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Abstract: To address the safety and efficient driving issues of human–machine shared control
vehicles (HSCVs) in future complex traffic environments, this paper proposes a game theory-based
interactive control method between HSCVs and surrounding autonomous vehicles (SVs) and involves
considering different driving behaviors. In HSCV, a comprehensive driver model integrating steering
control and speed control is designed based on the brain emotional learning circuit model (BELCM),
and the control authority between the driver and the automation system is dynamically allocated
through the evaluation of the driving safety field. Factors such as driving safety and travel efficiency
that reflect personalized driving style are considered for modeling the uncertain behavior of SVs. In
the interaction between HSCVs and SVs, a method based on game theory and distributed model
predictive control (DMPC) that considers the uncertainty of SVs’ driving behavior is established and
is finally integrated into a multi-objective constraint problem. The driver control input in an HSCV
will also be introduced into the solution process. To demonstrate the feasibility of the proposed
method, two test scenarios considering the driving characteristics of different SVs are established. The
test results show that automation control systems can promptly stop the human driver’s dangerous
operations in an HSCV and safely interact with multiple AVs with different driving characteristics.

Keywords: autonomous vehicles; human–machine shared control; non-cooperative game; model
predictive control

1. Introduction

Benefiting from the advancement of science and technology, such as computer science,
communication networks, and smart chips, autonomous driving technology has progressed
rapidly in recent years. The Society of Automotive Engineers (SAE) used a six-level system
(ranging from level 0 to level 5) in 2014 to define the degree of automation [1]. The current
research on autonomous driving mainly focuses on the degree of level 3 [2], which allows
for switching between fully autonomous and fully manual driving modes. However,
a variety of unresolved issues need to be addressed before fully autonomous driving can
be achieved, including ethical issues, laws and regulations, and technical bottlenecks [2–5].
In addition, keeping the driver out of the control loop for a long time will lead to driver
over-reliance and situational awareness decline [4,6]. However, it is worth noting that
automation control systems surpass humans in information storage, computing power,
etc., while human drivers exceed automation in moral judgment and reasoning [2]. Shared
control technology in intelligent driving can make full use of the strengths of human
drivers and automation systems to compensate for each other’s weaknesses, which has
been considered a transition to fully autonomous driving [7]. The concept of shared control
was first proposed by Sheridan and Verplank in the field of industrial robots in 1978 [8].
Subsequent research developed it towards intelligent vehicles and derived the idea of a
human–machine shared control vehicle (HSCV) [2,4,6].
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The standard shared control system in an HSCV consists of a human driver, an automa-
tion control system, a control mechanism, and a controlled vehicle system [6]. The driver
in a shared control system sits in the driving seat and controls the future movement of
the vehicle by turning the steering wheel and adjusting the accelerator and brake pedals.
The unique aspect of shared control in an HSCV is that the driver and the automation
control system are simultaneously kept in the control loop to complete a specific driving
task together [2]. The control mechanism is used to integrate the driver’s control commands
and the control actions of the automation system and ultimately input them into the vehicle
system. Based on the different control mechanisms, the shared control system in an HSCV
can be divided into a haptic shared control system and an input mixing shared control
system. The main difference between them is whether the control mechanism is mechan-
ically coupled. Haptic shared control usually uses an electric power steering system to
directly increase auxiliary torque to intervene and guide the driver’s control commands [9].
In contrast to haptic shared control, a steer-by-wire system can be used by an input mixing
shared control system to allow the steering wheel to be mechanically decoupled from the
road wheel. It then uses an intermediate controller to modify control commands entered by
the driver before they are applied to the vehicle steering system [2].

Designing a proper control policy for the automation system is always one of the
critical issues in the shared control system. An appropriate control policy is expected to
consider drivers’ personalization and commands to minimize human–machine conflicts
and guarantee driving safety and stability in changeable traffic scenarios [4,6]. For shared
control, integrating driver modeling into the system to characterize driver behavior can
increase mutual understanding between the driver and the automation system, thereby
reducing human–machine conflicts [2,10]. Many studies based on driver models have
been conducted, including the single-point preview model [2] and the two-point preview
model [11,12], which are used to simulate the driver’s steering behavior in lane keeping
scenarios and obstacle avoidance scenarios. Li et al. [13] adopted the idea in the work [14]
that driver steering behavior can be simulated by model predictive control (MPC), and they
designed a driver steering model based on MPC. A brain emotional learning circuit model
(BELCM) was designed in [15] to simulate driver steering behavior, but it did not consider
human–vehicle interaction. In terms of shared longitudinal control in an HSCV, the main
contribution of this research direction focuses on using the haptic accelerator to perform
vehicle following tasks [16,17]. In particular, the integrated control framework of driver
steering control and speed control models in HSCVs requires more research.

For automation control systems, it is necessary to design shared controllers to assist
drivers in driving safely and smoothly and to make timely interventions in dangerous
situations. And there are a variety of shared controllers in HSCVs, which include a linear
quadratic regulator (LQR) [18], Takagi–Sugeno (T-S) fuzzy control [11], Hinf control [19],
and MPC [20]. Compared with the above controller, MPC has the advantage of being
suitable for solving multi-constraint and multi-variable optimization problems, and it
has received widespread attention in the design of shared controllers for HSCVs [4,6,21].
In 2013 [22], Anderson et al. used constrained MPC to design a shared controller and then
used a weighted summation method to integrate the control commands of the driver and
the automation control system. However, this method ignored the adaptability of the shared
controller to the driver’s control input. A novel shared controller is designed in [20,23],
in which the driver’s control commands are integrated into the MPC’s cost function to
form an optimization problem. Considering that the driver’s unreasonable operation
will pose a safety threat to the vehicle, Liu et al. [24] added a driving control authority
allocation strategy based on fuzzy logic in the shared controller. Another reference-free
shared control framework based on MPC was designed by Huang et al. [25]. In this shared
controller, constrained Delaunay triangles and collision time are used to determine the
safe area, vehicle sideslip angle, and yaw angular rate, which are used to design stability
constraints. Na et al. [26,27] use a non-cooperative MPC method to simulate the interaction
between the driver and the controller, in which the driver steering controller and the
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automation controller need to minimize the cost function of cumulative trajectory errors
while also considering the impact of their control outputs on each other. The above studies
on shared controllers in HSCVs mainly focus on obstacle avoidance and lane keeping
scenarios. However, previous research mentioned above on HSCV shared controllers
focused primarily on static driving environments, such as safe avoidance of static obstacles
on the road or lane keeping on a road without other vehicles, and it lacks consideration of
the impact of complex factors such as vehicle interaction.

In the complex traffic environment of the future, it will be necessary for HSCVs
to share the road with adjacent traffic participants. Some research on how to design a
safe and effective control scheme for HSCVs to avoid SVs or static obstacles safely was
conducted. In [20], a method was demonstrated that integrates driver control commands
into a constrained MPC and defines an environmental envelope and a stable handling
envelope in the shared controller to ensure safe and stable obstacle avoidance driving.
In [28], the elliptical driving safety field is used to design a strategy to avoid surrounding
vehicles for human–machine shared control. Yue et al. [29] developed a spatial collision risk
system that allocates driving authority between the driver and the automation system to
avoid surrounding vehicles. In [27], MPC and game theory are used to simulate the impact
of the interaction between the driver and the automation system in obstacle avoidance
scenarios. However, the status of obstacles or surrounding vehicles (SVs) is static or
determined in the above studies while ignoring the influence of the behavioral changes
of SVs. Advances in sensors and vehicle-to-vehicle communication technology have
facilitated the development of connected autonomous vehicles (CAVs) [30]. The impact
of the different driving styles (aggressive, normal, cautious) of vehicles on interactive
behavior in lane changing and unsignalized roundabout scenarios has been studied in
the field of CAVs [30–32]. However, current HSCV studies need to give more attention
to complex traffic conditions, especially multi-vehicle interaction scenarios with different
driving styles.

How to ensure safe driving between HSCVs and SVs in uncertain traffic environments,
especially in multi-vehicle interaction scenarios with different driving styles, is still an
open issue. Based on a non-cooperative game, this paper designs a safe, interactive control
method for HSCVs with surrounding vehicles with different driving styles. The main
contributions are as follows. (1) The driver’s control commands in the HSCV, as well as the
uncertain driving behavior of SVs, especially the aggressive behavior of neighbor vehicles
that suddenly change lanes or accelerate to occupy the road, are taken into account by
the automation control system of the HSCV to ensure safe driving. (2) The coupling opti-
mization problem of the HSCV in a multi-vehicle interaction scenario is transformed into a
non-cooperative game obstacle avoidance control problem. The iterative optimal response
method is adopted to find Nash equilibrium solutions for these non-cooperative games.

The structure of the article is as follows. Problem formulation and the overall system
framework are described in Section 2. Section 3 displays the vehicle dynamics model
and a comprehensive driver model considering lateral and longitudinal control. Then,
Section 4 establishes the human–machine shared control model and shared control strategy
and demonstrates the non-cooperative game interaction method between HSCV and SVs,
considering different driving styles. In Section 5, the feasibility of the algorithm is tested
and analyzed in different scenarios. Section 6 concludes this study.

2. Problem Formulation

As introduced in Section 1, existing research on the traffic participants that HSCV
needs to avoid in safe driving are usually set as static obstacles, or SVs, with fixed driving
characteristics, and the motion state remains unchanged. However, there are significant
differences in the driving styles of different drivers, and the research methods related to
driving style recognition include the Markov model, K-means clustering, Bayesian learning,
and other methods [31]. Usually, the three labels of aggressive, moderate, and cautious
are used in many studies to distinguish driver styles [30,33–35]. Aggressive drivers often
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pursue traffic efficiency and perform sharp acceleration and steering behaviors. For exam-
ple, an aggressive driver may suddenly accelerate and seize the road, preventing neighbor
vehicles from changing lanes. Aggressive drivers even have the dangerous behavior of sud-
denly changing lanes and ignoring the existence of neighbor vehicles. However, cautious
drivers worry about driving safety and will choose a lower speed and maintain a longer
following distance. This article focuses on the impact of the dangerous behavior of SVs on
HSCVs and how to safely control HSCVs rather than the classification of driving styles.
The driving style of SVs will be designed based on the driving style cost function, in which
two critical indicators of driving safety and travel efficiency that reflect personalized driving
style will be taken into consideration.

Lane changing is a typical driving behavior of vehicles which is also prone to lead
to traffic accidents, especially in high-speed scenarios. This paper mainly focuses on
ensuring the safety control of an HSCV in the lane changing scenario, including the HSCV’s
avoidance of the sudden lane changes of neighbor vehicles (NVs). The driving environment
module in Figure 1 shows common driving scenarios in which the red vehicle driving on
road 2 is an HSCV controlled by a human driver and an automation system. The vehicles
on either side of the HSCV are represented as NV1 and NV2, respectively. The vehicles
in front of the road are represented as leader vehicles (LVs). The HSCV is the subject of
this study, and it can also be expressed as an ego vehicle, and all NVs and LVs around the
HSCV can be called SVs. For the convenience of expression, superscript symbols e and Vi
are proposed to distinguish the HSCV from SVs, where i is the index of SVs.

HSCV automation control 

system

Authority allocation
Vehicle states

Vehicle states

Vehicle states

HSCV

CAV automation control 

system

CAV automation control 

system

Ego vehicle: HSCVEgo vehicle: HSCV

)(kE e

)(k BELCM based driver model

Driving Safety FieldDriving Safety Field

Driving Environment

CAV

NV1

HSCV

LV1

NV2

LV2

Lane 1

Lane 2

Lane 3

Surrounding vehicle: CAV

  

      

  

  

HSCV automation control 

system

Authority allocation
Vehicle states

Vehicle states

Vehicle states

HSCV

CAV automation control 

system

Ego vehicle: HSCV

)(kE e

)(k BELCM based driver model

Driving Safety Field

Driving Environment

CAV

NV1

HSCV

LV1

NV2

LV2

Lane 1

Lane 2

Lane 3

Surrounding vehicle: CAV

  

      

  

  

Figure 1. Overall system framework.

The overall safety obstacle avoidance control framework of the HSCV is illustrated
in Figure 1. Firstly, before the HSCV executes vehicle control commands, its automation
control system needs to integrate the control commands of the driver and the control system
based on the allocated driving authority. The driver’s control commands are simulated
by the brain emotional learning circuit model (BELCM), and the driving control authority
between the driver and the control system is dynamically adjusted in real time by the
driving safety field simulated by the driving environment information. In addition to
the driver control input, the HSCV automation control system must also consider the
interaction with SVs with different driving styles, which the driving style cost function
will simulate. Finally, the non-cooperative game method was adopted to find the optimal
solution for the HSCV to achieve safe control and obstacle avoidance.

3. Driver and Vehicle Models

Inspired by the emotional learning ability of the human cerebral cortex, Balkenius and
Moren proposed a BELCM that can reflect the human-like control mechanism [36]. Many
studies have proven that it has the advantages of good robustness, low computational com-
plexity, and good real-time performance [15], which makes it widely used, such as in motor
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control [37], speech emotion recognition [38], and lateral control of CAVs [15]. However,
driver models that integrate lateral and longitudinal control require more research.

A comprehensive driver model considering the driver’s lateral and longitudinal
control is established in this section. First, the working principle of the BELCM is illustrated.
Its block diagram is shown in Figure 2. The details of the established driver model based on
the BELCM algorithm are explained, and finally, the vehicle dynamics model is introduced.

SI
Thalamus

Sensory

cortex

Prefrontal

cortex

ES

Amygdala

-

+

+

+ -

-
vP

vA

thth

P

Ao

Ao -P

Figure 2. Brain emotional learning circuit model [37].

3.1. Brain Emotional Learning Circuit Model

The BELCM simulates the working mechanism of the brain’s emotional learning
process. The final output signal of the BELCM is expressed as the amygdala output signal
Ao minus the correction signal P output by the prefrontal cortex. This model requires
a hint of emotional signal (ES) and external stimulus input (SI) to assist in the learning
process. First, the thalamus receives the external SI and transmits its maximum value Ath to
the amygdala.

Ath = max(SI), SI = [I1, I2, · · · , Ii]
T , i = 1, 2, · · · , n (1)

Other SIs will be output by the thalamus to the sensory cortex for processing, and then
the sensory cortex will pass them to the amygdala and prefrontal cortex. The amygdala’s
signal processing will be explained first. Each input signal Ii corresponds to a node
with a dynamic coefficient VAi in the amygdala, and the amygdala output signal Ao is
obtained after weighted summation. In addition, the learning rate α1 and ∆VAi will be
used to dynamically adjust VAi , where ∆VAi is updated by the error between Ao and ES,
α1 ∈ (0, 1). The mathematical model of the amygdala can be written as follows:{

Ao = Ath + ∑n
i=1 IiVAi

∆VAi = α1 · Ii · max
(
0, ES −Ath − ∑n

i=1 IiVAi

) (2)

The prefrontal cortex’s process of generating the correction signal P is similar to the
working principle of the amygdala. There are nodes in the prefrontal cortex corresponding
to the input signal Ii, and the dynamic weight coefficient of each node is adjusted according
to the learning rate α2 and ∆VPi , α2 ∈ (0, 1). Its working mechanism is defined as follows:{

P = ∑n
i=1 IiVPi

∆VPi = α2 · Ii ·
(
∑n

i=1 IiVAi −P − ES
) (3)

3.2. BELCM-Based Driver Model

This section introduces the driver steering model and longitudinal control model in
sequence. It should be noted that the subscripts y and x will be used to distinguish their
parameters. The driver model’s overall block diagram and workflow are shown in Figure 3
and Algorithm 1, respectively.
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Figure 3. Framework of driver model based on BELCM.

Algorithm 1 Workflow of driver model based on BELCM

1: Parameter initialization: γy, ϵy, α1, γx, ϵx, α2
2: Set initial value to 0: VAy ,VPy ,VAx ,VPx

3: Input: en, θn, θ̇ f , ev
4: Calculate: SIy, ESy, SIx, ESx
5: Calculate: ∆VAy , ∆VPy , ∆VAx , ∆VPx
6: Update: VAy ,VPy ,VAx ,VPx

7: Output: δh∗ , ah∗ , δh, ah

8: Repeat: steps 3–7

3.2.1. Driver Steering Control Model

Studies have shown that the driver’s steering behavior is guided by observing a near
point with the preview angle θn and a far point with the preview angle θ f on the road,
which can be represented by the two-point preview model [11]. For the detailed derivation
process, one can refer to [12]. In this paper, en, θn, and θ f are adopted as the external
stimulus signals SIy received by the thalamus for lateral control, where en represents the
lateral error at the near point. ESy, involved in vehicle steering control in the brain’s
emotional learning circuit, can be formed through long-term learning. SIy and ESy are
defined as follows:  SIy =

[
γy1 en, γy2 θn, γy3 θ̇ f

]T

ESy = ϵy1 en + ϵy2 θn + ϵy3 θ̇ f + ϵy4 δh
(4)

where ϵy1 ∼ ϵy4 and γy1 ∼ γy3 are the weighted coefficients of ESy and the weighted coef-
ficients of SIy, respectively. The weight coefficients in the amygdala and prefrontal cortex

can be expressed as matrices VAy =
[
VAy1 ,VAy2 ,VAy3 ,VAth

]
and VPy =

[
VPy1 ,VPy2 ,VPy3

]
,

respectively. Finally, the ideal output of steering control signals in the BELCM is as follows:

δh∗ = VAy

[
SIy
Ath

]
− VPy SIy (5)

However, there is a time delay before the arm muscles execute the steering signal
transmitted by the driver’s brain, and this delay characteristic can be simulated by the arm
neuromuscular system (NMS) [26]. The state space equation of the NMS is as follows:{

δ̇h
nms

δ̈h
nms

}
=

[
0 1

−ω2
n −2ξωn

]{
δh

nms
δ̇h

nms

}
+

[
0

ω2
n

]
δh∗

δh =
[

1 0
]{ δh

nms
δ̇h

nms

}
,

(6)

where ωn and ξ represent the NMS’s natural frequency and damping ratio, respectively.
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3.2.2. Driver Longitudinal Control Model

The driver’s longitudinal control of the vehicle can be simulated by the BELCM.
The deviation ev between the vehicle’s longitudinal speed and the driver’s desired speed
and the accumulation of ev are used as the stimulus signals SIx for longitudinal control.
Similar to the driver steering control model, the longitudinal hint of the emotional signal
ESx will be formed in the driver’s mind. The definitions of SIx and ESx are defined as
follows: {

SIx = [γx1 ev, γx2

∫
evdt]T

ESx = ϵx1 ev + ϵx2

∫
evdt + ϵx3 ah (7)

where ϵx1 ∼ ϵx3 and γx1 ∼ γx2 are the weighted coefficients of ESx in the amygdala and
the weighted coefficients of SIx, respectively. There is a delay when the driver executes
the acceleration command transmitted from the brain. This delay characteristic can be
approximated by the first-order lead-lag element. Finally, the BELCM outputs the driver’s
ideal acceleration control as follows:

ah∗ = VAx

[
SIx
Ath

]
− VPx SIx (8)

ah =
e−τd1s

1 + τd2s
ah∗ (9)

where τd1 and τd2 are two delay parameters related to the driver’s brain signal processing
and muscle working process and s represents the Laplacian.

3.3. Vehicle Model

In this paper, we adopt a three-degrees-of-freedom vehicle dynamics model [25],
and its differential equation can be expressed as follows:

v̇y = −vxω + 1
m

(
Fy f + Fyr

)
v̇x = vyω + a
ω̇ = 1

Jz

(
laFy f − lbFyr

)
Ẏ = vx sin ϕ + vy cos ϕ
Ẋ = vx cos ϕ − vy sin ϕ

(10)

where X and Y are the longitudinal and lateral displacements of the vehicle, respectively.
vx, vy, ϕ, and ω represent the vehicle’s longitudinal speed, lateral speed, heading angle,
and yaw rate. a represents the acceleration of the vehicle. m and Jz denote vehicle mass and
moment of inertia. la and lb represent the distances from the front and rear axles to the center
of mass, respectively. Assuming that the tires work in the linear region, the lateral tire forces
of the front and rear wheels can be approximately expressed as Fy f ≃ −2C f

(
vy+laω

vx
− δ f

)
and Fyr ≃ −2Cr

(
vy−lbω

vx

)
, respectively, where C f and Cr indicate the stiffness coefficients

of the front and rear tires, respectively.

4. Vehicle Interactive Control Strategy

The HSCV obstacle avoidance safety control method based on game theory is demon-
strated in this section. First, the method of shared control between the driver and the
automation system based on the driving risk field in the HSCV is introduced. Then,
the human–machine shared control model and motion prediction are explained. Next,
the design of the driving style cost function of surrounding vehicles is explained. Finally,
the method of the HSCV interacting with surrounding vehicles is demonstrated.
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4.1. Shared Control Strategy

This section will introduce methods for integrating driver and automation system
control inputs and strategies for driving control authority allocation. First, we present the
driving risk field, which is used to design rules that dynamically regulate the authority
allocation between the automation system and the driver. The driving safety field E
generates a potential field through the potential field function [39,40]. Then, we explain
how the control inputs of these two agents are dynamically integrated.

4.1.1. Driving Safety Field

The driving safety field E is an effective method to dynamically assess the degree of
driving risk in the ego vehicle through the surrounding environment. It mainly consists
of the road potential field, the obstacle potential field, and the driver behavior field [28].
In this paper, an obstacle potential field Eo is adopted to construct the driving safety field.

The obstacle potential field is used to assess the impact of obstacles on the road that
pose a risk of collision with objective vehicles. It mainly includes surrounding vehicles
moving on the road, stationary obstacles, or stopped vehicles. Our study only considers
the obstacle potential field between the objective vehicle and surrounding moving vehicles.
The objective vehicle can be either an HSCV or CAV on the road, and its potential field
value under the coordinate (X, Y) is defined as follows [31]:

EVi (X, Y) = kobs · e
−

 (X−XVi )
2

2·σ2
x

+
(Y−YVi )

2

2·σ2
y


c1

+c2v
Vi
x ξ

ξ = sgn(X − XVi )

(
X − XVi

)2

2σ2
x

/

√√√√ (X − XVi )
2

2σ2
x

+
(Y − YVi )

2

2σ2
y

(11)

(XVi , YVi ) is the position of the center of mass of Vi with respect to the objective
vehicle, where the surrounding vehicle consists of the LV and NV around the objective
vehicle. The convergence coefficients σx and σy are used to adjust the influence range of
the longitudinal and lateral obstacle potential fields, respectively. vVi

x is the longitudinal
velocity of the moving obstacle vehicle. kobs, c1, and c2 represent the shape coefficients.

4.1.2. Strategies for Authority Allocation

Reasonable control authority allocation strategy design between the driver and the
automation control system is significant for HSCVs. The purpose of designing this control
authority allocation strategy in our study is to dynamically adjust the driving authority
between the driver and the automation control system for safety control. Considering that
vehicle speed and driving risk fields pose major threats to drivers and vehicles in the traffic
environment, the dynamic authority allocation strategy is designed based on the driving
safety field described in Section 4.1.1 and the driving speed of the ego vehicle.

The normalized value of the driving safety field E is P, and its critical value is set
to approximately 0.5. Initially, as its value continues to increase from 0, the driver’s
driving authority will continue to decrease, and more driving authority will be allocated
to the automation system to assist the driver in safe driving. Considering that changes
in driving authority will cause the driver to be alert to the surrounding environment and
make relevant driving responses, when the value of E exceeds about 0.5, the system will
gradually release more driving authority to the driver for safe control. Figure 4 shows the
curve graph of the designed driving authority allocation strategy. The formula for control
authority allocation is defined as follows [41]:

λ(k) = 1 − σ1(E(k))σ2−σ5Ve(k) · e

(
σ3+σ5Ve(k)

E(k)−σ4

)
(12)
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σ1 ∼ σ5 is an adjustable coefficient greater than 0. E(k) and Ve(k) are the normalized
driving safety field value and HSCV longitudinal speed at time k.
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Figure 4. Graph of driving authority allocation strategy.

4.1.3. Human–Machine Shared Control Model

In an HSCV, driver and automation system control inputs are integrated to control the
vehicle jointly. The continuous state equation of the vehicle–driver model is as follows:

ẋ(t) = Acx(t) + λBcuh(t) + (1 − λ)Bcue(t) (13)

The subscripts h and e are used to distinguish human driver control inputs and
automation system control inputs, respectively, as well as their associated matrices. Where
the vehicle status vector is x =

[
vy vx ϕ ω Y X

]T, control input vectors are

ue =
[

δe ae ]T and uh =
[

δh ah ]T . The matrices Ac and Bc are defined as follows.

Ac =



− 2C f +2Cr
mvx

0 0 −vx +
2Cr lb−2C f la

mvx
0 0

ω 0 0 0 0 0
0 0 0 1 0 0

− 2C f la−2Cr lb
Jzvx

0 0 − 2C f l2
a+2Cr l2

b
Jzvx

0 0
1 0 vx 0 0 0
0 1 −vy 0 0 0


Bc =

[
2C f
m 0 0

2C f la
Jz

0 0
0 1 0 0 0 0

]T

In computer programs, it is necessary to use the sampling time Ts to discretize the
continuous form of the formula. The discrete state equation can be obtained as follows:

x(k + 1) = Ax(k) + λBuh(k) + (1 − λ)Bue(k) (14a)
z(k) = Cx(k) (14b)

where k represents the discrete time index and the matrix discretization method is
A = I6 + Ts ∗ Ac, B = Ts ∗ Bc. z is a matrix that filters x according to the control target,

and C =

[
0 0 1 0 0 0
0 0 0 0 1 0

]
is the slack matrix, used for the selection of vehicle state.

4.2. Motion Prediction for HSCVs

The future states of HSCVs and SVs are related to their current states and control
inputs. In an HSCV, the automation system can obtain driver control commands uh through
sensors, and it will use the MPC controller to compensate for the driver’s behavior based
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on the allocated driving authority λ and surrounding environment information. Assuming
that the prediction time domain and the control time domain are Np and Nc, respectively,
the prediction Equation (14) is rewritten as follows:

Z(k) = Ψx(k) + λΘ1Uh(k) + (1 − λ)Θ2Ue(k) (15)

It is worth noting that the prediction output of an HSCV without driver participation
in driving control is similar to that of SVs, and its degradation form is as follows:

Z(k) = Ψx(k) + Θ2Ue(k) (16)

The expansion of the above formula is as follows:

Z(k) =



z(k + 1)
z(k + 2)

...
z(k + Nu)

...
z
(
k + Np

)


, Ψ =



CA
CA2

...
CANu

...
CANp


, Θ2 =



CB 0 · · · 0
CAB CB · · · 0

· · · · · · · · ·
. . .

CANc−1B CANc−2B · · · CA0B

· · · · · · · · ·
. . .

CANp−1B CANp−2B · · · CANp−Nc B



Uh(k) =



uh(k)
uh(k + 1)
uh(k + 2)

...
uh(k + Nu − 2)
uh(k + Nu − 1)


, Ue(k) =



ue(k)
ue(k + 1)
ue(k + 2)

...
ue(k + Nu − 2)
ue(k + Nu − 1)


, Θ1(k) =


CB

CB + CAB
...

∑
Np−1
i=0 CAiB



(17)

The MPC controller in an HSCV will consider the control sequence amplitude and track
the reference target to match the driver’s operation command. At the same time, the driver’s
steering control and speed control commands are assumed to remain unchanged in the
prediction time domain. Its cost function is defined as follows:

min
u

J(k) =
[
Z(k)− Zre f (k)

]T
Q
[
Z(k)− Zre f (k)

]
+ Ue(k)TRUe(k) (18a)

s.t. x(k + 1) = Ax(k) + λBuh(k) + (1 − λ)Bue(k) (18b)
z(k) = Cx(k) (18c)[

−δe
lim

−ae
lim

]
⩽ ue(k) ⩽

[
δe

lim
ae

lim

]
(18d)[

−∆δe
lim

−∆ae
lim

]
⩽ ∆ue(k) ⩽

[
∆δe

lim
∆ae

lim

]
(18e)

where Q and R are the output weight matrix and the control input weight matrix, respec-
tively. Zre f is the target state matrix related to the reference trajectory, which consists of
the reference heading angle ϕre f and the reference lateral position Yre f . The maximum
amplitude and maximum change rate of the vehicle’s front wheel angle are represented by
δe

lim and ∆δe
lim, respectively. ae

lim and ∆ae
lim are used to set the upper and lower bounds of

vehicle acceleration and limit the change rate of acceleration, respectively.
After solving the above constrained optimization problem, the optimal control se-

quence Ue∗(k) can be obtained as follows:

Ue∗(k) =
[
ue∗(k), ue∗(k + 1), · · · , ue∗(k + Nc − 1)

]T (19)

The first element in Ue∗(k) will be selected to control the movement of the vehicle,
thus assisting the driver in driving the vehicle. In terms of driverless vehicles, many related
motion prediction methods have been developed, which can be referred to in [31].
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4.3. Driving Cost Function

Surrounding vehicles with different driving styles will cause different trade-offs
between driving safety and travel efficiency. This section presents the design method of
simulating SVs’ driving styles and the design of the safety cost function in an HSCV.

4.3.1. Driving Style Cost Function of SVs

This article considers two important indicators reflecting the personalized driving
styles of surrounding vehicles: driving safety and travel efficiency. The driving style cost
function of surrounding vehicles Vi is expressed as follows:

JVi = (1 − kVi )JVi
s + kVi JVi

e (20)

where JVi
s , JVi

e represent the cost functions of driving safety and travel efficiency. It is worth
noting that kVi is a weight coefficient used to adjust the degree of aggressiveness of driving
style, kVi ∈ (0, 1). The larger value of kVi represents a driving style that pursues higher
travel efficiency and lower driving safety, which means a higher level of aggressiveness.
On the contrary, the smaller the value of kVi , the lower the level of aggressiveness. The cor-
responding relationship between the weight coefficient and the driving aggressiveness
level is defined in Table 1.

Table 1. Weight coefficient of driving style cost function.

Level of
Aggressiveness High Level Moderate Level Low Level

Coefficient: kVi 0.9 0.5 0.1

The cost function of driving safety JVi
s consists of three parts, namely, vehicle longitu-

dinal threat, lateral threat, and lane change threat. It is defined as follows:

JVi
s = JVi

s−x + JVi
s−y + JVi

s−lc (21)

where JVi
s−x, JVi

s−y, JVi
s−lc, respectively, denote the longitudinal, lateral, and lane change threats

in the surrounding environment of vehicle Vi.
In terms of longitudinal threat JVi

s−x, the relative longitudinal speed and distance
between vehicle Vi and LV are used to design its cost function.

JVi
s−x = ϖ

Vi
v−xηVi

(
vLV

x − vVi
x

)2
+

ϖ
Vi
s−x

Ξn
x

(22a)

ηVi = 0.5 + 0.5 sgn
(

vVi
x − vLV

x

)
(22b)

Ξx = 2 + tanh

[
σΞ

((
XLV − XVi

)2

(Lx)
2 − 1

)]
(22c)

The longitudinal velocities of LV and Vi are expressed as vLV
x and vVi

x , respectively,
and their positions in global coordinates are

(
XLV , YLV) and

(
XVi , YVi

)
, respectively. ϖ

Vi
v−x

and ϖ
Vi
s−x are weight coefficients. ηVi is the relative speed switching function. Only when

vVi
x is greater than vLV

x,σ, the value of ηVi is 1; otherwise, it is 0. The parameters n and σΞ are
4 and 1.5, respectively, and Lx is the longitudinal safety threshold.

The cost function of lateral threat JVi
s−y is related to the distance between the vehicle Vi

and NV, and it is defined by the following:
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JVi
s−y = βσϖ

Vi
s−yη

Vi
σ

(
XVi − XNV

σ − Ly1

)2
(23a)

η
Vi
σ = 0.5 + 0.5 sgn

(
XVi − XNV

σ − Ly1

)
(23b)

where NV is in front of Vi and their longitudinal positions are expressed as XNV
σ and XVi ,

respectively, and XVi ≤ XNV
σ . σ ∈ {1, 2, 3} is the index used to identify adjacent lanes. βσ is

a lane change intention judgment, and the value of βσ is 1 only if one of the vehicles wants
to change lanes into the lane of the other vehicle; otherwise, it is 0. ϖ

Vi
s−y are the weighting

coefficients. ηVi
σ is a switch function. Ly1 represents the lateral safety threshold.

Lane change threat is mainly used to evaluate the security threat of the objective
vehicle in the process of a lane change or the threat of other lane-changing vehicles to
the objective vehicle. Its principle is based on the potential field model in Section 4.1.1.
Assuming that the numbers of LV and NV around Vi are 1 and n, respectively, it is defined
as follows:

JVi
s−lc(X, Y) = ELV(X, Y) +

n

∑
i=1

ENV(i)(X, Y) (24)

Finally, the cost function of travel efficiency is designed as a function related to the
current longitudinal speed of Vi and is defined as follows:

JVi
e = ϖ

Vi
e

(
vVi

x,σ − v̂Vi
x,σ

)2
(25a)

v̂Vi
x,σ = min

(
vlim

x,σ , vVi ,†
x,σ

)
(25b)

where vVi ,†
x,σ represents the target longitudinal speed of Vi on lane σ and vlim

x,σ is the upper
speed limit of this lane.

4.3.2. Driving Safety Cost Function of HSCV

The collision threat faced by an HSCV in the lane changing scenario mainly comes
from the relative distance and relative speed between NV and the HSCV. The lateral threat
and lane change threat are used to design the driving safety cost function of the HSCV,
where the lateral threat and lane change threat are expressed as Je

s−y and Je
s−lc, respectively.

The driving safety cost function is defined as follows:

Je = Je
s−y + Je

s−lc (26)

The cost function of lateral threat Je
s−y is related to the distance between the HSCV

and a NV. It is similar to Equation (23) and is defined as:

JVe
s−y = βσϖe

s−yηe
σ

(
Xe − XNV

σ − Ly2

)2
(27a)

ηe
σ = 0.5 + 0.5 sgn

(
Xe − XNV

σ − Ly2

)
(27b)

where Xe and XNV
σ represent the longitudinal positions of the HSCV and NV in lane σ,

respectively. βσ is a lane change intention judgment, and the value of βσ is 1 only if one
of the vehicles wants to change lanes into the lane of the other vehicle; otherwise, it is
0. ϖe

s−y are the weighting coefficients. ηe
σ is a switch function. Ly2 represents the lateral

safety threshold.
The calculation of the lane change threat of an HSCV is based on the potential field

mode, which is defined as follows:

Je
s−lc(X, Y) = ELV(X, Y) +

n

∑
i=1

ENV(i)(X, Y) (28)
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4.4. Interactive Control Based on DMPC and Non-Cooperative Game

In vehicle interaction, vehicle status information and driving intentions can be shared
through the Internet of Vehicles. Both HSCVs and CAVs can predict surrounding vehicles’
information in the traffic environment and their own motion status, and this prediction in-
formation will be used to update the cost function for vehicle interaction. The autonomous
driving controller needs to consider the impact of interactive object information and sur-
rounding environmental risk on itself. For an HSCV, in addition to considering the effects
of driver control commands, the shared controller in the HSCV also needs to consider how
to interact with surrounding vehicles with different driving styles safely.

The status and control strategy of an HSCV (including the driver’s control commands
and the compensation control commands made by the HSCV automation controller) will
affect SVs. Similarly, the status and control strategy of each SV will also affect other traffic
participants. In an HSCV, while the automation control system compensates for driver
control commands to track the target trajectory, it also needs to consider the safety risks
caused by the different driving styles of the SV. The HSCV safety cost function in time step
k + 1 is expressed as:

Je(k + 1) = Je
s−y(k + 1) + Je

s−lc(k + 1) (29)

The driving safety cost function of an HSCV in the prediction time domain of Np is
derived as follows:

Je(k) =
[

Je(k + 1), Je(k + 2), . . . , Je(k + Np)
]T (30)

The motion prediction of SVs is similar to Equation (16) for an HSCV; the only dif-
ference is that the SVs’ control input is completely determined by the MPC controller in
the automation system without the influence of the human driver. Based on the motion
prediction information, the driving style cost function of the surrounding vehicle Vi can be
predicted at time step k + 1:

JVi(k + 1) = (1 − kVi )JVi
s (k + 1) + kVi JVi

e (k + 1) (31)

The driving style cost function of vehicle Vi in the prediction time domain Np is
derived as follows:

JVi(k) =
[

JVi(k + 1), JVi(k + 2), . . . , JVi(k + Np)
]T (32)

SVs with different driving styles will respond differently to the driving behavior of
the HSCV while tracking their own trajectory targets. Assume that there are m adjacent
vehicles Vi = {V1, V2, · · · , Vm} around the HSCV that will participate in vehicle interaction.
The individual interest of each SV in this non-cooperative game is defined as minimizing
the driving style cost function and the error between the vehicle state and its desired state,
while the shared controller in the HSCV needs to minimize the driving safety cost function
and the error between the vehicle state and the human driver’s desired state. The DMPC
method is used to solve this problem, and the cost functions of the HSCV and vehicle Vi
are derived as follows:
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min
uVi

ΠVi =
Np

∑
j=1

∥∥∥zVi (k + j)− zVi
re f (k + j)

∥∥∥2

QVi
+

Nc−1

∑
j=0

∥∥∥uVi (k + j)
∥∥∥2

RVi
+

Np

∑
j=1

∥∥∥JVi (k + j)
∥∥∥2

PVi
(33a)

min
ue

Πe =
Np

∑
j=1

∥∥∥ze(k + j)− ze
re f (k + j)

∥∥∥2

Qe
+

Nc−1

∑
j=0

∥ue(k + j)∥2
Re +

Np

∑
j=1

∥Je(k + j)∥2
Pe (33b)

s.t. xVi (k + 1) = AxVi (k) + BuVi (k) (33c)
zVi (k) = CxVi (k) (33d)
− uVi

lim ⩽ uVi (k) ⩽ uVi
lim (33e)

− ∆uVi
lim ⩽ ∆uVi (k) ⩽ ∆uVi

lim (33f)
xe(k + 1) = Axe(k) + λBuh(k) + (1 − λ)Bue(k) (33g)
ze(k) = Cxe(k) (33h)
− ue

lim ⩽ ue(k) ⩽ ue
lim (33i)

− ∆ue
lim ⩽ ∆ue(k) ⩽ ∆ue

lim (33j)

where Equation (33a) and (33b) are the cost functions of the SVs and ego vehicle, respectively.
QVi , PVi , RVi is the weight matrix in the cost function of vehicle Vi. And Qe, Pe, Re is the
weight matrix in the cost function of the ego vehicle. uVi

lim and ∆uVi
lim contain the constraints

of vehicle Vi, wheel angle amplitude δ
Vi
lim, acceleration amplitude aVi

lim, and their change rate
constraint ∆δ

Vi
lim, ∆aVi

lim. The structure of ego vehicles ue
lim and ∆ue

lim is the same as that of
vehicle Vi. The detailed values of their parameters can be viewed in Table 2.

Table 2. Parameters for vehicle and driver characteristics.

Parameters Value Parameters Value Parameters Value

m 1200 kg Np 20 ∆ae
lim 0.3 m/s2

Jz 1300 kg Nc 10 aVi
lim 8 m/s2

la 1.050 m δe
lim 10 deg ∆aVi

lim 0.8 m/s2

lb 1.90 m ∆δe
lim 1 deg ξ 0.6

C f 5600 N/rad δ
Vi
lim

15 deg ωn 6π rad/s
Cr 5600 N/rad ∆δ

Vi
lim

1.25 deg τd1 0.08 s
Ts 0.01 s ae

lim 3 m/s2 τd2 0.15 s

It can be observed from Equation (33) that each player optimizes their objective
function under relevant constraints, and each player’s control output not only affects their
future state but also imposes an impact on other players. This is a coupled optimization
problem, and the optimal solution can be searched based on the idea of Nash equilibrium.
Its core definition is that the Nash equilibrium solution is obtained when no player can
benefit more by unilaterally changing their strategy. In general, Nash equilibrium is
complicated to calculate and cannot be found in arbitrary problems. The iterative optimal
response method is a popular method for approximating Nash equilibrium, and related
work can be found in [42,43]. The detailed solution process is shown in Algorithm 2. Its
core idea is that players solve their optimal response solution in each iteration while fixing
other players’ strategies and then update their own strategy in this iteration and pass it to
the remaining players to solve the optimal response solution. Until all players obtain the
optimal response, we proceed to the next iteration. As the number of iterations increases,
the player’s strategy gradually approaches convergence.
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Algorithm 2 Iterative optimal response algorithm

Input: Current vehicle state of all players xe, xV1 , xV2 , · · · , xVm , and the prior control input
of player e is ue and of player Vi is uVi

Output: Nash equilibrium solution ue∗

1: for l = 1 to L do
2: for i = 1 to m do
3: Obtain prior control input uV−i of player V−i and the prior control input ue of

player e for this cycle, and keep their values unchanged.
4: Solve the optimization problem based on (33a) and the corresponding constraints,

and obtain the optimal solution uVi
l for player Vi in this cycle. Finally, update the

control input of this player for the optimization problem solution of the remaining
player V−i.

5: end for
6: Obtain the control input uV1

l , uV2
l · · · , uVm

l of the SVs.
7: Solve the optimization problem (33b) according to the control input of SVs and

related constraints, obtain the optimal control input ue
l of the player e, and store it for

the next cycle.
8: end for
9: return ue∗ = ue

L

5. Experimental Results and Analysis

HSCVs must share the road with surrounding vehicles in future complex traffic
environments, especially in lane change scenarios prone to traffic accidents. The automation
control system in an HSCV not only needs to assist the driver in safely changing lanes
but also needs to consider how to safely avoid SVs that suddenly change lanes. This
section designs two experimental scenarios of HSCV active lane change and HSCV passive
avoidance of vehicles that suddenly change lanes to verify the feasibility and effectiveness
of the designed safety control scheme, as shown in Figure 5. Scenario 1 shows the impact
of NV1’s behavior of slowing down to give way or accelerating to seize the road when the
HSCV changes lanes. The dangerous situation of NV2 suddenly changing lanes to compete
with the HSCV and occupy the middle lane is considered in Scenario 1. Finally, Scenario
2 demonstrates how a lane-keeping HSCV in a middle lane can safely avoid neighbor
vehicles that suddenly change lanes.

NV1

HSCV

NV2

Scenario 1: 

case a  

Slow down

Lane keepe

LV2

LV1LV1

NV1

HSCV

NV2

Scenario 1: 

case b  Lane keepe

Lane change

Rapid acceleration

NV1

HSCV

NV2

Scenario 1: 

case c  

Slow down

Lane change Return

 Lane change

NV1

HSCV

NV2

Lane change

Slow down

Scenario 1: 

case d  

NV1

HSCV

NV2

LV2

Scenario 2: 

case e
Slow down

Lane change

Lane change
NV1

HSCV

NV2

Scenario 2: 

case f

Return

Lane change

Rapid acceleration

NV1

HSCV

NV2

Scenario 2: 

case g

Lane keepe

Lane change

Lane keepe

NV1

HSCV

NV2

Scenario 2: 

case h

Lane change

Lane keepe

Lane keepe

LV1

 Lane change

Figure 5. Two test scenarios for HSCV safe driving.

Assume that the ego vehicle is an HSCV and all neighbor vehicles of the HSCV are
CAVs. All experimental scenarios were simulated in Matlab. The vehicle and driver char-
acteristic parameters are given in Table 2, which include vehicle control input limitations.
Table 3 displays the initial desired trajectory state and expected vehicle speed of the HSCV
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and SVs in the above two scenarios. It is worth noting that all lanes have a maximum speed
limit of 25 m/s.

Table 3. Parameters of the initial desired state of the vehicle.

Scenario Driver Intention
in HSCV HSCV NV1 NV2

1, 2 ϕre f = 0 (rad), Vx,exp = 18 (m/s) ϕre f = 0 (rad), Yre f = 0 (m) ϕre f = 0 (rad)
1.a Lane change Yre f = 0 (m) Vx,exp = 20 (m/s) Yre f = 4 (m), Vx,exp = 15 (m/s)
1.b Lane change Yre f = 0 (m) Vx,exp = 25 (m/s) Yre f = 4 (m), Vx,exp = 15 (m/s)
1.c Lane change Yre f = 0 (m) Vx,exp = 16 (m/s) Yre f = 0 (m), Vx,exp = 25 (m/s)
1.d Lane change and give up Yre f = 0 (m) Vx,exp = 16 (m/s) Yre f = 0 (m), Vx,exp = 25 (m/s)
2.e Lane change Yre f = 4 (m) Vx,exp = 22 (m/s) Yre f = 4 (m), Vx,exp = 16 (m/s)
2. f Lane change and give up Yre f = 4 (m) Vx,exp = 22 (m/s) Yre f = 4 (m), Vx,exp = 25 (m/s)
2.g Lane keep Yre f = 0 (m) Vx,exp = 22 (m/s) Yre f = 4 (m), Vx,exp = 18 (m/s)
2.h Lane keep Yre f = 0 (m) Vx,exp = 25 (m/s) Yre f = 4 (m), Vx,exp = 18 (m/s)

5.1. Scenario 1 Test

In Scenario 1, a common HSCV single lane change case was tested, and it was assumed
that the lanes of the HSCV, NV1, and NV2 were represented as lane 1, lane 2, and lane 3,
respectively. In this designed scenario, the HSCV driver in lane 1 is affected by the low
speed of LV1 (assuming it keeps moving forward at a speed of 15 m/s), which leads to the
lane-changing behavior of the human driver in the HSCV. Subsequently, in cases a and b,
NV2 is set to lane keeping in lane 3, and only the effect of the different responses of NV1 on
the HSCV is studied. NV1 in case a has a moderate level of aggressiveness, while NV1 is set
with a high level of aggressiveness in case b. Case c and case d are supplements to the first
two cases. NV1 is set to a low aggressiveness level, and the impact of the sudden lane
changing behavior of NV2 with a high level of aggressiveness on the HSCV is stud-
ied. In all cases of Scenario 1, the initial velocities of the HSCV and LV1 are 18 m/s
and 15 m/s, respectively, and the initial positions of the HSCV, NV1, NV2, and LV1 are
(15,−4), (0, 0), (10, 4), (50,−4), respectively. The initial velocities of NV1 and NV2 are
20 m/s and 15 m/s in cases a and b, and they are both 16 m/s in cases c and d.

Figures 6–8 show the experimental results of vehicle trajectory, vehicle longitudinal
speed, and longitudinal position, respectively, under the influence of different driving
styles of NV1 and NV2. It can be found that NV1 will slow down and give way when it is in
a low or moderate level of aggressiveness. The difference between low-level and moderate-
level aggressive NV1 is that the former will maintain a greater distance between vehicles.
In case a, the human driver in the HSCV can safely and smoothly change lanes. In case b,
high-level aggressive NV1 will accelerate to occupy the road, and the automation control
system in the HSCV will modify the driver’s control commands to avoid NV1 safely. As the
collision threat caused by the acceleration of NV1 increases, the automation control system
gradually decelerates the HSCV and corrects the steering angle to maintain a safe distance
from NV1. Until the HSCV safely avoids NV1, it gradually releases control authority to the
driver, restores the driver’s desired speed, and assists the driver in changing lanes. Cases c
and d show the experimental results that the HSCV automatic control system can ensure
the safe avoidance of NV2 under two driving conditions: driver giving up lane change and
driver insisting on lane change.

Figures 9 and 10 present the HSCV front steering angle and the curve of the driving
control authority between the driver and the automation control system, respectively.
In case a, since the safety threat posed by NV1’s deceleration is very small, the automation
control system in the HSCV only plays an auxiliary role, and the steering angle of the
vehicle is mainly controlled by the driver. Cases b, c, and d show the situation where
the SV and HSCV compete for the same lane. The HSCV automation control system
will quickly deprive the driver of the control authority and perform safe avoidance until
the driver senses the danger and returns to the original road, or it will assist the driver
who insists on changing lanes. As shown in Figure 10, the automation control system
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increases intervention as environmental risks increase, and the driver’s control authority
λ gradually decreases. After the driver completes the lane change or gives up the lane
change, the environmental danger is reduced, and the driver’s control authority λ gradually
approaches 1.
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Figure 6. Test results of vehicle driving trajectory in Scenario 1.
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Figure 7. The test results of vehicle speed in Scenario 1: (a) the HSCV changes lanes smoothly;
(b) NV1 with a high aggressiveness competes on the road, and the driver in the HSCV insists on
changing lanes; (c) NV2 with high aggressiveness level competes on the road, and the driver in the
HSCV gives up changing lanes; (d) the human driver insists on changing lanes while competing
with NV2.
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Figure 8. The test results of vehicle position in Scenario 1: (a) the HSCV changes lanes smoothly; (b)
NV1 with high aggressiveness competes on the road, and the driver in the HSCV insists on changing
lanes; (c) NV2 with high aggressiveness level competes on the road, and the driver in the HSCV gives
up changing lanes; (d) the human driver insists on changing lanes while competing with NV2.
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Figure 9. Front wheel angle of HSCV in scenario 1: (a) wheel angle in case a; (b) wheel angle in case
b; (c) wheel angle in case c; (d) wheel angle in case d.
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Figure 10. Driving control authority allocation for HSCV in scenario 1: (a) driving authority allo-
cation in case a; (b) driving authority allocation in case b; (c) driving authority allocation in case c;
(d) driving authority allocation in case d.

5.2. Scenario 2 Test

Scenario 2 consists of cases e, f, g, and h and considers HSCV passive avoidance of
sudden lane changes by adjacent vehicles. In this scenario, the HSCV, NV1, and NV2 are in
lane 2, lane 1, and lane 3, respectively. Faced with the competitive lane change behavior of
NV1 to lane 2, the driver in the HSCV may choose to change lanes to avoid collision or slow
down to give way. In cases e and f, the impact of the different driving styles of NV2 on the
HSCV of passive lane change to road 3 to avoid NV1 was tested. Cases g and h tested the
HSCV that insisted on lane keeping and safely avoided the NV1 that changed lanes from
different locations. In all cases of Scenario 2, the initial speed of the HSCV and NV2 is set to
18 m/s. The initial speed of NV1 is 16 m/s in cases e and f, while it is 18 m/s in cases f and
g. The initial position of the HSCV is (15, 0) in all cases of Scenario 2. The initial position of
NV1 is (20,−4) in cases e, f, and g and (5,−4) in case h. The initial position of NV2 is (0, 4)
in cases e and f, while it is (20, 4) in cases g and h.

Figures 11–13 show the vehicle trajectory, vehicle speed, and vehicle position in
Scenario 2. In case e, it can be found that when the aggressiveness level of NV2 in lane 3
is low, the driver in the HSCV can smoothly change lanes to avoid NV1 which suddenly
changes lanes to lane 2. Case f supplements case e and tests the situation where NV2
competes with the HSCV for lane 3. As the threat of collision between the HSCV and
NV2 increases, the automation control system in the HSCV will intervene in vehicle speed
and wheel angle to avoid collision with NV2 until the driver gives up the lane change
and desired vehicle speed and returns to the original road at a low speed. Case g shows
that the human driver and the HSCV avoid NV1’s lane change by actively slowing down,
slightly steering, and gradually returning to the driver’s desired speed after completing the
safe avoidance. Case h shows the dangerous situation of NV1 suddenly accelerating and
changing lanes from the blind spot behind the HSCV, which is invisible to human drivers.
The automation control system in the HSCV performs emergency collision avoidance on
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NV1 by decelerating and controlling the steering angle until the avoidance is successful
and then assists the driver who chooses to follow the leader vehicle at a low speed to
maintain lanes.
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Figure 11. Test results of vehicle driving trajectory in Scenario 2.
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Figure 12. Test results of vehicle speed in Scenario 2: (a) human driver in HSCV changes lanes
to avoid NV2; (b) NV2 with high aggressiveness accelerates to occupy road, and human drivers
abandon lane changes; (c) HSCV slows down to give way for NV1; (d) NV1 changes lanes behind
HSCV, and HSCV executes obstacle avoidance control to give way.
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Figure 13. Test results of vehicle position in Scenario 2: (a) human driver in HSCV changes lanes
to avoid NV2; (b) NV2 with high aggressiveness accelerates to occupy road, and human drivers
abandon lane changes; (c) HSCV slows down to give way for NV1; (d) NV1 changes lanes behind
HSCV, and HSCV executes obstacle avoidance control to give way.

Figures 14 and 15 show the control of steering angle by the driver and automation
system in HSCV and the dynamically allocated driving control authority, respectively.
In the case of e, due to NV2 slowing down to give way, HSCV is mainly controlled by the
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human driver and can change lanes smoothly to avoid NV1, which suddenly changes lanes.
However, in case f, NV2 with a high aggressiveness level will bring a higher collision threat.
The automated control system in the HSCV will reduce the driver’s control authority until
the driver gives up the lane change. Then, the value λ of the driver’s control authority will
gradually increase to close to 1. In cases g and h, as the collision threat caused by NV1’s
sudden lane change increases, HSCV will allocate more driving authority to the automation
control system to intervene in driving. The difference between cases g and h is that in case
g, the NV1 that changes lanes in front of the HSCV reserves more space for the HSCV to
decelerate and avoid collisions without requiring automation system intervention in the
steering angle. In contrast to case g, HSCV in case h needs more steering control to avoid
collision when facing NV1 changing lanes behind it.
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Figure 14. Front wheel angle of HSCV in Scenario 2: (a) wheel angle in case e; (b) wheel angle in case
f; (c) wheel angle in case g; (d) wheel angle in case h.
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Figure 15. Driving control authority allocation for HSCV in Scenario 2: (a) driving authority allo-
cation in case e; (b) driving authority allocation in case f; (c) driving authority allocation in case g;
(d) driving authority allocation in case h.

6. Conclusions

This work presents HSCV safety control based on game theory and multi-vehicle
interaction. First, a comprehensive driver model integrating steering control and speed
control was designed based on the BELCM algorithm. Next, a shared control strategy based
on the driving risk field was designed to dynamically adjust the driving control authority
between the human driver and the HSCV automation control system. Considering that
different driving styles of SVs in the driving environment will have different impacts on the
HSCV, two critical indicators of driving safety and travel efficiency were used to define the
aggressiveness level of SVs. MPC was used to predict the future status of traffic participants.
Finally, the interaction problem between HSCV and SVs was transformed into DMPC,
which can be solved through the idea of Nash equilibrium. Two different scenarios were
designed to evaluate the performance of the HSCV safety control method. The simulation
results show that in HSCV lane changing and lane keeping scenarios, the HSCV shared
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controller designed in this study can assist human drivers in safely avoiding neighbor
vehicles with dangerous behaviors of sudden acceleration and lane changing.

This article mainly focuses on the safety control of HSCVs, and the test of the experi-
mental scenario is based on reasonable assumptions about the driver’s intention to change
lanes and deceleration intention. A more realistic integrated driver model that considers
steering control and speed control requires us to conduct further research in the future,
especially on the impact of driver intention on shared control, to improve shared control
technology in HSCVs.

Author Contributions: Writing—original draft, Y.Z.; Writing—review & editing, C.H.; Supervision,
C.H. and P.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was fund by the Departmental General Research Fund (DGRF: P0040253).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting this study are included within the article, further
inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of
this paper.

Nomenclature
The following abbreviations are used in this manuscript:

Abbreviations
HSCV Human–machine shared control vehicle T-S Takagi–Sugeno
SV Surrounding vehicle NMPC Nonlinear model predictive control
BELCM Brain emotional learning circuit model CAV Connected autonomous vehicle
DMPC Distributed model predictive control NV Neighbor vehicle
SAE Society of Automotive Engineers LV Leader vehicle
MPC Model predictive control SI Stimulus input
LQR Linear quadratic regulator ES Emotional signal

Vehicle and Driver Models Driving Style Cost Function
Ao Output signal of amygdala JVi Driving style cost function of vehicle Vi
P Correction signal output by prefrontal cortex JVi

s , JVi
e Composition of driving style cost function

SI External stimulus input kVi Adjustment coefficient of Vi’s driving style
ES Hint of emotional signal JVi

s−y, JVi
s−x Lateral and longitudinal threats

Ath
Maximum signal in the external stimulus
input

JVi
s−lc Lane change threats

Ii The ith signal in the external stimulus input ϖVi
v−x, ϖVi

s−x Weight coefficients for longitudinal threats

VAi ,VPi

Coefficient in amygdala and prefrontal
cortex

ϖVi
v−y Weight coefficients for lateral threats

∆VAi ,∆VPi Adjustment rate of VAi and VPi vVi
x , vLV

x Longitudinal speed of vehicle Vi and LV
α1,α2 Learning rate of ∆VAi and ∆VPi ηVi Speed switching function of Vi and LV

ev
Deviation from the driver’s desired vehicle
speed

Vi ith surrounding vehicle

en Near preview point lateral error σ Symbols used to identify lanes
θn Near point preview angle σΞ Constants used to adjust the shape
θ f , θ̇ f Far point preview angle and change rate vVi ,†

x,σ , vlim
x,σ Vehicle Vi’s target speed and speed limit

SIy, SIx SI for lateral and longitudinal control Ξx Longitudinal collision avoidance function
ESy, ESx ES for lateral and longitudinal control Lx, Ly Longitudinal and lateral safety thresholds
ϵy1, ϵy2, ϵy3, ϵy4 Weighting coefficients for ESy Vehicle interaction
γy1, γy2, γy3 Weighting coefficients for SIy x Vehicle status vector
ϵx1, ϵx2, ϵx3, ϵy4 Weighting coefficients for ESx ue, uh Ego vehicle and driver control input vectors
γx1, γx2, γx3 Weighting coefficients for SIx δe, ae Ego vehicle steering angle and acceleration
VAy ,VAx Weighting coefficients in amygdala A Vehicle state matrix
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VPy ,VPx Weighting coefficients in prefrontal cortex B Control input matrix
δh Driver steering angle C Slack matrices
δh∗ Driver steering angle output by BELCM z Output vector

δh
nms

Driver steering angle with arm NMS
dynamics

zre f Reference state vector

ah, ah∗ Acceleration of the driver and BELCM Np Prediction horizon in MPC
a Vehicle acceleration Nc Control horizon in MPC
Y, X Lateral and longitudinal displacement Z Output vector in prediction equation
vy, vx Lateral and longitudinal speed of the vehicle Zre f Reference state vector in prediction equation
ϕ Vehicle inertial heading angle Ψ State matrix in prediction equation
ω Vehicle yaw rate Θ1, Θ2 Input matrices in prediction equation

la, lb
Length of front and rear axles to center of
mass

Uh, Ue Driver and system control input sequences

Fy f , Fyr
Lateral tire forces of the front and rear
wheels

Q, Qe, QVi Output weight matrix

C f , Cr
Stiffness coefficients of the front and rear
tires

R, Re, RVi Control input weight matrix

Jz Moment of inertia PVi Weight matrix of driving style cost function
Human–machine shared control strategy Pe Weight matrix of driving safety field

E Driving safety field δlim, ∆δlim Steering angle and change rate constraints
Eo Obstacle potential field alim, ∆alim Acceleration and change rate constraints
Kobs Shape coefficient for obstacle potential field uVi

lim, ∆uVi
lim Control input and change rate constraints

c1 Constants for obstacle potential field ΠVi Cost function of vehicle Vi

c2
Coefficient related to obstacle potential
field velocity

Πe Cost function of ego vehicle

σy, σx Convergence coefficients JVi Driving style cost function of Vi
σ1, σ2, σ3, σ4, σ5 Coefficient for driving control authority Je Ego vehicle’s driving safety field
λ Coefficients for driving control authority V−i All SVs except Vi
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