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1. Introduction

Evolutionary computation is now nearly 50 years old, originating with the seminal
work of John Holland at the University of Michigan in 1975 which introduced the genetic al-
gorithm [1]. Evolutionary computation [2] encompasses a variety of problem-solving
methodologies that take inspiration from natural evolutionary and genetic processes.
The most well-known form of evolutionary computation is the genetic algorithm [3,4],
which evolves a population of solutions to the problem at hand, each represented as a
bit-string—the genotype—with a fitness function measuring the fitness of the bit-string
within the context of the problem (i.e., mapping a genotype to a phenotype). Evolutionary
operators, such as mutation, crossover, and selection, control the simulated evolution over
several generations.

There are now many forms of evolutionary computation (a few of which are illustrated
in Figure 1) that have developed over the years, including genetic programming [5], evolu-
tion strategies [6], differential evolution [7,8], evolutionary programming [9], permutation-
based evolutionary algorithms [10], memetic algorithms [11], the estimation of distribution
algorithms [12], particle swarm optimization [13], interactive evolutionary algorithms [14],
ant colony optimization [15,16], and artificial immune systems [17], among others [18,19].
Among the characteristics of evolutionary algorithms that lead to powerful problem solving
is the fact that they lend themselves very well to parallel implementation [20–22], enabling
the exploitation of today’s multicore and manycore computer architectures. Rich theoretical
foundations also exist which are related to convergence properties [23–25], parameter
optimization, and control [26], as well as the powerful analytical tools of fitness landscape
analysis [27–29], such as fitness–distance correlation [30] and search landscape calculus [31],
among others. These theoretical foundations inform the engineering of evolutionary solu-
tions to specific problems. There are also many open-source libraries and toolkits available
for evolutionary computation in a variety of programming languages [32–41], making the
application of evolutionary algorithms to new problems and domains particularly easy.

Figure 1. A few of the many forms of evolutionary computation.
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Evolutionary computation has been effective in solving problems with a variety
of characteristics, and within many application domains, such as multiobjective opti-
mization [42–45], data science [46], machine learning [47–49], classification [50], feature
selection [51], neural architecture search [52], neuroevolution [53], bioinformatics [54],
scheduling [55], algorithm selection [56], computer vision [57], hardware validation [58],
software engineering [59,60], and multi-task optimization [61,62], among many others.

This Special Issue brings together recent advances in the theory and application of
evolutionary computation. It includes 13 articles. The authors of the 13 articles represent
institutions from 11 different countries, demonstrating the global reach of the topic of evolu-
tionary computation. The published articles span the breadth of evolutionary computation
techniques, and cover a variety of applications. The remainder of this Editorial briefly
describes the articles included within this Special Issue; and I encourage you to read and
explore each.

2. Overview of the Published Articles

This overview of the articles is organized in the order in which the contributions to
the Special Issue were published.

Cicirello (contribution 1) presents a new mutation operator for evolutionary algo-
rithms where solutions are represented by permutations. The new mutation operator, cycle
mutation, is inspired by cycle crossover. Cycle mutation is designed specifically for assign-
ment and mapping problems (e.g., quadratic assignment, largest common subgraph, etc.)
rather than ordering problems like the traveling salesperson. This article includes a fitness
landscape analysis exploring the strengths and weaknesses of cycle mutation in terms of
permutation features.

Osuna-Enciso and Guevara-Martínez (contribution 2) propose a variation of differen-
tial evolution that they call stigmergic differential evolution which can be used for solving
continuous optimization problems. Their approach integrates the concept of stigmergy
with differential evolution. Stigmergy originated from swarm intelligence, and refers to the
indirect communication among members of a swarm that occurs when swarm members
manipulate the environment and detect modifications made by others (e.g.,the pheromone
trail-following behavior of ants, among others).

Córdoba, Gata, and Reina (contribution 3) consider a problem related to energy access
in remote, rural areas. Namely, they utilize a (µ + λ)-evolutionary algorithm to optimize
the design of mini hydropower plants, using cubic Hermite splines to model the terrain in
3D, rather than the more common 2D simplifications.

Parra, et al. (contribution 4) consider the binary classification problem of predicting
obesity. In their experiments, they explore utilizing evolutionary computation in feature
selection for binary classifier systems. They consider ten different machine learning classi-
fiers, combined with four feature-selection strategies. Two of the feature-selection strategies
considered use the classic bit-string-encoded genetic algorithm.

Fan and Liang (contribution 5) consider directional sensor networks and target cov-
erage. In their approach to target coverage, they developed a hybrid of particle swarm
optimization and a genetic algorithm. Their experiments demonstrate that the hybrid
approach outperforms both particle swarm optimization and the genetic algorithm alone
for the problem of maximizing covered targets and minimizing active sensors.

Wang, et al. (contribution 6) developed a hybrid between particle swarm optimization
and differential evolution for real-valued function optimization. Their hybrid combines
a self-adaptive form of differential evolution with particle swarm optimization, and they
experiment with their approach on a variety of function optimization benchmarks.

Chen, et al. (contribution 7) explore the constrained optimization problem of optimiz-
ing the linkage system for vehicle wipers. Their aim was to improve steadiness of wipers.
They utilize differential evolution to optimize the maximal magnitude of the angular accel-
eration of the links in the system subject to a set of constraints. They were able to reduce
the maximal magnitude of angular acceleration by 10%.



Appl. Sci. 2024, 14, 2542 3 of 6

Tong, Sung, and Wong (contribution 8) analyze the performance of a parameter-
free evolutionary algorithm known as pure random orthogonal search. They propose
improvements to the algorithm involving local search. They performed experiments
on a variety of benchmark function optimization problems with a variety of features
(e.g., unimodal vs. multi-modal, convex vs. non-convex, separable vs. non-separable).

And̄elić, et al. (contribution 9) approach the problem of searching for candidates
for dark matter particles, so-called weakly interacting massive particles, using symbolic
regression via genetic programming. Their approach estimates the interaction locations
with high accuracy.

Wu, et al. (contribution 10) developed a recommender system utilizing an interactive
evolutionary algorithm for making personalized recommendations. In an interactive
evolutionary algorithm, human users are directly involved in evaluating the fitness of
members of the population. Wu, et al. use a surrogate model in their approach to reduce
the number of evaluations required by users.

Dubey and Louis (contribution 11) utilize a (µ + λ)-evolutionary algorithm. They
developed an approach to deploying a UAV-based ad hoc network to cover an area of
interest. UAV motion is controlled by a set of potential fields that are optimized by the
(µ + λ)-evolutionary algorithm using polynomial mutation and simulated binary crossover.

Lazari and Chassiakos (contribution 12) take on the problem of deploying electric
vehicle charging stations. They define it as a multi-objective optimization problem with
two cost functions: station deployment costs and user travel costs between areas of demand
and the station’s location. Their evolutionary algorithm’s chromosome representation
combines x and y coordinates of candidate charging station locations, using the classic
bit-string of genetic algorithms to model whether or not each candidate station is deployed.

Reffad and Alti (contribution 13) use NSGA-II to optimize enterprise resource plan-
ning performance. They aimed to optimize average service quality and average energy
consumption. They propose an adaptive and dynamic solution within IoT, fog, and
cloud environments.

3. Conclusions

This collection of articles spans a variety of forms of evolutionary computation, in-
cluding genetic algorithms, genetic programming, differential evolution, particle swarm
optimization, and evolutionary algorithms more generally, as well as hybrids of multiple
forms of evolutionary computation. The evolutionary algorithms represent solutions in
several ways, including the common bit-string representation, vectors of reals, and permu-
tations, as well as custom representations. The authors of the articles tackle a very diverse
collection of problems of different types and from many application domains. For example,
some of the problems considered are discrete optimization problems, while others optimize
continuous functions. Although many of the articles focus on optimizing a single objec-
tive function, others involve multi-objective optimization. Some of the articles primarily
utilize common benchmarking optimization functions and problems, while several others
explore a variety of real-world applications, such as optimizing mini hydropower plants,
UAV deployment, the deployment of electric vehicle charging stations, target coverage in
wireless sensor networks, enterprise resource planning, recommender systems, dark matter
detection, and optimizing vehicle wiper linkage systems, among others. The diversity of
evolutionary techniques, evolutionary operators, problem features, and applications that
are covered within this collection of articles demonstrates the wide reach and applicability
of evolutionary computation.

Conflicts of Interest: The author declares no conflicts of interest.
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