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Abstract: A flood of information has occurred, making it challenging for people to find and filter their
favorite items. Recommendation systems (RSs) have emerged as a solution to this problem; however,
traditional Appenrecommendation systems, including collaborative filtering, and content-based
filtering, face significant challenges such as data scalability, data scarcity, and the cold-start problem,
all of which require advanced solutions. Therefore, we propose a ranking and enhancing sequence
movie recommendation system that utilizes the combination model of deep learning to resolve the
existing issues. To mitigate these challenges, we design an RSs model that utilizes user information
(age, gender, occupation) to analyze new users and match them with others who have similar
preferences. Initially, we construct sequences of user behavior to effectively predict the potential next
target movie of users. We then incorporate user information and movie sequence embeddings as
input features to reduce the dimensionality, before feeding them into a transformer architecture and
multilayer perceptron (MLP). Our model integrates a transformer layer with positional encoding
for user behavior sequences and multi-head attention mechanisms to enhance prediction accuracy.
Furthermore, the system applies KMeans clustering to movie genre embeddings, grouping similar
movies and integrating this clustering information with predicted ratings to ensure diversity in the
personalized recommendations for target users. Evaluating our model on two MovieLens datasets
(100 Kand 1 M) demonstrated significant improvements, achieving RMSE, MAE, precision, recall, and
F1 scores of 1.0756, 0.8741, 0.5516, 0.3260, and 0.4098 for the 100 K dataset, and 0.9927, 0.8007, 0.5838,
0.4723, and 0.5222 for the 1 M dataset, respectively. This approach not only effectively mitigates cold-
start and scalability issues but also surpasses baseline techniques in Top-N item recommendations,
highlighting its efficacy in the contemporary environment of abundant data.

Keywords: recommender systems; collaborative filtering; enhancing sequence movie recommendation
system; deep learning; transformer architecture; KMeans

1. Introduction

Internet technology and artificial intelligence have attracted researchers, industries,
and markets to the Internet of Things (IoT) in recent decades. IoT connects heterogeneous
physical objects to collect data from smart gadget sensors [1]. Smartphones, smartwatches,
laptops, sensors, and their internet connectivity generate big data or structured and un-
structured data. Big data dominates research in business, healthcare, monitoring systems,
transportation, smart homes, and more [2–4]. Patient monitoring systems use IoT devices to
capture real-time data for personalized therapy and early disease detection. Businesses use
big data to improve their decision-making, streamline operations, and customize consumer
experiences, enhancing performance and competitiveness. IoT gadgets in smart homes use
data for convenience, security, and energy management, demonstrating how big data can
improve daily life.
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However, the increasing volume of big data introduces the challenge of information
overload [4]. The vast expanse of data complicates searches for specific information, making
it increasingly difficult to provide the optimal relevant items. Previously, people would
manually filter through traditional data, row by row, to find what they needed—a process
that was both time-consuming and inefficient.

RSs have proved to be a valuable solution, assisting users in solving time-consuming
problems [5]. They are utilized for decision-making by generating customized lists of
products, resources, and information tailored to users’ interests and past experiences. Ad-
ditionally, RSs use various technologies to filter out satisfactory results, thereby reducing
the searching time and quickly providing users with the information they need. Recent
advancements in RSs have seen their application broaden significantly, touching on a
variety of sectors, including entertainment, e-commerce, scientific research, news, health-
care, tourism, education, social media, and more [6]. These advancements highlight the
increasing significance and practicality of RSs in assisting people in going through the
extensive range of choices that are accessible in these fields.

For instance, in healthcare, RSs are transforming patient care by offering personalized
recommendations for food, drugs, physical activities, healthcare professionals, and hospital
locations [7]. This level of personalization in healthcare recommendations is instrumental
in improving patient outcomes and satisfaction by catering to users’ health needs and
preferences [8]. In e-commerce and entertainment, giants like Amazon, Netflix, YouTube,
Facebook, and Google have pioneered the development of sophisticated recommendation
models to serve their diverse user bases [9–12]. These models are adept at navigating the
vast amounts of data generated by users to offer personalized suggestions. By analyz-
ing past search histories, user demographics, and individual preferences (such as likes,
dislikes, and ratings), these platforms can curate content, products, or services that res-
onate with each user. This personalized approach not only enhances user engagement but
also boosts the platforms’ ability to cross-sell and upsell, thereby increasing their value
proposition to users.

YouTube and Netflix, for instance, utilize RSs algorithms to offer personalized video
suggestions and content recommendations. These recommendations are mainly based on
social links, user behavior patterns, and content analyses. The systems take advantage
of the similarities in friend connections and listening histories to recommend content
that aligns with users’ interests and past interactions. This method ensures that users
continually discover new and engaging content that matches their preferences, keeping
them hooked to the platform. Similarly, social networking and content-sharing companies
like LinkedIn, Facebook, and Instagram employ RS algorithms to boost user engagement.
By evaluating social connections, user activity, and content interactions, these systems can
suggest new connections, tailor material feeds, and offer content/items that are likely to
interest the user. This enhances the user experience by making the platforms more relevant
and interesting, and it also promotes deeper user participation and interaction.

Traditional recommendation systems use collaborative filtering, content-based filter-
ing, and hybrid approaches [13]. Content-based filtering creates a recommendation model
from item content. It proposes goods based on the user’s profile and past decisions. This
content-based strategy adapts quickly to new profiles. Its constraints include the need for
a well-organized user profile to make a suggestion [14]. Collaborative filtering, another
old method, relies on user preferences to make suggestions. The model assesses user
similarity and groups users as neighbors [15]. Items are recommended to people with
similar tastes. Finally, the hybrid approach uses collaborative, content-based filtering, and
other strategies to improve its suggestion quality [16]. These algorithms usually work well,
although data sparsity, scalability, cold starts, and other issues arise [17]. Collaborative
filtering algorithms, which use an object’s average rating to compare user ratings and make
new suggestions, are the most popular. For analyzing big item sets, data sparsity is crucial,
but there are various drawbacks. Another constraint is the closest neighbor prediction
difficulty. The third barrier is scalability, which becomes a difficulty as the numbers of users
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and items increase. A fourth constraint is the cold start problem, caused by a lack of user
relationships and information [18].

Many academics have used deep learning, a cutting-edge method for complex learning
and predicting tasks, to overcome these issues. We designed a deep learning-based movie
recommendation system to alter CF in this study. CF has two learning models, influenced
by model-based and memory-based techniques [19]. This study uses a succession of
movies and user data to improve recommendation system models. It addresses the issues
discussed earlier. Our goal is to provide users with a personalized experience and enhance
the accuracy of the system. To make a good RSs, we use the advanced deep learning model’s
strong point—the transformer architecture, which is good at working with sequential data—
to pull out temporal dependencies by looking at a user’s past movie ratings and adding
demographic information to look for correlations for people who are new to the system.
This method provides users with personalized movie ideas and accurate recommendation
tailor to their preferences. It achieves this by employing a mix of data mining and advanced
techniques to make a list of movies similar to those they enjoy. The KMeans clustering
technique helps to find hidden trends in movie features that are not always obvious. It
also improves the user experience, makes recommendations more diverse, and increases
efficiency. The main points of our manuscript are as follows:

• We interpret the recommendation model using the sequential temporal of user inter-
actions (movie ratings) to deliver a dynamic and contextual comprehension of user
preferences based on the Movielens dataset. Our approach adopts a Transformer
architecture, integrating multi-head attention with user demographic and movie em-
beddings, which allows the model to weigh various aspects of a user’s movie-watching
history differently when making predictions for the next target movie. Sequential
recommendations are referred to as advanced model-based CF, as this is more effective
in tackling the issues with existing traditional techniques.

• Then, the model contains a KMeans clustering post process to group movies into
clusters depending on their embeddings, which aids in diversifying recommendations.
It also integrates movie genres as extra attributes, boosting the model’s capacity to
represent varied movie qualities. The algorithm is designed to anticipate Top-N recom-
mendations for users, employing clustering to ensure a mix of genres and preferences.
The evaluation measures expand beyond typical loss functions to include precision,
recall, and F1 scores, offering a comprehensive view of the model’s performance.

The structures of the paper are arranged as follows: Section 2 illustrates related works
regarding movie recommendations. Section 3 pertains to our proposed framework; we
present the system architecture and a theoretical transformer model. Section 4 shows the
experimental results and data analysis and compares other baseline methods. Finally,
Section 5 is described in the conclusion of the work.

2. Related Work

This section introduces the traditional-based recommendation systems and recent
advance-based recommendation systems, which are the major core of our model. Currently,
RSs have been widely investigated in various disciplines of artificial intelligence, including
different perspectives of machine learning techniques, to solve specific difficulties.

2.1. Traditional-Based Recommendation Systems

Several studies have investigated the evolution of recommendation systems, which
traditionally comprise two parts: content-based filtering and collaborative filtering [20].
Content-based filtering (CBF) has focused on recommending new items that are similar to
those a user liked in the past, relying on item features and user profiles. Pazzani, Michael
J and Daniel Billsus, [21] emphasized the importance of item features and user profile
creation for effective recommendations. The strength of CBF lies in its ability to recommend
items similar to those a user preferred in the past, utilizing detailed descriptions and
metadata of items. However, it often suffers from a lack of diversity in its recommendations
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and struggles with the new item (cold start) problem, where new items have not yet been
rated sufficiently to be recommended.

On the other hand, collaborative filtering (CF), the more prevalent approach, relies
on both implicit and explicit user–item interactions [22]. CF utilized the user–item interac-
tion matrix, introducing foundational algorithms like matrix factorization. Despite their
effectiveness, challenges such as cold start, scalability, and sparsity issues persist. Sarwar,
Badrul et al. [23] addressed scalability with “item-based collaborative filtering”, propos-
ing algorithms that improved the recommendation efficiency and performance. Takács,
Gábor et al. [24] furthered CF with matrix factorization techniques, enhancing its ability
to deal with large datasets and improving recommendation accuracy. Barathy, R, and P.
Chitra [25] proposed matrix factorization (MF) and Singular Value Decomposition (SVD)
and decomposed the user–item interaction matrix into latent factors, capturing underlying
patterns in user preferences and item characteristics to improve recommendation accuracy.
Rendle, Steffen et al. [26] utilized Bayesian Personalized Ranking (BPR) to optimize person-
alized ranking item predictions by extracting latent features representing user preferences
and factorizing the user–item interaction matrix into a lower dimension based on explicit
or implicit feedback. To overcome the limitations inherent in CBF and CF, researchers
explored hybrid models. Sun, Chang et al. [27] presented hybrid news recommendation
algorithms that combine content-based methods (using TF-IDF and K-means clustering)
with SVD-based collaborative filtering to improve overall performance. Further, Patoulia,
Agori Argyro et al. [28] conducted a comparative study of collaborative filtering in product
recommendation, which demonstrated that the LightFM library outperforms the surprise
library in handling foodservice transactional data, emphasizing LightFM’s ability to deal
with sparse data and establish personalized recommendations. This paper emphasizes the
importance of hyperparameter tuning for optimal algorithm performance and represents a
significant development in collaborative filtering techniques.

Initially, recommendation systems relied heavily on content-based and collaborative
filtering techniques. Although they are effective, they are limited in their ability to handle
complex patterns and large-scale data, particularly when the rating matrix is sparse.

2.2. Advanced-Based Recommendation Systems

The advent of deep learning has led to a paradigm shift in recommendation systems.
These models excel at capturing complex user–item interactions and integrating diverse
data types, such as textual and visual information, into the recommendation process.

Zhang, Shuai et al. [29] surveyed and offered new perspectives on deep-learning-
based recommender systems. Neural collaborative filtering (NCF) demonstrated how deep
neural networks can learn user–item interaction patterns more efficiently than traditional
matrix factorization methods. This approach leverages a multi-layer perception to learn
the non-linear interactions between user and item, significantly enhancing the recommen-
dation accuracy. While neural-network-based models and the application of Restricted
Boltzmann Machines have offered a nuanced understanding of user–item interactions,
deep learning also has enhanced content analysis capabilities, with convolutional neural
networks (CNNs) being applied for feature extraction from non-textual content, such as
images and videos, significantly improving content-based recommendations. Auto Rec
and CDAE utilize an autoencoder framework to extract latent vectors for user–item dynam-
ics, predicting user ratings and generating high-quality movie recommendations. In the
realm of recommendation systems, Xinchang, Khamphaphone, Phonexay Vilakone, and
Doo-Soon Park [30] proposed using social network analysis and collaborative filtering to
form the recommendation system, and the authors’ method solved the cold-start problem
in the traditional approach. Moreover, they applied the community detection method
to cluster user similarities and recommend a movie list to a target user based on similar
preferences. Aiming to develop an improved collaborative movie recommendation system
which combines K-means clustering with neural networks, Jing and Hui [31] introduced
the hybrid approach, which applies K-means to cluster movies into groups and then trains
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a neural network model to learn users’ preferences based on the clusters to provide more
accurate and personalized recommendations, especially for new users with sparse data.
Wang, Kai et al. [32] presented a novel model that combines k-means clustering with a
deep neural network to generate personalized recommendations for users in e-commerce
applications, which can effectively solve problems of sparse data and information overload.
Chen, Jianguo et al. [33] applied K-means clustering in healthcare recommendation systems
to group patients with similar medical histories. Clustering patients based on demo-
graphic and medical data facilitated personalized treatment recommendations, improving
healthcare outcomes.

The traditional domain of collaborative filtering has undergone substantial evolu-
tion with the interpolation of deep learning models, particularly matrix factorization
techniques combined with neural networks that can capture temporal dynamics in user–
item interactions to predict the next items. Early work on sequential recommendation
systems was generally based on Markov Chains (MC). For instance, for Rendle, Steffen,
Christoph Freudenthaler, and Lars Schmidt-Thieme [34], FPMC was the most commonly
used technique when combining power matrix factorization and MC to make next-basket
recommendations, encoding users’ short-term interests, which demonstrated a good perfor-
mance using sparse datasets. Tang, Jiaxi, and Ke Wang [35] also proposed a convolutional
sequence embedding (caser), using the Top-N model of the embedded sequential pattern as
the local features of the image. Both horizontal and vertical convolutional filters from the
embedding matrix of high-order Markov chains were used as the image in order to capture
high-level sequential patterns. Hidasi, Balázs et al. [36] developed a novel CF model that
incorporates recurrent neural networks (RNN) to track changes in user preferences over
time (as in the case of Netflix). This approach addresses the traditional limitations of CF,
such as cold start and data sparsity problems, by providing a dynamic representation of
user interests, leading to more accurate and timely recommendations. The recurrent neural
networks (RNNs) can capture the sequence dependence among user–item interactions in
a behavior sequence to predict the possible interactions of the next item. Basically, when
dealing with long-term sequences using RNN, backpropagation will face a few acute prob-
lems, such as gradient disappearance. In addition, it only handles point-wise dependency.
Choe, Byeongjin, Taegwan Kang, and Kyomin Jung [37] used gated recurrent units (GRU),
and Duan, Jiasheng et al. [38] used long short-term memory (LSTM), popular models that
encode items into a dense vector to reflect users’ interest in various recurrent architectures
to improve their version of the model and further improve the Top-N recommendation
performance. Those complex models require large amounts of data to capture long-term
patterns, i.e., overfitting easily occurs in high-sparsity settings. They cannot be run in
parallel, which is time-consuming.

Even if the current trend of using other state-of-the-art recommendation technology
could provide satisfactory results, studies of recommendation models are still a hot re-
search topic, improving their performance in an unstoppable way. The integration of deep
learning into RS using a transformer model has been a significant area of innovation. The
transformer architecture, originally used for natural language processing, has led to a signif-
icant leap forward in creating adaptive systems that can capture long-range dependencies
in sequences of user–item interactions and improving recommendation performance and
interpretability. Kang, Wang-Cheng, and Julian McAuley [39] introduced self-attentive
sequential recommendations (SASRec), while Yu, Saisai et al. [40] proposed personalized
movie recommendation algorithms that fuse visual and textual features using multi-head
attention with neural networks that can address data sparsity and cold start problems.
Chen, Qiwei et al. [41] presented a Behavior Sequence Transformer for E-commerce Rec-
ommendation in Alibaba, a model designed to enhance recommendation systems within
the e-commerce domain. This is specifically built upon the transformer architecture, a
popular deep-learning architecture that is effective in sequence-to-sequence tasks. Wang,
Dongjing et al. [42], revolutionized a transformer-based RS that adapts to both sequential
and contextual information in user interactions. By employing self-attention mechanisms,
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the system can dynamically weigh the importance of different items in a user’s history,
leading to highly personalized and context-aware recommendations. In addition, existing
works focus on understanding users’ playlists or listening sequences, which have inspired
many sequential recommendation models. Chen, Quanzhen et al. [43] introduced a hybrid
model incorporating GNNs to leverage both user–item interactions and content features.
The approach allows for a more comprehensive understanding of user preferences and item
characteristics, leading to improved recommendation diversity and accuracy. Additionally,
hybrid systems employing the transformer architecture have been developed to better
capture sequential user behavior and item attributes to make dynamic recommendations.

3. Methodology of Movie Recommendation Systems

In this section, we provide an overview of the recommendation architecture and the
important requirements for predictive tasks. Additionally, we introduce the process, from
data processing to the point where the model can generate a list of movie recommendations
for the target users.

3.1. Data Processing and Sequence Creation

Firstly, we explain the preprocessing steps required in our implementation. In our
work, we utilize users’ ratings from the MovieLens dataset to construct a recommendation
system. Initially, we merge all the rating information for an individual user into the required
input format for our transformer model [44]. We then construct a vocabulary for movie
IDs and user IDs and create sequences of user interactions in chronological order. All
user interactions are first sorted by their interaction timestamp and then divided into
subsequences for the training model. To facilitate subsequent calculations, we convert
the list of movie IDs and the movie ratings to a fixed length and retain a position set
of subsequence information. These sequences are further divided into subsequences to
create a structured input format that encapsulates a user’s interaction history up to a fixed
length, thereby preparing the data for the transformer model. After processing, the input is
generated for each individual user in a sequential manner, including user ID, movie ID,
sequence rating, the target (label) that the model attempts to predict—which would be the
target movie ID—and the rating of the last item in the sequences, as shown in Table 1.

Table 1. Sequence interaction of users and movies.

User ID Movie ID in Sequence Sequence Rating Target Movie ID Target Rating

User_1 2926 2915 2344 2968 2.0 3.0 3.0 4.0 2968 4.0
User_2 1307 2791 73 3269 3.0 5.0 1.0 5.0 3269 5.0
User_3 420 3688 838 2174 2.0 1.0 4.0 3.0 2174 3.0
User_4 1704 541 1219 3521 4.0 2.0 3.0 2.0 3521 2.0
User_5 44 1608 2064 3835 5.0 1.0 1.0 4.0 2064 4.0

To enhance the input data, we integrate additional attributes, such as movie genres in
the sequences and the demographic information (age, gender, occupation) of the users, into
our final dataset. The final dataset was then subjected to a series of cleaning procedures,
including removing duplicates, handling missing values, and addressing outliers, before
being finalized for analysis. Furthermore, some data had to be converted from categorical to
numerical formats to be compatible with the transformer model and k-means clustering in
the embedding layer. Variables like gender and occupation were encoded from categorical
to numerical formats through a process of factorization. The age feature underwent
normalization using the MinMaxScaler, which scales the data to fall within a specified
range. This enhances model performance by ensuring numerical features are on a similar
scale. Movie genres were expanded into binary features, each indicating the presence of
a specific genre, thus enriching the dataset with explicit genre information, as shown in
Figure 1 on step 1 and in Figure 2.
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3.2. Model Architecture

This section introduces the model architecture of the entire recommendation system as
detailed in Figure 1. There are two main processes in our system. The first process involves
applying deep learning and key transformer features to predict the next movie based on
the user’s sequence and information. The transformer model was implemented with a
multi-head attention layer and positional embedding, which are adept at understanding
the complex viewing patterns of users. The multi-head attention mechanism allowed the
model to focus on different parts of the user’s movie history to provide a comprehensive
understanding of their preferences. The positional embeddings provide the model with an
understanding of the order in which movies were watched, which was crucial for predicting
future interests. Subsequently, we fed an embedding layer of the user behavior sequence,
which was implemented using a transformer architecture. This was then combined with
user demographics following multi-layer perceptron (MLP) to predict the rating. In the
second step, after training the transformer model, we integrated the output predicted
rating into K-mean clustering to generate a Top-N recommendation system for the target
user. K-means clustering is a popular method in cluster analysis, which is designed to
partition a set of objects into K clusters in such a way that the sum of the squared distances
between the objects and their assigned cluster mean is minimized. Our objective was
not only to develop recommendation algorithms that personalized the results based on
historical preferences but also to dynamically adjust diversity in the recommendations
list according to the user’s interest. To achieve this, we utilized the K-means approach to
personalized diversity, which automatically segments movies into distinct groups based
on user preferences (target next movie) according to certain predefined categories (movie
embeddings associated with the movie’s genre). When creating the recommended list, we
investigated these clusters to ensure a diverse suggestion of Top-N movies when a user
interacts with our system. Similarly, for new movies with few or no ratings, clustering helps
us identify and recommend unseen movies to target users based on their similarity score
with other movies. The K-means clusters aid in diversifying the selected top N by ensuring
that movies from different clusters are included in the recommendations. Therefore, our
approach helps in providing a variety of recommendations to the user, ensuring that these
recommendations are not limited to a specific genre or type of movie [45,46].
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3.2.1. Process ONE—Predicting User Ratings for Movies

This section introduces the first process used for model rating prediction. The primary
purpose of our work was to predict how a particular user might rate a given movie.
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The process includes various necessary elements suitable for our predictive model. The
model took in features such as user ID, movie ID, user’s demographic data, and historical
movie ratings (sequence experiences of the target user), and output predicted ratings.

(a) User-Movie Embedding Layer

We divided learning data into two parts: user demographic and movie sequence
embedding. User demographic data consisted of data such as user ID, gender, age, and
occupation. Each category of input features first passed through the embedding layer to be-
come a dense feature vector. An embedding matrix uj ∈ Ruxd was created to transform the
integer index into a dense vector of fixed size, where u represented the vocabulary size (the
total number of unique categorical elements), and d was the embedding dimension. These
dense vectors could typically reduce the dimensionality of the input features, capturing
the underlying relationships and characteristics of each categorical feature to feed them
directly into the multi-layer perceptron (MLP).

Movie features contained the movie IDs in sequence, and movie genre. Firstly, the
movie IDs, in sequence, were transformed into dense feature vectors through the embed-
ding layer. The input movies’ genre features were transformed into feature vectors through
muti-hot encoding. We also obtained embeddings for each movie ID in the behavior
sequence, including the target movie, which was essential for the transformer model to
understand the sequence’s temporal dynamics. Furthermore, we incorporated a learnable
position encoding matrix to enhance the input order sequence to address the lack of in-
herent positional information in the transformer architecture. For each movie, we then
concatenated the movie ID sequence with the positional encoding matrix and created an
embedding matrix Êi ∈ Rnxd, which represents the embedding vector of the i-th movie in
each behavior sequence of user u after adding the position vector. In our process, we fed
our sequence of movie embeddings into a single transformer layer, before concatenating
the output with the user features.

(b) Model Training

The transformer model was a type of deep learning model that was primarily used
in the processing of sequential data such as natural language. It could capture the user
dynamic nature influences on users’ recent activities. In our study, we analyzed the
structure of the transformer layer, which enhanced the model’s ability to capture the long-
range dependencies and relationships between movies in a sequence, allowing it to make
more accurate and personalized recommendations. The transformer layer comprised a
multi-head attention layer and a Position-Wise Feed-Forward Neural Network (FFN).

The multi-head attention mechanism allowed for the model to focus on different
sections of the input sequence in different ways (e.g., longer-term dependencies versus
shorter-term dependencies) when making prediction ratings for each target movie. The
multi-head attention module can be used in algorithms. The module is expected to be
process information multiple times in parallel via an attention mechanism. This mechanism
allows the model to jointly attend to information from different representation subspaces at
different positions, providing a more complex understanding of the input sequence. After
that, the output of the distinct attention was connected and linearly transformed into the
aspect that was predicted. In our case, the multi-attention operation takes the embedding
Êi as input. The input is passed through three separate linear layers to produce the Q, K,
and V matrices, as presented below:

Ai= MultiHead
(
Ê
)
= Concat(head1, . . . , headh)W0 (1)

headi = Attention
(

ÊWQ, ÊWK, ÊWV
)

(2)

where WQ, Wk, and WV ∈ Rdxd are the projection matrices that makes the model more
flexible, Ê is the embedding matrix of all movies, W0 is a learnable weight matrix that can
form the final representation of the movie at i, and h is the number of heads.
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In our transformer layer, a point-wise feed-forward network (FFN) enabled the model
to adapt, providing the flexibility needed to understand complex movie interactions within
the sequence. These networks had hidden layers and non-linear activation functions, which
allowed the model to learn complex patterns in the movie ID sequence. FFN consisted of
two fully connected layers. At the same time, we utilized dropout layer normalization to
optimize the model, while avoiding overfitting and speeding convergence with LeakyReLU
in FFN. These were applied to each position, separately and identically, during training.
The overall output of the transformer layer between the multi-head attention and stacking
FFN layers, which represents the candidate movie that contains characteristics of the users’
behavior sequence, can be defined as follows:

Ni = LayerNormlization
((

Ê
)
+ Dropout(Ai)

)
(3)

Fi = FFN(Ni) (4)

Ti = LayerNormlization(Ni + Dropout(LeakyReLu(FiW1 + b1)W2 + b2)) (5)

where W1, W2 ∈ Rdxd, b1, and b2 ∈ Rd refer to the learnable weight’s matrix and bias parameters.
Next, we concatenated the user demographic embedding layer uj and the output of

the transformer, with target item as Ti, for the representation operation of the two vectors
and passed them together through a multilayer perceptron (MLP) network. The output
layer computed the predicted rating of the next target movie using a dense layer. The
dense layer allowed for a linear transformation of all flattened and concatenated features,
as expressed below:

xi,j = Concate
(
Ti, uj

)
(6)

ŷi,j = σ
(
W·xi,j + B

)
(7)

where ŷi,j is the predicted rating for user j on movie i-th, W is the weight matrix for the
output layer, (.) is the dot product between the weight matrix W and the input vector xi,j,B
is the bias vector for the output layer, and σ is the sigmoid activation function.

3.2.2. Process TWO: Leveraging Predictions for Recommendations

In this second process, we aimed to leverage the predictive tasks resulting from Process
One’s output to model a recommendation for a Top-N recommendation list. After training,
we applied KMeans clustering to movie embeddings to group movies into clusters based
on the learned features. This clustering could assist in the recommendation process by
identifying movies that are similar to each other.

To recommend movies, we first predicted ratings for a user’s movies and then selected
the top-N movies based on these predicted ratings. Clustering information was used to
refine recommendations, ensuring diversity and focusing on a specific genre or group of sim-
ilar movies. The linkage of KMeans clustering to our model could be explained as follows:

After training the recommendation model, we extracted embeddings for each movie.
These embeddings were the output of the movie embedding layer in our neural network
model. This step involved KMeans clustering, with the following processes: (1) Choose
the number of clusters, K, based on domain knowledge, heuristic methods (like the elbow
method), or experimentation. (2) Initialize the KMeans algorithm with K clusters and
fit this on movie embeddings. (3) Each movie should be assigned to the nearest cluster
centroid. To generate Top-N recommendations, the system predicted ratings for movies
that had not yet been rated by a user, leveraged clustering information to ensure diversity
or focus on specific interests, and then selected the top-rated movies as recommendations.

4. Experimental Study

To verify the effectiveness of our proposed model, we applied two well-established
versions, 100 K and 1 M [47], to the experiment, as presented in Table 2. MovieLens is a
popular benchmark dataset for R.S. evaluation, which consists of many user attributes.
The 100 K datasets consisted of interactions between 944 users and 1682 items (movies)
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that were used for the experiment. Meanwhile, 1 M datasets were larger, with interactions
between 6040 users and 3883 items. The dataset was structured into three distinct CSV
files, which provided a brief description of important attributes such as user ID, movie ID,
movie title, rating, timestamp, gender, age, occupation, zip code, title, and genres. Each
dataset consists of various ratings from anonymous users, from 1 to 5. We gathered relevant
data on user–item interactions and user demographics such as age, gender, movie genres,
and occupation as input features to speed up our system, to obtain a better result in terms
of recommendations.

Table 2. Statistics of the Movielens dataset.

Dataset #User #Item #Rating Sparsity

100 K 943 1682 100,000 93.69%
1 M 6040 3883 1,000,209 95.73%

After the data were preprocessed, our dataset was divided into training and testing
datasets, respectively. The training dataset contained 80 percent of the Movielens dataset,
and the remaining 20 percent belonged to testing data. In the model, ratings were con-
sidered target values in a sequence, which needed to be fit. Furthermore, we saved the
training and testing datasets to CSV files for implementation in our training and evaluation
model. The sample data in Figure 2 refer to the data obtained from the data processing
of Movielens.
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4.1. Implementation Detail
4.1.1. Environment Set-up of Transformer Model

In our architecture model, we performed parameter optimization with Adam, a
learning rate of 0.001, and a default batch size of 128. We set hyper-parameters of the
transformer layer as L = 2, attention head as h = 8, sequence length as N = 4, inner size as
256 (e.g., FNN layers), and hidden size of MLP = [128, 128]. After each layer, we used a
dropout layer with a dropout chance of 0.2 to reduce overfitting. We set a feed-forward
layer followed by a Softmax layer to predict the probability of a movie. The training process
was terminated after a maximum of 100 epochs. These procedures were implemented
using TensorFlow 2.13.0 and Python 3.8.10. The hardware and software environment used
for implementing the task included Windows 11 Enterprise 64-bit, a 12th Gen Intel(R)
Core(TM) i7-12700 CPU @ 4.02 GHz, and 32.0 GB RAM.

4.1.2. Environment Set up of K-Means Algorithm

In this section, we determined the number of clusters based on the k-value setting
using the Elbow method. This method involves iteratively fitting K-Means models with
varying values of k to evaluate their performance. We applied the MovieLens dataset
to generate the top 10 recommendations by predicting the next target movie, specifically
movie_9 in the 100 K dataset and movie_2926 in the 1 M dataset. These movies were
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identified among the distinct clusters of other movies after model training, and classified
into separate groups using the k-means algorithm, along with genre information. To
identify the optimal number of clusters, we applied the Elbow method by running k-means
clustering on the dataset for a range of k-values (e.g., from 1 to 50), and then computed
the sum of squared distances from each point to its assigned center (inertia) for each k.
This process requires running the algorithm multiple times in a loop, with an increasing
number of cluster choices, and then calculating a clustering score as a function of the
number of clusters. The optimal cluster values for different pairs of genres are 4, 5, 7, and
10. In our experiments, the elbow point was observed at k = 4, indicating this to be the
most optimal number of clusters for our K-Means clustering to provide a suitable balance
between capturing the underlying data structure and avoiding excessive model complexity.

4.2. Evaluation Metric

To check the performance of our sequential recommendation system, we adopted the
leave-one-out evaluation for the next-item recommendation task. For each user, we used
the last movie of the behavior sequence as the test set and utilized the remaining movie for
the training set. We followed the common convention of pairing each ground truth in these
test sets with 100 random negative items that the user had not interacted with, giving them
all the same context as their corresponding positive test item, and ranking the positive test
item among them. Lastly, we truncated the rank list at the threshold value for each user.
We measured the overall quality using the hit rate (HitRate@k) and normalized discounted
cumulative gain (NDCG@k). These mercies can be calculated as follows:

HitRate@k =
Number o f HitRate@k

k
(8)

where HitRate@k is the number of correct predictions in the Top-N recommendations, and k
is the number of recommendations or the cutoff value for which we want to calculate the
HitRate. In our experiments, all datasets had a rating range of 1–5, and we set the threshold
at 3.5. If the threshold for an item was not met, we omitted the item.

The second metric that was adopted was the normalized discounted cumulative gain
(NDCG@k), which measured the Top-N recommendation system list quality, expressed
as follows:

DCGk = ∑k
i=1

2reli − 1
log2i + 1

, NDCGk =
DCGK
IDCGK

(9)

where reli was the actual rating score of an item at the rank position i For our experiment,
we gave results for HitRate and NDCG with k = [5, 10]. For all metrics, a high value
corresponded to a better performance.

Moreover, we used root mean squared error (RMSE) to measure the proposed model
performance. RSME was the approach we used to measure the error rate a user gave to the
system and the error predicted by the model. For example, the RSME is shown as follows:

RMSE =

√
1
n∑n

i=1

(
yi,j − ŷi,j

)2 (10)

where yi is the actual value, ŷi refers to the predicted value of the observation, and n refers
to the total number of data points.

To assess the diversity of the recommended movies, we utilized a metric based on
the pairwise distances between the movie’s embedding. These embeddings are high-
dimensional vectors that represent movies in a latent space, capturing various aspects of
the movie’s genre. Then, the K-means algorithm was used to cluster these embeddings,
grouping similar movies together based on their features to make our recommendations.
We calculated the Euclidean distance between every pair of movie embeddings in the
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recommended list. Finally, the diversity score was defined by taking the average of all
these pairwise distances, expressed as follows:

ILD =
2

n(n − 1)∑
n−1
i=1 ∑n

j=i+1

∥∥Ei − Ej
∥∥ (11)

where
∥∥Ei − Ej

∥∥ represents the Euclidean distance between the embeddings of movies i
and j, and n is the total number of recommended movies.

4.3. Benchmark Models

In this section, we selected benchmarks including BPR, NeuMF, Caser, GRU4Rec,
and SASRec to evaluate the performance. We implemented them using TensorFlow and
the RecBole library and considered latent dimensions {10, 20, 30, 40, 50} as the common
hypermeter in all models. The maximum number of training epochs is 100. In addition,
we adopted the NeuMF model with the hidden size h = [64, 32, 16]. We tuned the hyper-
parameter using the validation set and terminated training if the validation performance
did not improve at 40 epochs. The benchmark model is detailed as follows:

• Bayesian Personalized Ranking (BPR): The model is an optimization technique applied
to matrix factorization, explicitly tailored to the handling of implicit feedback to
enhance the factorization process by incorporating a pairwise ranking loss function.

• NeuMF: This is a collaborative filtering model that uses user–item interactions with
an MLP instead of the inner product in matrix factorization when calculating the
relationship between the user and item.

• Caser: This adopts convolutional neural networks (CNNs) in horizontal and vertical
dimensions to effectively model high-order Markov Chains (M.C.s) for sequential
recommendations.

• GRU4Rec: This is a unidirectional recurrent neural network (RNN)-based framework
that is used to capture sequential dependencies and make predictions.

• SASRec: This is a state-of-the-art sequential recommendation model leveraging self-
attention blocks to predict the next item for recommendation. Additionally, it employs
the dot product computation between sequential latent features of the latest item and
embeddings of the target item to establish the scoring mechanism.

4.4. Results Analysis

This subsection explains the result of our proposed system during the experiment
using the performance metrics across two Movielens datasets, 100 K and 1 M. We evaluated
the performance of our algorithm using common Top-N evaluation metrics, HitRat@K and
NDCG@K, highlighting its effectiveness in providing accurate and relevant recommenda-
tions. Firstly, we compared our transformer model training with a non-sequence model
such as BPR, NeuMF, and sequence models including GRU4Rec, Caser, and SASRec. The
non-sequence model only suggests movies to the user, without explicitly considering the
sequential order of their preferences or viewing history, and ignores temporal information.
The sequence model considers the temporal order or sequence of a user’s interactions
with the recommender. The user’s behavior sequence information can effectively charac-
terize the user’s changing preferences to a certain extent, improve the recommendation
performance on sparse datasets, and learn the long-term dependencies.

In Table 3, our transformer model is shown to achieve the best HitRat@5, HitRat@10,
NDCG@5, and NDCG@10 results on all datasets compared to the BPR, NeuMF, GRU4Rec,
Caser, and SASRec models. The experimental results were HitRat@5, HitRat@10, NDCG@5,
and NDCG@10 at (0.5676, 0.6633, 0.3714, 0.3783) on 100 K and (0.7034, 0.7309, 0.5869,
0.6238) on 1 M. This indicated that the sequential movie recommendation system of our
proposed transformer architect could effectively extract useful information from movies
to help us automatically select information with a long-term dependency and achieve a
more accurate predicted rating of next target movies than other models. Furthermore, our
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approach conveys the effectiveness of utilizing the multi-head attention mechanism to
capture relevant information in different representation subspaces for different tasks and is
time-consuming. The mechanism only pays attention to important movies. It drowns out
irrelevant movies for recommendation.

Table 3. Overall performance comparison with state-of-art efficient movie model at baseline.

Dataset Metric BPR NeuFM GRU4Rec Caser SASRec Our Model Improvement

Movielens 100 K

HitRat@5 0.4507 0.5610 0.3701 0.3595 0.3637 0.5676 1.17%
HitRat@10 0.5801 0.6925 0.5260 0.5111 0.5419 0.6633 −4.21%
NDCG@5

NDCG@10
0.1656
0.1588

0.2325
0.2314

0.2325
0.2826

0.2371
0.2861

0.2390
0.2965

0.3714
0.3783

55.39%
27.58%

MovieLeng 1 M

HitRat@5 0.4780 0.6752 0.5823 0.5889 0.5743 0.7034 4.17%
HitRat@10
NDCG@5

NDCG@10

0.5927
0.1927
0.1770

0.5808
0.2323
0.2442

0.6866
0.4487
0.4826

0.7003
0.4463
0.4825

0.6861
0.4428
0.4791

0.7309
0.5869
0.6238

4.36%
30.80%
29.25%

Figures 3 and 4 show our analysis of the latent dimensionality hyperparameter, high-
lighting the significance of higher latent dimensions d in achieving optimal results, ranging
from 5 to 50, across metrics with k values 5 and 10 of HitRate and NDCG to understand
the impact on algorithm performance. In this illustration, we study models such as BPR,
NeuFM, GRU4Rec, Caser, SasRec, and our model, with various d values, which increased
its value in both datasets. Moreover, our proposed model’s performance steadily improved
the embedding dimensions increased from 20 to 50. This indicated the best performance,
with the model learning more efficiently when a larger d was used to solve overfitting.
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Overall, for sparse datasets, the larger the embedding dimension, the better the
performance that can be achieved. This variation has a relatively stronger effect on 1 M than
100 K. A higher HitRate@10 value indicates a greater number of relevant results, making
the model more effective in suggesting the next_target movie.

The performance evaluation of our movie recommendation system was carried out
after utilizing the transformer model integrated K-means. Table 4 demonstrates effective-
ness in enhancing recommendation quality and diversity. On the MovieLens 100 K dataset,
our model achieved an RMSE of 1.0756, MAE of 0.8741, precision of 0.5516, recall of 0.3260,
F1-score of 0.4098, and item coverage of 0.1165. The intra-list diversity, when applied with
K-means, was 0.2447, which is an improvement over the 0.2173 intra-list diversity in the
non-K-means scenario. In contrast, in the larger 1 M dataset, performance was enhanced, as
evidenced by the improved metrics: an RMSE of 0.9927, MAE of 0.8007, precision of 0.5838,
recall of 0.4723, F1-score of 0.5222, and item coverage of 0.3216. The intra-list diversity
for this dataset improved to 0.3007 with K-means, compared to 0.2878 without K-means.
These outcomes illustrated the model’s scalability and its enhanced ability to make more
accurate predictions with larger datasets. The higher precision, recall, and F1-score on the
1 M dataset indicated a stronger ability to identify and recommend relevant movies to users.
The significant increase in item coverage for the 1 M dataset highlights that our method is
effectiveness in recommending a broader spectrum of movies, thereby potentially enriching
the user experience by exposing them to a wider variety of content. Although intra-list
diversity slightly decreases with a larger dataset, the model maintains a balance when
recommending popular movies, ensuring a diverse set of recommendations. This balance
demonstrated the system’s capacity to address critical challenges in recommendation sys-
tems, such as accuracy, diversity, and coverage, making it a valuable tool for personalized
movie recommendations in an era of information overload.

Table 4. Overall performance of our model on training and testing datasets.

Dataset RMSE MAE Precision Recall F1-Score Item Coverage
Intra-List Diversity

K-Means Non K-Means

100 K 1.0756 0.8741 0.5516 0.3260 0.4098 0.1165 0.2447 0.2173

1 M 0.9927 0.8007 0.5838 0.4723 0.5222 0.3216 0.3007 0.2878
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Figure 5 illustrates the training error with the initial setting. The model showed a
consistent decrease in both training and validation losses as the number of epochs increased.
The suggests that the model is improving its predictions over time. The model trained on
the larger dataset 1 M demonstrated a lower initial loss and achieved a smaller overall
final loss compared to the model that was trained on the smaller dataset “100 K”. This
suggests that the larger dataset might provide more information, allowing the model to
learn a better representation of the underlying data distribution and become capable of
making accurate predictions on unseen data.

Appl. Sci. 2024, 14, 2505 15 of 18 
 

The performance evaluation of our movie recommendation system was carried out 
after utilizing the transformer model integrated K-means. Table 4 demonstrates effective-
ness in enhancing recommendation quality and diversity. On the MovieLens 100 K da-
taset, our model achieved an RMSE of 1.0756, MAE of 0.8741, precision of 0.5516, recall of 
0.3260, F1-score of 0.4098, and item coverage of 0.1165. The intra-list diversity, when ap-
plied with K-means, was 0.2447, which is an improvement over the 0.2173 intra-list diver-
sity in the non-K-means scenario. In contrast, in the larger 1 M dataset, performance was 
enhanced, as evidenced by the improved metrics: an RMSE of 0.9927, MAE of 0.8007, pre-
cision of 0.5838, recall of 0.4723, F1-score of 0.5222, and item coverage of 0.3216. The intra-
list diversity for this dataset improved to 0.3007 with K-means, compared to 0.2878 with-
out K-means. These outcomes illustrated the model’s scalability and its enhanced ability 
to make more accurate predictions with larger datasets. The higher precision, recall, and 
F1-score on the 1 M dataset indicated a stronger ability to identify and recommend rele-
vant movies to users. The significant increase in item coverage for the 1 M dataset high-
lights that our method is effectiveness in recommending a broader spectrum of movies, 
thereby potentially enriching the user experience by exposing them to a wider variety of 
content. Although intra-list diversity slightly decreases with a larger dataset, the model 
maintains a balance when recommending popular movies, ensuring a diverse set of rec-
ommendations. This balance demonstrated the system’s capacity to address critical challenges 
in recommendation systems, such as accuracy, diversity, and coverage, making it a valuable 
tool for personalized movie recommendations in an era of information overload. 

Figure 5 illustrates the training error with the initial setting. The model showed a 
consistent decrease in both training and validation losses as the number of epochs in-
creased. The suggests that the model is improving its predictions over time. The model 
trained on the larger dataset 1 M demonstrated a lower initial loss and achieved a smaller 
overall final loss compared to the model that was trained on the smaller dataset “100 K”. 
This suggests that the larger dataset might provide more information, allowing the model 
to learn a better representation of the underlying data distribution and become capable of 
making accurate predictions on unseen data. 

Table 4. Overall performance of our model on training and testing datasets. 

Dataset RMSE MAE Precision Recall F1-Score Item Coverage 
Intra-List Diversity 

K-Means Non K-Means 
100 K 1.0756 0.8741 0.5516 0.3260 0.4098 0.1165 0.2447 0.2173 
1 M 0.9927 0.8007 0.5838 0.4723 0.5222 0.3216 0.3007 0.2878 

 

  
Figure 5. Training and validation loss performances of our proposed model on both datasets. Figure 5. Training and validation loss performances of our proposed model on both datasets.

5. Conclusions

This work offers a unique sequence movie recommendation system that employs deep
learning techniques to enhance user experiences by providing tailored movie suggestions
based on the captured sequential relations. Our study mainly focuses on user demographics
and user–item interactions in a sequence to help overcome the issues in standard algorithms’
recommendations caused by cold-start and data sparsity or scalability. We used user
demographic and movie sequence embedding as input and added this to the transformer
architecture to handle sequential data to generate the next target movie.

The transformer model in our system exploits movie sequence embeddings, translating
these dense vectors into a multi-head attention mechanism. This comprehensive technique
helps increase the understanding of user behavior dynamics. It interacts with a multilayer
perceptron (MLP) fed by user demographic data to discover intricate relationships, hence
refining the personalized recommendations for the next target movie. Additionally, we
applied KMeans clustering to detect underlying patterns in movie qualities that may not
be visible from the anticipated ratings post-model training. This concept enables our
system to widen the range of choices by suggesting movies from various clusters with
comparable genre features. This technique considerably enhances the personalized Top-N
movie recommendations, matching them with the user’s essential preferences, including
those that are not immediately apparent.

In our studies, we conducted detailed assessments utilizing the MovieLens datasets
(100 K and 1 M), which include essential variables such as movie ID, user ID, genres, gender,
age, and employment. The findings demonstrate that our recommendation system (RS)
model outperforms state-of-the-art baseline methods in terms of RMSE, MAE, precision,
recall, and F1 scores, recording values of 1.0756, 0.8741, 0.5516, 0.3260, 0.4098 for the 100 K
dataset and 0.9927, 0.8007, 0.5838, 0.4723, and 0.5222 for the 1 M dataset. Additionally, we
examined the model, utilizing hit rate and normalized discounted cumulative gain (NDCG)
measures, such as Hit Rate@5, Hit Rate@10, NDCG@5, and NDCG@10, with scores of 0.734,
0.7309, 0.5869, and 0.6238, respectively. These values represent improvements of 4.17%,
4.36%, 30.80%, and 29.25% compared to the 1 M dataset. Similarly, for the MovieLens
100 K dataset, the model obtains Hit Rate@5, Hit Rate@10, NDCG@5, and NDCG@10
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with scores of 0.5676, 0.6633, 0.6925, 0.3714, and 0.3783, showing gains of 1.17%, −4.21%,
55.39%, and 27.58% over the baseline model. These results illustrate the higher performance
and accuracy of our method when compared to other techniques, such as BPR, NeuMF,
GRU4Rec, Caser, and SaSRec, especially with extensive datasets.

In future studies, we seek to expand our model by including more large-scale datasets
to further evaluate its efficacy across multiple domains. Our key goal is to develop the
system’s capacity to provide more accurate and relevant suggestions to the target audience.
This expansion will allow us to examine the model’s adaptability and effectiveness in
multiple circumstances, ensuring that our recommendations remain topical and beneficial
to users with different tastes and needs.
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