has
achieved a slightly higher F1-score for pre-trained models (0.955) compared to YOLOv7
(0.919). Meanwhile, YOLOv8 (see Figure 8d) has scored 0.967 and 0.957 for pre-trained and
non-pre-trained scenarios, respectively.

In summary, YOLOv8 emerges as the top performer among the three versions, offering
the highest accuracy, precision, recall, and F1-score for both pre-trained and non-pre-
trained models. Having carefully evaluated the performance metrics, we elected to proceed
with YOLOv8 as our preferred choice. This decision stems from a thorough examination
of various factors, including computational resources and implementation constraints,
ensuring alignment with our specific application requirements.

Table 5 shows the analysis of YOLOv5, YOLOv7, and YOLOv8, based on the em-
pirical data, shedding light on their performance differences in object detection tasks.
YOLOv8 stands out with robust performance, achieving high accuracy scores of 0.982 for
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pre-trained models and 0.980 for non-pre-trained scenarios. YOLOv8 demonstrates high
precision scores for both pre-trained (0.976) and non-pre-trained (0.963) models. Addition-
ally, YOLOv8 recall values are commendable, with pre-trained models achieving 0.958 and
non-pre-trained models achieving 0.951, resulting in an impressive F1-score of 0.967 and
0.957 for pre-trained and non-pre-trained models, respectively.
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Figure 13. Universal YOLOv5 vs. YOLOv7 F1-score. (a): F1-score of YOLOv5. (b): F1-score of
YOLOv7.

Table 5. The Universal Model Performance

Model Universal YOLOv5 Universal YOLOv7 Universal YOLOv8

Accuracy of pre-trained 97.9 95.3 98.2
Accuracy of non-pre-trained 97.5 97.8 98.0
Precision of pre-trained 96.0 92.5 97.6
Precision of non-pre-trained 95.3 95.8 96.3
Recall of pre-trained 95.1 91.4 95.8
Recall of non-pre-trained 93.8 94.0 95.1
F1-score of pre-trained 95.5 91.9 96.7
F1-score of non-pre-trained 94.5 94.9 95.7

In light of our observation, the YOLOv7 pre-trained model did not outperform the
non-pre-trained one, and the reason behind that could be attributed to its ability to adapt
more effectively to the specific characteristics of the dataset over time. While the pre-trained
model initially demonstrates better performance due to its transfer learning from a general
dataset, it might struggle to fully adapt to the nuances of the target domain as training
progresses. On the other hand, the non-pre-trained model starts from scratch but gradually
learns to capture the intricacies of the dataset more effectively, leading to its superior
performance in the long run. This hypothesis suggests that the non-pre-trained model’s
superiority is a result of its ability to learn domain-specific features more deeply over the
course of training, ultimately surpassing the initial advantage provided by the pre-trained
model’s transfer learning.

6. Conclusions and Future Work

This work presents the design and implementation of a novel ambulance detection
system architecture to prioritize ambulance vehicles by turning the traffic light to green
for saving patients’ lives. The system is capable of handling multiple types of signal
detection reports from different sources and formats by processing and storing them in
the cloud. In particular, we exploit a YOLOv8 model to detect the ambulance and allow
the traffic signals to turn green to speed up the ambulance’s estimated arrival time at the
hospital. We are the first to exploit a YOLOv8 model for the detection of ambulances,
to the best of our knowledge. To demonstrate the performance of our YOLOv8 model, we
collected and labeled 3000 images of ambulances from 10 different countries that cover
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various domains and languages. The dataset can benefit the research community in training
and evaluating computer vision models for cross-lingual tasks. Moreover, we conducted
22 different experiments, 10 of which are pre-trained while the other 10 are non-pre-trained
(i.e., 2 different experiments for each country). We conducted another two experiments,
which we call the universal model (i.e., pre-trained vs. non-pre-trained) for all of the
countries that we have listed. Furthermore, we compared the performance of our YOLOv8
model with other models presented in the literature including YOLOv5 and YOLOv7.
The results of the experiments are quite promising where the universal model of YOLOv8
scored an average of 0.982, 0.976, 0.958, and 0.967 for the accuracy, precision, recall, and F1-
score, respectively. The universal model scored the highest result among all countries
because of the large amount of data for training where the model could understand the
ambulance vehicles better. For future work, we intend to alter the network layers to suit
our datasets, resulting in a high-efficiency model. In addition, we are planning to develop a
new segmentation technique; semantic segmentation is the counterpart of object detection,
where objects are identified with a square box, but in segmentation, objects are drawn at
the pixel level.

Author Contributions: Conceptualization, T.H.N., A.N., A.A. and R.A.; methodology, T.H.N. and
A.N.; software , A.N., T.H.N., B.A. and Z.A.; validation, T.H.N., B.A. and Z.A.; formal analysis, T.H.N.
and A.N.; investigation, A.N., B.A. and Z.A.; resources, A.N. and M.A.; data curation, A.N., B.A.
and Z.A.; writing—original draft preparation, T.H.N. and A.N.; writing—review and editing, A.A.,
R.A. and M.A.; visualization, A.N. and B.A.; supervision, A.N. and T.H.N.; project administration,
A.N.; funding acquisition, A.N. and M.A. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available on the following link (https://github.com/basil-
alharbi/Ambulance-Detection-System) (accessed on 11 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Almukhalfi, H.; Noor, A.; Noor, T.H. Traffic management approaches using machine learning and deep learning techniques:

A survey. Eng. Appl. Artif. Intell. 2024, 133, 108147. [CrossRef]
2. Lupa, M.; Chuchro, M.; Sarlej, W.; Adamek, K. Emergency ambulance speed characteristics: A case study of Lesser Poland

voivodeship, southern Poland. GeoInformatica 2021, 25, 775–798. [CrossRef]
3. Cerna, S.; Arcolezi, H.H.; Guyeux, C.; Royer-Fey, G.; Chevallier, C. Machine learning-based forecasting of firemen ambulances’

turnaround time in hospitals, considering the COVID-19 impact. Appl. Soft Comput. 2021, 109, 107561. [CrossRef] [PubMed]
4. Nguyen, V.L.; Hwang, R.H.; Lin, P.C. Controllable Path Planning and Traffic Scheduling for Emergency Services in the Internet of

Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 12399–12413. [CrossRef]
5. Colla, M.; Santos, G.D.; Oliveira, G.A.; de Vasconcelos, R.B.B. Ambulance response time in a Brazilian emergency medical service.

Socio-Econ. Plan. Sci. 2023, 85, 101434. [CrossRef]
6. Chang, F.R.; Huang, H.L.; Schwebel, D.C.; Chan, A.H.; Hu, G.Q. Global road traffic injury statistics: Challenges, mechanisms and

solutions. Chin. J. Traumatol. 2020, 23, 216–218. [CrossRef] [PubMed]
7. Foggia, P.; Petkov, N.; Saggese, A.; Strisciuglio, N.; Vento, M. Audio surveillance of roads: A system for detecting anomalous

sounds. IEEE Trans. Intell. Transp. Syst. 2015, 17, 279–288. [CrossRef]
8. Kumar, N.; Acharya, D.; Lohani, D. An IoT-based vehicle accident detection and classification system using sensor fusion.

IEEE Internet Things J. 2020, 8, 869–880. [CrossRef]
9. World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs, Sustainable Development Goals; World

Health Organization: Geneva, Switzerland, 2023.
10. Kong, Y.; Fu, Y. Human action recognition and prediction: A survey. Int. J. Comput. Vis. 2022, 130, 1366–1401. [CrossRef]
11. Noor, A.; Pattanaik, P.; Khan, M.Z.; Alromema, W.; Noor, T.H. Deep Feature Detection Approach for COVID-19 Classification

based on X-ray Images. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 141–146. [CrossRef]
12. Gutiérrez, J.; Rodríguez, V.; Martin, S. Comprehensive review of vision-based fall detection systems. Sensors 2021, 21, 947.

[CrossRef]

https://github.com/basil-alharbi/Ambulance-Detection-System
https://github.com/basil-alharbi/Ambulance-Detection-System
http://doi.org/10.1016/j.engappai.2024.108147
http://dx.doi.org/10.1007/s10707-021-00447-w
http://dx.doi.org/10.1016/j.asoc.2021.107561
http://www.ncbi.nlm.nih.gov/pubmed/34899108
http://dx.doi.org/10.1109/TITS.2021.3113933
http://dx.doi.org/10.1016/j.seps.2022.101434
http://dx.doi.org/10.1016/j.cjtee.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32680705
http://dx.doi.org/10.1109/TITS.2015.2470216
http://dx.doi.org/10.1109/JIOT.2020.3008896
http://dx.doi.org/10.1007/s11263-022-01594-9
http://dx.doi.org/10.14569/IJACSA.2023.0140514
http://dx.doi.org/10.3390/s21030947


Appl. Sci. 2024, 14, 2555 18 of 18

13. Saif, S.; Tehseen, S.; Kausar, S. A survey of the techniques for the identification and classification of human actions from visual
data. Sensors 2018, 18, 3979. [CrossRef]

14. Noor, T.H. Human Action Recognition-Based IoT Services for Emergency Response Management. Mach. Learn. Knowl. Extr.
2023, 5, 330–345. [CrossRef]

15. Sun, Z.; Ke, Q.; Rahmani, H.; Bennamoun, M.; Wang, G.; Liu, J. Human action recognition from various data modalities: A review.
IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3200–3225. [CrossRef]

16. Neira-Rodado, D.; Escobar-Velasquez, J.W.; McClean, S. Ambulances deployment problems: Categorization, evolution and
dynamic problems review. ISPRS Int. J. Geo-Inf. 2022, 11, 109. [CrossRef]

17. Li, M.; Vanberkel, P.; Zhong, X. Predicting ambulance offload delay using a hybrid decision tree model. Socio-Econ. Plan. Sci.
2022, 80, 101146. [CrossRef]

18. Shamrat, F.J.M.; Mahmud, I.; Rahman, A.S.; Majumder, A.; Tasnim, Z.; Nobel, N.I. A smart automated system model for vehicles
detection to maintain traffic by image processing. Int. J. Sci. Technol. Res. 2020, 9, 2921–2928.

19. Yu, X.; Marinov, M. A study on recent developments and issues with obstacle detection systems for automated vehicles.
Sustainability 2020, 12, 3281. [CrossRef]

20. Arul, S.J.; Mithilesh, B.; Shreyas, L.; Kaliyaperumal, G.; K. A., J.K. Modelling and Simulation of Smart Traffic Light System for
Emergency Vehicle using Image Processing Techniques. In Proceedings of the 2023 3rd International Conference on Innovative
Practices in Technology and Management (ICIPTM), Uttar Pradesh, India, 22–24 February 2023; IEEE: Toulouse, France, 2023;
pp. 1–4.

21. Agrawal, K.; Nigam, M.; Bhattacharya, S.; Sumathi, G. Ambulance detection using image processing and neural networks.
J. Physics: Conf. Ser. 2021, 2115, 012036. [CrossRef]

22. Jiménez-Moreno, R.; Martínez Baquero, J.E.; Rodriguez Umaña, L.A. Ambulance detection for smart traffic light applications
with fuzzy controller. Int. J. Electr. Comput. Eng. 2022, 12, 2088–8708. [CrossRef]

23. Usaid, M.; Asif, M.; Rajab, T.; Rashid, M.; Hassan, S.I. Ambulance Siren Detection using Artificial Intelligence in Urban Scenarios.
Sir Syed Univ. Res. J. Eng. Technol. 2022, 12, 92–97. [CrossRef]

24. Rubini, K.; Vidya, M.; Yeshaswini, S.; Gowthami, A. Automatic Ambulance Detection and Intimation Using RSSI. Int. J. Emerg.
Technol. Eng. Res. (IJETER) 2019, 7, 40–43.

25. Yang, O.W.; Suriani, N.S. Vision based traffic control for intelligence ambulance detection system. Evol. Electr. Electron. Eng.
2020, 1, 333–341.

26. Ahir, D.; Bharade, S.; Botre, P.; Nagane, S.; Shah, M. Intelligent traffic control system for smart ambulance. IRJET 2018, 5, 355–358.
27. Srinivasan, V.; Rajesh, Y.P.; Yuvaraj, S.; Manigandan, M. Smart traffic control with ambulance detection. Iop Conf. Ser. Mater. Sci.

Eng. 2018, 402, 012015. [CrossRef]
28. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
29. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Seattle, WA, USA, 21–23 June 2017; pp. 7263–7271.
30. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
31. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
32. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection

framework for industrial applications. arXiv 2022, arXiv:2209.02976.
33. Terven, J.; Cordova-Esparza, D. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond. arXiv 2023,

arXiv:2304.00501.
34. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475.

35. Noor, T.H.; Noor, A.; Elmezain, M. Poisonous Plants Species Prediction Using a Convolutional Neural Network and Support
Vector Machine Hybrid Model. Electronics 2022, 11, 3690. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s18113979
http://dx.doi.org/10.3390/make5010020
http://dx.doi.org/10.1109/TPAMI.2022.3183112
http://dx.doi.org/10.3390/ijgi11020109
http://dx.doi.org/10.1016/j.seps.2021.101146
http://dx.doi.org/10.3390/su12083281
http://dx.doi.org/10.1088/1742-6596/2115/1/012036
http://dx.doi.org/10.11591/ijece.v12i5.pp4876-4882
http://dx.doi.org/10.33317/ssurj.467
http://dx.doi.org/10.1088/1757-899X/402/1/012015
http://dx.doi.org/10.3390/electronics11223690

	Introduction
	Related Work
	System Architecture
	Architecture Layers
	YOLOv8 Model

	Implementation
	Data Collection

	Experimental Results
	YOLOv8 Model Performance
	Comparison between YOLOv5, YOLOv7, and YOLOv8

	Conclusions and Future Work
	References

