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Abstract: Multiple Sequence Alignment (MSA) plays a pivotal role in bioinformatics, facilitating
various critical biological analyses, including the prediction of unknown protein structures and
functions. While numerous methods are available for MSA, bioinspired algorithms stand out for their
efficiency. Despite the growing research interest in addressing the MSA challenge, only a handful of
comprehensive reviews have been undertaken in this domain. To bridge this gap, this study conducts
a thorough analysis of bioinspired-based methods for MSA through a systematic literature review
(SLR). By focusing on publications from 2010 to 2024, we aim to offer the most current insights into
this field. Through rigorous eligibility criteria and quality standards, we identified 45 relevant papers
for review. Our analysis predominantly concentrates on bioinspired-based techniques within the
context of MSA. Notably, our findings highlight Genetic Algorithm and Memetic Optimization as the
most commonly utilized algorithms for MSA. Furthermore, benchmark datasets such as BAliBASE
and SABmark are frequently employed in evaluating MSA solutions. Structural-based methods
emerge as the preferred approach for assessing MSA solutions, as revealed by our systematic literature
review. Additionally, this study explores current trends, challenges, and unresolved issues in the
realm of bioinspired algorithms for MSA, offering practitioners and researchers valuable insights and
comprehensive understanding of the field.

Keywords: bioinformatics; bioinspired algorithms; Multiple Sequence Alignment; systematic review

1. Introduction

MSA is a vital and complex task within the field of bioinformatics that plays a crucial
role in uncovering the evolutionary connections between biological sequences [1,2]. While
traditional algorithms, such as dynamic programming-based methods [3,4] can align a
limited number of sequences, they struggle with the immense amounts of sequence data
generated by modern sequencing technologies. As a result, researchers have turned to inno-
vative, bioinspired algorithms [5] as a potential solution to the challenges of computational
efficiency and scalability faced by conventional methods [6].

Bioinspired algorithms, such as Genetic Algorithms (GA), Simulated Annealing (SA),
Particle Swarm Optimization (PSO), and Artificial Bee Colony Optimization (ABC), have
been widely used in Multiple Sequence Alignment (MSA) research due to their remarkable
ability to unearth optimal or near-optimal solutions [7,8]. These algorithms mimic natural
processes or use population-based strategies, which help them find optimal solutions
and avoid becoming stuck in local optima. Due to their adaptability and flexibility, these
algorithms are well-suited for addressing the challenges and complexities of the MSA
problem [9].
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In the current era, the investigation of bioinspired algorithms for performing Multiple
Sequence Alignment continues to be a thriving field of research [10–12]. This domain
constantly evolves with a diverse range of methodologies, including traditional and in-
novative approaches, such as multi-objective and hybrid techniques [13]. With this in
mind, we aim to conduct a thorough systematic literature review (SLR) that concentrates
on bioinspired algorithms utilized in MSA. This review provides a methodical and updated
view of the state-of-the-art techniques implemented to tackle MSA challenges. We have
focused on studies conducted from 2010 to 2024 to ensure the latest advancements are
included. Specifically, our study centers on the bioinspired algorithms applied to Multiple
Sequence Alignment through a comprehensive analysis of existing research.

Our goal is to examine the strengths, limitations, and potential areas of improvement
in the field of bioinspired algorithms for the MSA problem. By compiling knowledge from
various research areas, we aim to deepen our understanding of how these algorithms can
enhance the effectiveness and efficiency of MSA techniques. Furthermore, we address
the challenges and unresolved issues that persist in this field, paving the way for future
research to refine and advance the application of bioinspired techniques in the context of
MSA. The key contributions of this paper can be summarized as follows:

1. Conducting a novel SLR that identifies and summarizes bioinspired-based techniques
popularly applied for solving the Multiple Sequence Alignment problem.

2. Recognize and succinctly outline the benchmark datasets employed in evaluating
Multiple Sequence Alignment within the framework of bioinspired algorithms.

3. Identify and succinctly summarize the performance evaluation measures utilized for
Multiple Sequence Alignment in the context of bioinspired algorithms.

4. Explore and analyze the research challenges, open issues, and future directions for
Multiple Sequence Alignment within the context of bioinspired algorithms.

The structure of this work is as follows: we briefly explain the Multiple Sequence
Alignment problem in Section 2. Section 3 presents related recent publications that provide
reviews of bioinspired approaches for MSA, highlighting our work’s differences and
contributions. In Section 4, we provide the methods for conducting the proposed SLR.
We present our SLR results in Section 5, emphasizing the figures associated with the
publications identified in the SLR. Section 6 provides a view of the limitations of the
proposed SLR. In Section 7, we finally give the conclusion and discussion of the paper.

2. Multiple Sequence Alignment

In bioinformatics, MSA is a vital process essential for evolutionary research [14,15]
and aids in predicting the structure and function of unidentified proteins [16,17]. The
MSA problem primarily involves aligning multiple biological sequences and optimizing
a specific statistic, such as the count of aligned bases [18]. As the length and number
of sequences in the issue space increase, implementing MSA with traditional methods
becomes impractical [15]. Consequently, various methods have been proposed to address
MSA challenges over the years. These approaches can be categorized as evolutionary,
progressive, iterative, or classical. Each of these categories is briefly explained in this
section. Refer to Figure 1 for a basic example of MSA and Figure 2 for the classification
of MSA.
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Figure 2. Classification of the Multiple Sequence Alignment methods.

2.1. Classical Method

Dynamic programming effectively resolves Multiple Sequence Alignment (MSA) to
obtain optimal alignments [19]. Moreover, dynamic programming employs a scoring
function encompassing numerous domains. Originally developed to address challenges
in two-sequence alignment [4], dynamic programming faced heightened difficulties with
the increased length and number of sequences. This escalation in complexity became a
significant issue associated with dynamic programming.

As a result, the MSA problem becomes NP-hard [4], posing a significant computational
challenge. The primary limitation lies in the difficulty of efficiently utilizing computers to
address the complexity associated with MSA. Typically, the classical technique requires
increasing the alignment of amino acid or protein sequences with less complexity within
a specified timeframe. The decision to transition to an alternative approach represents a
critical juncture for researchers.

2.2. Progressive Method

The solution to the Multiple Sequence Alignment (MSA) problem aims to reduce
complexity in terms of time and space [8]. The progressive technique initiates alignment by
aligning identical sequences, adjusting its increment against divergent sequences within the
alignment. The widely accepted representation of the progressive approach is ClustalW [20].
Initially, weights are assigned to each pair of sequences in a restricted alignment, with
modest weights for identical sequences and significant weights for different sequences.
Following the calculation of scores for two protein residues, a substitution matrix based on
similarity is considered. The third stage introduces two specific gaps: the residual gap and
the locally reduced specific gap penalty [21]. In the final stage, locally reduced specific gaps
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are encouraged to receive opening gaps at that spot. The ClustalW representation allows
for the seamless integration of these four stages [20]. While the progressive technique offers
superior alignment for MSA in terms of accuracy and time, it has certain drawbacks, such
as dependence on the scoring scheme and initial alignments (i.e., matching comparable
sequences at the beginning) [22]. Failure to meet specific requirements may lead to the
recording of local optima results.

2.3. Iterative Method

The iterative method presents another approach for addressing Multiple Sequence
Alignment (MSA) through algorithms, yielding an alignment [23]. It is advisable for the
alignment to undergo multiple iterations until further improvement is no longer possible.
The iterative approach for enhancing alignment can be either deterministic or stochastic,
depending on the chosen strategy [24]. The deterministic iterative technique facilitates the
extraction of one sequence at a time, which is then realigned to other sequences [25]. The
iterative method aims to enhance results with each iteration to the maximum feasible extent
without relying on the original alignments [24]. Instead, it initiates with new alignments
tailored to specific challenges [23]. The primary objective of MSA is to ensure the quality of
sequence alignment. Some approaches combine progressive and iterative techniques [26].

As a result, sequence alignment is halted when no further progress can be achieved.
The Simulated Annealing method enhances alignment in MSA [27,28]. The Gibbs sam-
pling technique has successfully identified barriers in local multiple alignments without
gaps; however, dealing with gapped alignments posed challenges in their endurance and
reproduction [5]. The best score of the goal function determines the fitness of an alignment.
Based on this fitness measure, alignments may either persist or be discarded over multiple
iterations. Stochastic modifications in the method can enhance and reproduce alignments
by introducing crossovers and mutations. Despite the iterative alignment approach’s aim to
provide high-quality alignments, it offers no guarantees regarding identifying exceptional
alignments. Simulated Annealing (SA) [27] is a stochastic method for synthesizing multiple
samples. The primary challenge with the iterative approach lies in capturing results at
local optima.

2.4. Evolutionary Method

The strategy employed is population-based [21], initializing the population randomly
in the first stage. In the subsequent step, which involves modifying the initial population,
fundamental operators are utilized for successive generations, aiming to reach the global
optimum [29]. Given the random initiation in the evolutionary technique for Multiple
Sequence Alignment (MSA), the Evolutionary Algorithm for Sequences (EAS) has taken ad-
ditional steps to enhance similarities in sequence alignment [9]. Evolutionary computation
provides intriguing approaches for multisequence alignment [21], resulting in higher align-
ment accuracy during the MSA runtime process. The SAGA technique has seen improved
utilization through evolutionary computation [30]. Incorporating 22 distinct crossover and
mutation operators in SAGA demonstrated increased alignment fitness within the popula-
tion. Addressing sequence alignment challenges, SAGA relies on a Weighted Sum-of-Pairs
(WSP) model, wherein alignment sequences are scored and compared. Pairwise alignments
are integrated into the overall alignment to produce classical scores.

3. Related Work

The application of bioinspired techniques in Multiple Sequence Alignment (MSA) has
garnered considerable attention in the field of bioinformatics, driven by the proliferation of
recent scholarly works [31–33]. Bioinspired algorithms possess robust search capabilities,
rendering them well-suited for addressing optimization challenges like MSA [5,34,35].
The initial phase entails preparing the sequences for alignment, which encompasses tasks
such as sequence preprocessing, selection, and weighting. Subsequently, an objective
function is formulated to assess the alignment’s quality, typically gauging the similarity or
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dissimilarity between aligned symbols within the sequences. This objective function may
be constructed based on diverse criteria, such as maximizing correspondence or minimizing
gaps. Bioinspired algorithms are then employed to optimize the objective function and
ascertain the optimal alignment. Leveraging search and optimization methodologies,
these algorithms systematically explore the solution space to enhance the quality of the
alignment [7,36].

Moreover, recent years have witnessed diverse literature appraisals emerging due to
the subject’s pertinence. For instance, Ali and Hasanien [24] undertook a metaheuristic
survey regarding applications in bioinformatics, elucidating the characteristics of various
methods encompassing evolutionary algorithms, Simulated Annealing, and Particle Swarm
Optimization. The authors exemplify how these methodologies address computational
biology challenges such as MSA, structure prediction, and gene selection. However, it is
noteworthy that the authors exclusively concentrate on Genetic Algorithms to address the
MSA quandary.

Chatzou et al. [6] provided an overview of Multiple Sequence Alignment techniques
and significant advancements within the past decade. However, their focus is primarily
on illustrating heuristic-based tools such as MAFFT [37,38] and Clustal [39], among others.
Zambrano-Vega et al. [8] contributed two separate comparative studies addressing the
application of multi-objective bioinspired algorithms for MSA challenges. The first study
delves into the formulation of MSA with three objectives, while the second study offers a
more comprehensive examination of generic multi-objective methods for MSA. Nonetheless,
instead of adopting a systematic review approach, both articles aim to deliver a thorough
experimental assessment of reference techniques in sequence alignment. Chowdhury and
Garai [40] reviewed various strategies to address MSA challenges, specifically focusing on
Genetic Algorithms as the sole methodologies investigated.

A recent review by Chao [36] delves into various quality estimation techniques utilized
in MSA tools and the fundamental concepts prevalent in sequence alignment research.
Furthermore, an assessment of benchmarks for MSA was outlined in [26], concentrating
solely on evaluation methods employed for resolving sequence alignments. Paruchuri [31]
surveyed nature-inspired algorithms aimed at tackling Multiple Sequence Alignment prob-
lems; this article provided an overview of the state-of-the-art nature-inspired algorithms
and implemented several algorithms to address MSA challenges, presenting the analyses
and results of their experiments. Another review work introduced by Almanza [41] focused
on parallel computing approaches applied to MSA.

The principal objective of our present investigation is to introduce a comprehensive
systematic literature review aimed at compiling and synthesizing articles pertaining to
bioinspired algorithms for Multiple Sequence Alignment. Consequently, our study distin-
guishes itself from recent reviews that tackle a multitude of biological topics by focusing
specifically on this subject matter, as far as our knowledge extends. The Supplementary
Materials provide a summary of the pertinent existing reviews in comparison to our study.

4. Methods

This study employed the systematic literature review (SLR) methodology, a rigorous
approach for gathering and assessing all studies on specific research topics [42]. Utilizing
SLR helps minimize biases by systematically identifying and gathering materials that
address particular concerns [15,18], ensuring a review with high-quality evidence and
allowing for scrutiny of reviewers’ decisions and conclusions [42]. The framework outlined
in Figure 3 formed the basis for the proposed SLR, encompassing three main phases:
review planning, execution, and documentation. Figure 2 depicts the primary stages of the
proposed SLR.
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4.1. Review Planning

The planning phase delineates the conception and preparation processes of the SLR,
encompassing the identification of the study’s objectives and the development of the review
protocol. An automated search was conducted across prominent bibliographic databases
to identify additional relevant documents [15,18]. These digital repositories were selected
due to their widespread usage and extensive literature pertinent to the research concerns
of the study. To ensure a comprehensive collection of current and relevant articles for the
SLR, the timeframe considered spans from 2010 to 2024.

4.2. Conducting the Review

Following the review planning, the subsequent step involves the actual conduct of the
review. This phase entails executing the primary review method, which includes identifying
the principal subjects to be reviewed and explored by defining the research questions (RQs)
of the SLR. Furthermore, this stage encompasses formulating a search strategy and the data
extraction and synthesis procedures, all elaborated upon in subsequent subsections.

4.3. Research Questions

In this systematic literature review (SLR), identifying research questions is the initial
step in determining the issues to be explored and investigated. The selection of primary
studies for inclusion in the review heavily relies on these research questions. Consequently,
the development of research questions is typically the primary focal point of the SLR. The
principal research questions (RQ) utilized in this study are presented in Table 1.

Table 1. Research questions.

No. RQ Motivation

1 Which bioinspired algorithms (BIA) are commonly
employed for MSA? Identify the popular bioinspired algorithms for MSA.

2 What benchmark datasets are popularly applied to the
evaluation of MSA problems?

To identify the benchmark datasets commonly used to
evaluate MSA solutions.

3 What are the Quality Measure
techniques (QM) used for the MSA?

Identify the popular bioinspired-based Quality Measure
techniques used for MSA.

4 What are the current trends, issues, and prospects for
further study?

Determine the trends, research issues, and future
directions in the bioinspired-based MSA.

The initial query aims to ascertain the most frequently utilized bioinspired methods for
Multiple Sequence Alignment (MSA). Research Question 2 (RQ2) delves into the benchmark
datasets employed to assess the MSA problem. RQ3 seeks to examine the prevalent
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benchmark techniques utilized for MSA. Lastly, RQ4 addresses the research challenges,
trends, and future directions within this topic area.

4.4. Search Strategy

Five distinct bibliographic databases were employed in the search process to identify
relevant studies, see Table 2 below. These databases include Scopus, IEEE Xplore, Springer-
Link, ACM, and Bioinformatic. The review’s timeframe was limited to the years 2010 to
2024 to ensure a comprehensive and up-to-date analysis. The following search strings
were utilized:

• String-A: “multiple sequence alignment” AND “bioinspired”
• String-B: “multiple sequence alignment” AND “genetic algorithm”
• String-C: “multiple sequence alignment” AND “particle swarm optimization”
• String-D: “multiple sequence alignment” AND “simulated annealing”
• String-E: “multiple sequence alignment” AND “bacterial foraging”
• String-F: “multiple sequence alignment” AND “artificial bee colony”

Table 2. The search terms utilized.

String IEE ACM SCOPUS Bioinformatics SpringerLink Total

A 7 2 16 2 4 31
B 32 5 300 3 6 346
C 12 1 150 3 13 179
D 8 3 200 10 10 224
E 3 2 32 6 6 44
F 7 3 150 4 4 168

Total 69 16 848 28 31 992

4.5. Study Selection Criteria

Following the application of the search criteria across the specified digital libraries, a
total of 992 papers were initially retrieved. Upon further examination, numerous dupli-
cate articles were identified and subsequently removed, resulting in 520 unique articles
remaining for consideration. Through subsequent selection processes and eliminating
duplicates, inclusion and exclusion criteria were established to identify the most relevant
publications. Additionally, to ensure the quality of the selected papers, these studies were
screened according to predefined quality assessment standards. The validity of the findings
was further ensured through the cross-checking technique to verify whether the selected
papers met these criteria. After applying the abovementioned criteria and the quality eval-
uation stage, 45 studies addressing the research topics were identified and utilized for the
proposed SLR. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) is utilized to conduct an SLR as shown in Figure 4.

The Quality Standard Checklist (QSC) developed by Keele [43] was employed to
ensure the quality of the selected publications. In accordance with this checklist, arti-
cles that answered “yes” to a minimum of seven questions were selected [44]. Both the
quality assessment and data extraction processes were conducted in conjunction to en-
sure that the findings significantly contribute to the review [45]. The inclusion/exclusion
criteria are provided in Table 3, and the Quality Standard Checklist is provided in the
Supplementary Materials.
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Table 3. Inclusion/exclusion criteria.

Inclusion Exclusion

Studies that solely focus on experimental results. Research without empirical findings was disregarded.
Papers focusing on the use of bioinspired-based methods to
solve MSA.

Papers that concentrate on other techniques used for MSA are
excluded.

Research works released between 2010 and 2024. Research released before 2010 was not included.
Studies that are only written in English. Research papers published in other languages.

Only conferences and journals are considered. Other sources are not included, including books, theses, and
magazines.

4.6. Data Extraction and Synthesis

As part of the data extraction procedure for the systematic literature review (SLR),
forms were created to collect data from the chosen publications [46]. By considering the
information in the data extraction form, answers to the designated research questions for
the SLR can be obtained. Table 4 presents the data that was extracted during the data
extraction stage.

In Table 4, the first column delineates the search strategy employed to gather data for
the data extraction process, encompassing both automatic and human-based extraction
methods. The second and third columns illustrate the type of information extracted and the
rationale behind each extraction. This data includes details related to the types of algorithms
addressed, the benchmark methods utilized for validation, research challenges identified,
and directions for future study. These extracted pieces of information are examined to
facilitate grouping related studies based on their respective attributes.
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Table 4. Data extraction form.

Search
Method Extracted Information Purpose

Manual

The class of bioinspired algorithms that the paper
examined. RQ1

Benchmark methods were used to address the
MSA problem. RQ2

Future directions and challenges. RQ3
Study’s conclusion. RQ1, RQ2, and RQ3

Automatic

Title of the study.

Study description
Year of publication.

Names of the authors.
Publication type (conference proceeding or journal

article).

5. Search Results and Metanalysis

In Table 4, the first column details the search techniques used to acquire the required
data through manual and automatic extraction methods. The second column specifies
the category of the extracted information, while the third column elucidates its intended
purpose. This section describes the selected studies based on the extracted data.

5.1. Description of the Identified Articles

A chronological presentation of the published works selected for the proposed SLR is
depicted in Figure 5. This figure illustrates the number of publications related to bioinspired
algorithms used for Multiple Sequence Alignment (MSA) from 2010 to 2024. The figure
indicates a rising trend in this field of study in recent years, particularly from 2014 to
2017, when a notable increase in the number of published articles occurred. Most of the
publications considered for the study were added after 2014. Specifically, the highest
number of published articles was observed in the years 2016 and 2017, with six papers
published in 2016 and seven papers appearing in 2017. Figure 6 displays the overall
numbers of relevant articles utilized in the review.
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5.2. Synthesis Results

The SLR results of the data synthesis addressing the research questions derived from
the chosen papers are presented in this section. As a result, the research questions created
for the SLR will be addressed in this section.

5.2.1. RQ1: What Are the Common Bioinspired Algorithms Used for MSA?

This section attempts to answer research question 1 by exploring the popular bioin-
spired algorithms used for the MSA. Based on the reviewed articles, many bioinspired
approaches have been proposed to solve the MSA problem. These approaches include
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC),
Memetic Optimization (MO), and Biography-Based Optimization (BBO). The summary
of the bioinspired algorithms for MSA identified in the selected studies is summarized in
Table 5 and given below.

Table 5. Summary of the bioinspired algorithms for MSA.

Model Description References

GA
An evolutionary algorithm based on natural selection and genetics is

utilized to find approximate solutions to optimization and search
problems.

[12,21,22,33,47–64]

PSO A population-based stochastic method that simulates the movement and
cooperation of particles inspired by the social behavior of birds and fish. [10,20,65–67]

Memetic Algorithm A technique that blends local search methods with evolutionary
algorithms, such as genetic algorithms. [13–51,65–90]

Simulated
Annealing

A technique for probabilistic optimization that draws inspiration from the
metallurgical annealing process. [91]

The Flower
Pollination Algorithm

An algorithm that mimics the natural process of pollination in blooming
plants, in which pollen is spread from one flower to another and fertilizes

the plants.
[92,93]

Artificial Bee
Colony

A method for population-based optimization influenced by honeybee
foraging. [14,94–97]

Biogeography-based
Optimization

An optimization algorithm inspired by nature that is grounded in
biogeography, the study of species distribution across various geographic

regions.
[84,98]

Bacterial
Foraging

Optimization

A nature-inspired optimization algorithm that is inspired by the foraging
of bacteria. [74,99]

Genetic Algorithm (GA)

Natural selection, mutation, and crossover processes that individuals experience in
evolution theory serve as the foundation for this method [3,70,71]. Each individual in
the GA when solving the MSA problem is a potential alignment, and the optimization
process is provided by the rearrangement of the sequence based on recombination and
mutation operators [29]. Generally, the first operator changes an existing gap position,
but the second generates new ones by joining two individuals. Several papers that used
GA-based methods were identified based on the selected studies in this SLR. Kumar [47]
designed a GA centered on the mutation and crossover process. The starting population is
created randomly, and each individual’s quality is assessed using the sum-of-pairs objective
function. Operators are put into action after a tournament selection process. The author
used various mutation operators, which are empirically executed and dynamically selected,
as well as vertical and recombination crossover. This approach was evaluated using the
BAliBASE benchmark, with a maximum of 27 sequences assessed.

In contrast to other popular GA techniques for MSA, such as SAGA [30] and MSA-
GA [72], this methodology produced good results in most situations. This approach was
modified in [21] to use the COFFEE objective function [73] for DNA alignments. The
Needleman–Wunsch algorithm is used to construct the GA’s initial population, and fitness
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values are computed for each individual. A modified version of the consistency-based
COFFEE goal function replaces the Weighted Sum-of-Pairs technique. The approach was
evaluated using the BAliBASE benchmark by applying the REFAB Q metric in DNA
sequence alignment.

To obtain decent results, Rani and Ramyachitra [74] suggested an additional GA that
concentrated on crossover operators. The first population is created randomly, and then, a
multi-objective method that computes the sum-of-pairs and total column scores for each
individual is used, then an elimination criterion is implemented. The authors used each
test case for the BAliBASE datasets to evaluate the methodology. Chentouri et al. [48]
developed a multi-objective GA for multiple RNA sequence alignment based on Pareto
Optimality. The original population is randomly initialized, the non-dominant individuals
are cloned into an archive population, and each individual’s fitness is calculated. The
authors assessed this approach using the BAliBASE benchmark and SPSS and SCI metrics.
The authors noted that the results are highly sensitive to the gap and mutation factors and
recommended varying these parameters in subsequent research.

In a different study, the RNA alignment evaluation approach using a multi-objective
GA with dynamic weight was proposed by Chentouri et al. [48]. The starting population
is created randomly, and each individual is assessed for fitness using a multi-objective
method that includes base pam score weighted completely matched column and entropy.
The approach has been assessed using the BAliBASE benchmark. The model uses SPSS
and SCI as the evaluation metrics. Based on NSGA-II, Kaya et al. [49] presented a multi-
objective GA for MSA. Three objective functions were used to calculate the fitness of the
initial population, which is recreated at random: support maximization, affine-gap penalty,
and similarity. The authors evaluated the approach using the BAliBASE benchmark.

For MSA, Catteree et al. [33] suggested combining a hybrid GA with the Chemical
Reaction Optimization (CRO) algorithm. Initially, a starting population is selected at
random, the cut point is either an entire column match or a crossover performed with
a single-point approach. Following the execution of mutation operators in the GA, the
Chemical Reaction Optimization algorithm receives the output. DNA samples from the
SWISS-PROT datasets were used to assess the technique. Amorim et al. [50] parallelized
the GA’s primary stage in the MSA-GA tool through multithread programming. The
individuals are initially formed using the Needleman–Wunsch algorithm. The authors
parallelized the score matrix using the wavefront framework. The authors assessed the
technique using the BAliBASE dataset. Based on the NSGA-II, ZambranoVega et al. [8]
developed a parallel MSA employing a multi-objective GA. Pre-alignments computed
by programs like ClustalW [75], MAFFT [37], MUSCLE [76], and T-Coffee are used to
create the initial population [73]. Individuals from the original population are processed
using crossover and mutation operators to form an auxiliary population. Each individual’s
fitness is then determined using the STRIKE function, percentage of total columns, and
percentage of non-gaps. The approach was created using the BAliBASE benchmark. It is
noted, meanwhile, that processing medium- and large-scale datasets presents challenges to
the approach.

Particle Swarm Optimization (PSO)

Another bioinspired algorithm used for solving the MSA problem is Particle Swarm
Optimization (PSO), which is an approach to solving optimization issues based on a
population of particles [77–81]. The optimization procedure is carried out with each
particle’s position and velocity considered. Changes are therefore made to these values
in accordance with each particle’s optimal position as well as the best available global
knowledge [82]. Based on the selected studies in this SLR, several PSO-based methods
were identified. For example, a PSO algorithm was created by Tran and Wallinga [65] to
generate structurally and evolutionary optimal alignments. Then, each person’s fitness
is determined using the STRIKE function, percentage of total columns, and percentage
of non-gaps. This paper evaluated the approach using the BAliBASE dataset. Yang [83]
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presented a PSO technique for the MSA problem based on fish swarm intelligence. The
plan was to retain the balance between local and global search capabilities while aiming for
a faster convergence. The authors of this paper utilized the BAliBASE benchmark to assess
the methodology. Lalwani [20] suggested a two-level PSO algorithm to execute MSA, where
each level optimizes a distinct objective function. This tactic works well to stop a locally
optimal solution from converging too soon. The authors evaluated the approach using the
BAliBASE benchmark. The SP and TC were used as the metrics. Based on earlier research,
the authors in [66] introduced a novel two-level PSO technique for RNA sequence-structure
alignment. The PSO then executes independently for the two levels. Each alignment’s
starting length is calculated at level one, and changes are made in the gap places at level
two. The tests were conducted using the BAliBASE dataset.

We can also observe the application of hybrid PSO. Chaabane [10] presented a PSO
model, the initial step of Simulated Annealing, to carry out MSA that meets the metropolitan
criteria. Alignments are produced using the metropolis criterion and are utilized to populate
the PSO algorithm’s initial population. The approach was evaluated using the BAliBASE
dataset. The findings achieved were superior to those of other nature-inspired tools, such
as GAPAM [51] and IBBOMSA [84], with an 8 percent rise in the SPS quality rating. A
new PSO variation for MSA based on the free electron method and hybridized with HMM
was proposed by Sun et al. [85]. The particles are started randomly, and the PSO is used
in the HMM learning process. To spread out the search space, the mean best location is
computed. This work assessed protein alignments using the BAliBASE benchmark, while
DNA alignments were assessed using a simulated dataset. Zhan et al. [67] introduced a
novel MSA approach that applies the partition function with a hybrid HMM and PSO
technique. The PSO optimizes the HMM parameters, and the distance matrix for the
Multiple Sequence Alignment is calculated using the findings. The three well-known
protein benchmarks, BAliBASE, QXBench, and SABmark, were utilized to assess the
method. This method was later enhanced by Zhan et al. [67]. The model was evaluated
using other good techniques, such as the MSA generated by these methods, to reconstruct
the phylogenetic trees.

Memetic Metaheuristic (MA)

The Memetic Metaheuristic is another bioinspired-based method for conducting
MSA [13–51,65–87]. As an expansion of GA, this metaheuristic employs local search
techniques to prevent premature convergence [87]. The Shuffled Frog-Leaping Technique
(SFLA) is a well-known memetic algorithm for discrete optimization [100]. Multiple frogs
jump in a wetland at SFLA. The frogs communicate with each other to determine which of
the limited number of water lilies has the greatest food. When frogs are utilized to solve
Multiple Sequence Alignment problems, gap locations are adjusted by the operators.

A hybridized multi-objective SFLA using Progressive Alignment was proposed by
RubioLargo et al. [68]. Initially, a random initial population generator divides the people
into subpopulations of water lilies, known as memeplexes. The suggested approach was
assessed in this work using three benchmarks: BAliBASE, PREFAB, and SABmark. As a
result, RubioLargo et al. [88] suggested utilizing OpenMP for distributed computing as
a parallel solution to their method. The technique gives each memeplex its own thread,
and the outcomes are processed concurrently. Here, the authors assessed the algorithm’s
performance using the HOMSTRAD dataset. Subsequently, an expansion of the earlier
work was published by Rubio-Largo et al. [89], the primary contribution of which is a
compelling parallel version of the method for aligning data sets with a high sequence count.

Bacterial Foraging Optimization (BFOA)

Bacterial Foraging Optimization (BFO) is another essential bioinspired method identi-
fied in this SLR. A multi-objective BFO method was presented by Rani and Ramyachitra [74]
for solving the MSA problem. The population’s individuals are first created, and then the
chemotaxis phase starts. The BAliBASE benchmark was utilized in this work to assess the
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methodology. The authors compared the acquired results with other bioinspired-based
approaches and commonly used MSA methods. A comparable technique for conducting
MSA based on a hybrid BFO and GA was presented by Manikandan and Ramyachitra [99].
Consequently, each individual’s fitness is determined, and the top two are chosen for
reproduction, which will occur according to a predetermined probability. The suggested ap-
proach was assessed using the BAliBASE, PREFAB, SABmark, and OXBench benchmarks.

Other Bioinspired Techniques

In addition to the methods mentioned above, other bioinspired algorithms are identi-
fied in this SLR. For example, the authors in [101] introduced Biogeography-Based Opti-
mization for the MSA. The distribution of species across territory serves as the model for
this strategy. In this way, through processes known as migration and emigration, species
travel between the regions. Zemali and Boukra [98] presented a novel hybrid method for
performing MSA using an optimization algorithm based on biogeography. The method
creates the initial population using Progressive Alignment, which means that a distinct
set of parameters is utilized for each territory. The authors have assessed the suggested
approach using the BAliBASE benchmark. To tackle the MSA problem, [98] combined
earlier research with Talbi and Draa’s Quantum Evolutionary approach [102]. Pairwise
alignments and the hill climbing process construct the initial population. A Simulated
Annealing technique is then used to initialize the quantum population, determining which
individuals will be taken to the population. The method was evaluated using the Baliscore
quality metric.

Another bioinspired-based method is the Simulated Annealing to carry out MSA. It
involves adjusting the potential solution, which is governed by a temperature parameter, to
investigate the solution space [91]. The methods mostly consist of controlled modifications
to the alignment’s gap positions. Yao et al. [91] suggested a hybrid method combining Star
Alignment and Simulated Annealing to solve the MSA problem. Ultimately, the Multiple
Sequence Alignment is obtained by applying this approach. Another bioinspired algorithm
applicable to MSA is the Flower Pollination algorithm (FPA) [92,93]. It is based on the
mechanisms of self-pollination and cross-pollination that occur during flower pollination,
among others [103]. Each flower represents a potential alignment when used to solve the
MSA, and the pollination procedures essentially involve altering the gap positions either
globally or locally. To achieve protein MSA, the authors in [92] suggested a novel FPA that
involves two main processes: self-pollination and cross-pollination. BAliBASE was utilized
in this paper to assess the approach. The outcomes demonstrated that this method might
yield to better MSA. But the biological significance of the data was lacking. As a result,
the authors suggested expanding on the earlier research by employing a multi-objective,
hybrid EPA approach, as shown in [93]; here, the authors evaluated the approach using
BAliBASE.

Similarly, a multi-objective hybrid ABC was proposed by Rubio-Largo et al. [15] to
carry out MSA. First, each member of the original population is created randomly and
referred to as an employed bee to create a new individual. A crossover operator is carried
out on a randomly selected bee for each bee engaged during this procedure. The Kalign
method [104] establishes a random alignment segment, and the realigned section is returned
to its original position. This paper assessed the approach using the BAliBASE benchmark.
The authors used PREFAB Q and TC quality indicators.

Figure 7 shows the distributions of papers for each category of the bioinspired-based
methods for MSA. As can be seen from the figure, the percentage of each of the algorithms
identified in the selected article for this SLR is indicated accordingly. The chart shows
that the Genetic Algorithm is the most used bioinspired-based algorithm for solving the
MSA problem with 48%, followed by the Memetic Algorithm and ABC representing 13%
each, of the total papers identified for the MSA solutions. Next are the PSO and FPA with
11% and 5%, respectively, of the total articles identified in the review, followed by the BO
and BFO which represent 4% each of the total number of bioinspired-based algorithms
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applied for solving the MSA problem. Finally, we can see that based on the reviewed
literature, Simulated Annealing is the least utilized algorithm for MSA with 2% of totally
reviewed papers.
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5.2.2. RQ2: Benchmark Methods Used in MSA

Benchmarks for Multiple Sequence Alignment are used to evaluate the effectiveness
of various MSA techniques and algorithms. There must be some benchmark sequences
and “gold standard” reference alignments of those sequences to compare various align-
ment methods efficiently. It is necessary to determine a quantifiable accuracy concerning
gold standard reference alignments to evaluate the performance of various automated
alignment systems.

Several benchmarks are already available, with the primary objective being to evaluate
the quality of the various Multiple Sequence Alignment tools. MSA solutions have been
assessed using a variety of benchmarks based on the papers chosen for this SLR. Thus, the
effectiveness of various MSA techniques and algorithms is evaluated using benchmarks.
These benchmarks usually comprise a selection of well-chosen reference alignments for
a wide range of protein or nucleotide sequences. Many benchmarks are available for
free, all of which aim to evaluate the various Multiple Sequence Alignment tools. Several
benchmarks have been utilized to assess MSA solutions based on the papers that were
chosen for this SLR. This includes HOMSTRAD [64], BAliBASE 2.0 [59], OXBench [105],
PREFAB [90], SABmark [94], and BAliBASE version 3 [71]. Table 6 shows the summary of
the benchmarks identified in the selected studies and their explanation given as follows:

• HOMSTRAD [64]: This database contains protein domains grouped according to
structural and sequence similarities. Several authors have used HOMSTRAD as a
benchmark database, even though it was not intended to be one. The database offers
combined information on protein structure and sequence that has been taken from
the PDB [95] as well as other databases, such as Pfam [96] and SCOP [97]; the most
recent version of the database includes 9602 single-member families and 1032 domain
families, with each family containing 2 to 41 sequences.

• BAliBASE [106,107]: This is the first extensive benchmark created especially for the
alignment of multiple sequences. To guarantee the proper alignment of conserved
residues, the alignment test cases are based on 3D structural superpositions that are
manually improved. A wide range of issues encountered by multiple alignment
methods is represented by the 217 alignments in the current version of BAliBASE,
ranging from 4 to 142 sequences. These alignments are arranged into six reference
sets, which include sequences with large NC-terminal extensions or internal insertions,
transmembrane regions, repeated or inverted domains, and eukaryotic linear motifs.

• OXBench [105]: This offers several automatically constructed protein alignments
based on aligning techniques for sequence and structure. Three data sets comprise
the benchmark; between two and twenty-two sequences per alignment, the master
collection now consists of 673 alignments of protein domains with known three-
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dimensional structures. Sequences with an unknown structure are added to the master
set to create the extended dataset. Lastly, the full-length sequences for the domains in
the master data set are included in the full-length data collection.

• PREFAB [90]: This dataset has 1932 multiple alignments and was built with a fully
automated protocol. Two approaches of 3D structure superposition were used to
identify and align pairs of sequences with known 3D structures. Next, for every pair
of structures, multiple alignments were created using 50 homologous sequences found
through sequence database searches; since the building is automatic, many tests can
be incorporated. This benchmark’s drawback is that it only infers multiple alignment
accuracy from aligning the first two sequences with known 3D structures.

• SABmark [94]: This includes reference sequence sets obtained from the SCOP protein
structure categorization, separated into two groups: superfamilies and the twilight
zone (Blast E-value 1) (residue identity 50 percent); each reference set’s sequence
pairs are aligned using the consensus of two distinct 3D structure superposition
programs. Once more, the benchmark offers pairings of sequences in only “gold
standard” alignments. Even though the sequences are arranged into families, each
containing a maximum of 25 sequences, a consistent multiple-alignment solution is
not offered.

Table 6. Widely used Multiple Sequence Alignment benchmarks.

Benchmark Test
Alignment

Sequence
Type

No of
Subsets

Number of Set
Alignments References

BAliBASE Multiple Protein/RNA/DNA 6 217 [12,18,21,30,33,37,48–51,59–
64,67,72–75,99,104]

SABmark Pairwise Protein/DNA 2 634 [68,74,85,99,104]
HOMSTRAD Multiple Protein - - [88]

OXBench Multiple Protein 3 673 [67,85,99]
Prefab Pairwise Protein 3 1932 [68,74,99,104]

Figure 8 shows the performance evaluation measures used for the MSA problem.
The chart shows that several benchmark datasets are used to validate the effectiveness
of the Multiple Sequence Alignment solutions. Derived from the literature chosen for
the proposed SLR investigation, prominent benchmark techniques encompass BAliBASE,
SABmark, HOMSTRAD, OXBench, and Prefab. The data indicate that BAliBASE and SAB-
mark are the prevailing benchmark datasets, utilized in 64% and 13% of cases, respectively,
followed by OXBench and Prefab, each accounting for 10%. Conversely, HOMSTRAD
emerges as the least utilized benchmark dataset for MSA, representing only 3% of cases.
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5.2.3. RQ3: Performance Evaluation Measures for MSA

Due to the utilization of diverse algorithms by different Multiple Sequence Alignment
tools, the quality of alignments may vary significantly. In response, various quality estima-
tion techniques have been devised to evaluate and provide guidelines for the design and
enhancement of sequence alignment software [55]. This section endeavors to address RQ3
by examining classical quality estimation methods [54] and providing a summary of Table 3
along with their descriptions [55]. Drawing from the literature, prevalent quality estimation
techniques encompass structured-based, simulated, and consistency-based approaches.
Subsequent subsections will delve into the specifics of these techniques:

Structural-Based Method

In particular, benchmarks were created using information on protein structure. The
sort of benchmarks that are most commonly used are structural benchmarks [2]. These
most frequently use the superposition of known protein structures as a separate alignment
method, to which sequence analysis alignments can be compared using the previously
mentioned sum-of-pairs and true column metrics. Structural standards are naturally quite
relevant when looking for structural concordance across amino acid sequence alignments.
One of the most often utilized structured benchmarks for protein alignment software is
BAliBASE [56]. These benchmarks provide preset test sets and reference alignments that
have been manually and automatically revised based on the three-dimensional structure of
proteins. The concept behind these benchmarks is that amino acid residues corresponding
to the same position in the three-dimensional structure should be aligned [55].

Many sequence alignment software developers optimize their programs on a limited
number of data sets, which can lead to the “high in score but low in ability” phenomenon.
This is true even though BAliBASE and other similar benchmarks are widely used and
provide fixed test sets and reference alignments if these benchmarks are not updated
regularly. Other specifically designed structural benchmarks are HOMSTRAD, PREFA,
and SABmark, which are not generated by hand annotation of protein alignments like
BAliBASE. Reference sets are also available for RNA structures [41,106].

Simulation-Based Method

Another technique uses produced data sets to score Multiple Sequence Alignment
software. One of the main goals of MSA is to find residues that have developed from
a common ancestor. One benchmarking method is to create artificial sequence families
by simulating evolution along a known tree. This simulation-based method tracks the
“real” homology relationships between specific residue sites while describing nucleotide
substitution, deletion, and insertion rates using a probabilistic model of sequence evolu-
tion. These methods generate evolved sequences and reference alignments based on the
evolution of the sequence using a probabilistic model to simulate sequence evolution [55].
Since the evolution model totally governs the generated mutations, the accuracy of these
benchmarks is limited by how well the accepted model represents the natural evolution.
Since the evolution model totally governs the generated mutations, the accuracy of these
benchmarks is limited by how well the accepted model represents the natural evolution.
The likelihood that, in some cases, the probabilistic model may even skew the estimation
if it mimics the sequence relationship model that the tested program uses further compli-
cates the probabilistic model’s creation and selection. These kinds of benchmarks offer
pre-established reference alignments that may be used to assess the performance of recently
created software. As a result, a scoring system is required to determine how well the tested
program aligns with the reference.

Numerous software packages, such as Rose [107], EvolveAGene3 [108], INDELIBE [109],
Phylosim [110], Revolver [111], and ALF [112], are capable of conducting simulated se-
quence evolution. The alignment accuracy, compared to the genuine alignment (known
from the simulation), is often evaluated using two metrics: the sum-of-pairs (SP) and the
true column (TC) scores [111]. The SP score refers to the fraction of aligned residue pairs
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that are consistent between the reconstructed and actual alignments, averaged across all
pairwise comparisons between individual sequences. The TC score measures the proportion
of completely aligned columns replicated in the reconstructed alignment.

Consistency-Based Method

An alternative technique for estimating quality is based on the similarities between
alignments produced using various Multiple Sequence Alignment strategies rather than
a reference alignment. It is predicated on the notion that two residues are probably ac-
curately aligned if many software programs reliably align them. However, a significant
flaw in this approach is that if two residues are regularly aligned incorrectly by separate
software programs, the scoring system will accept this error as accurate. This approach
employs specific scoring techniques, including the multiple overlap score [113] and the
head-or-tail (HoT) score [114,115], in contrast to the estimating methods that rely on
reference alignment.

Two popular scoring approaches that quantify the degree of similarity between two
alignments by counting common pairs and columns between them are the total column
or the column (TC) score and the sum-of-pairs (SP) score [116]. The Wilcoxon signed-
rank test [117] and the Friedman rank test [76,118] may be used for alignment accuracy
discrimination by providing a p-value, which indicates the likelihood that the performance
difference between different methods is due to chance.

Based on the idea that biological sequences lack direction, this consistency test assumes
that alignments should remain unchanged regardless of whether the input sequences are
provided in the original order or inverted. The overlap measurements mentioned above
can be used to quantify the degree of agreement between the alignments produced from
the original and reversed sequences. Consistency among aligners and score are two
intriguing consistency approaches that may be used easily because they do not assume a
reference alignment or sequence of evolution model. Moreover, a set of precise aligners
must have great consistency, which makes it attractive. Although most aligners share
numerous characteristics and are therefore not “independent”, the consistency requirement
nevertheless appeals to the intuitive notion of “independent validation”. The consistency
method has a significant flaw in not ensuring accuracy; approaches can be consistently
incorrect. More quietly, the selection of aligners within the set impacts consistency. While
this can be somewhat alleviated by presenting as many diverse alignments as possible, it is
still possible for an accurate alignment to be graded negatively if inaccurate but similar
alignments outnumber it.

Table 7 shows the performance evaluation measures used for the MSA problem. From
Table 7, it can be observed that several performance quality measures are used to validate
the effectiveness of the Multiple Sequence Alignment solutions. Based on the published
papers from the literature selected for our SLR study, the most popularly used perfor-
mance quality evaluation measures include structural-based techniques, simulated- based
approaches and consistency-based approaches. From Figure 9, it can be observed that
structural-based techniques based on the idea that amino acid residues that correspond
to the same position in the three-dimensional structure should be aligned are the most
popularly used quality measures for MSA with 73%. Next is the consistency predicated on
the notion that two residues are probably accurately aligned if many software programs
reliably align them with 17%. And finally, the simulation-based techniques use a probabilis-
tic model to simulate sequence evolution and produce evolved sequences and reference
alignments with 10%.
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Table 7. The quality estimation of MSA.

Technique Description Scoring Method References

Structural

Based on the idea that amino acid residues
that correspond to the same position in the
three-dimensional structure should be
aligned.

1. Sum-of-pairs.
2. True column.

[22,47,53–
58,72,74,76,86,87,97,116–119]

Simulated
A probabilistic model simulates sequence
evolution and produces evolved sequences
and reference alignments.

1. Sum-of-pairs.
2. True column. [110–112]

Consistency
It is predicated on the notion that two
residues are probably accurately aligned if
many software programs reliably align them.

1. Multiple overlap score.
2. Head or tail score. [104,113,120–122]
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5.2.4. RQ4: What Are the Challenges and Open Issues in Bioinspired-Based MSA?

This section addresses RQ4 by delineating the challenges and open issues associated
with bioinspired-based Multiple Sequence Alignment (MSA). In recent years, the research
community has increasingly relied on bioinspired-based approaches to tackle NP-hard
problems [7,69]. These approaches offer the advantage of solving large-scale cases with
reduced computational resources, including memory and processing time [24], thereby
effectively addressing complex optimization challenges in bioinformatics. While alternative
methods exist for optimizing these issues, the versatility of bioinspired-based methods
renders them invaluable tools capable of generating “high-quality” solutions within reason-
able computing timeframes [41]. An inherent advantage of employing bioinspired-based
methods in bioinformatics lies in their ability to effectively address MSA problems, which
typically involve large-scale, NP-hard optimization, posing significant constraints on clas-
sical optimization techniques [7]. Furthermore, given that data provided by scientists
and researchers inherently contain errors, extended bioinspired-based methods such as
learnheuristics [123] and simheuristics [124] offer greater adaptability compared to more
precise approaches.

Optimizing various objectives is a prevalent task in bioinformatics, rendering the uti-
lization of bioinspired-based methods both appropriate and intrinsic to the field. Notably,
the Protein Structure Prediction (PSP) problem and numerous string-related challenges
stand out as prominent subjects in bioinformatics research. Moreover, the realm of med-
ical imaging heavily relies on bioinspired-based methods, particularly for tasks such as
variable selection and parameter fine-tuning. Over the past few decades, advancements in
computational power have facilitated the development of distributed and parallel imple-
mentations of bioinspired-based methods. This progress has spurred bioinspired-based
methods specialists to introduce increasingly sophisticated and intricate designs, including
hybrid and multi-objective techniques.
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Bioinspired-based methods are particularly fitting and natural for addressing the
multifaceted optimization challenges prevalent in bioinformatics. Notably, within this
domain, a subset of string-related difficulties, such as the Protein Structure Prediction
(PSP) problem, garners significant attention. These methods extend their applicability to
various optimization problems, encompassing alignment challenges and the identification
of DNA patterns. Furthermore, the reliance of medical imaging and disease modeling on
bioinspired methods for tasks like variable selection and parameter fine-tuning underscores
their indispensable role in advancing healthcare research. Moreover, the advent of new high-
throughput technologies has led to a surge in available data in bioinformatics, including
microarray genomic data, protein and DNA sequences, image-based biomarkers, clinical
tests, and bibliographic data. This influx of data introduces novel challenges, necessitating
the utilization of knowledge-discovery techniques [125]. Evolved algorithms now enable
the exploration of large-scale, real-world data, thereby unlocking the full potential of these
methodologies, whereas previous reliance on small-scale benchmarks merely facilitated
the testing of fundamental principles [126].

In the forthcoming years, the demand for variable selection in artificial intelligence
techniques will progressively necessitate the adoption of bioinspired-based algorithms.
Given the sheer volume and diversity of data in bioinformatics, coupled with the im-
perative for timely solutions and the continuous advancements in computational power,
time complexity remains a perennial challenge. Consequently, the landscape of future
bioinformatics and bioinspired-based research is multifaceted, offering myriad avenues
for exploration and innovation. Some of the overarching open issues in the field can be
synthesized as follows:

1. The creation of more potent algorithms based on parallel and distributed paradigms
and the blending of various algorithms.

2. The creation of more resilient algorithms that consider the uncertainty or stochasticity
present in bioinformatics (caused by errors in the technology used to collect data or by
the characteristics of the data itself).

3. The development of frameworks for parameter fine-tuning to take advantage of
instance-specific aspects to improve results.

4. The application of multi-objective techniques to take into account the various objectives
in the majority of issues.

6. Limitations of the Study

Several bioinspired-based techniques for the MSA problem are identified in this SLR.
Our goal in creating our protocols is to handle the RQs while optimizing internal and
external validity. This argument’s validity is nevertheless subject to many limitations and
objections, some of which are discussed in this section.

• Only journal and conference papers that address bioinspired-based methods for solv-
ing the MSA problem are included in this SLR. We used our search approach in the
study to find and exclude several irrelevant research publications. This ensures that
the selected research papers fulfilled the investigation’s needs. However, it is believed
that this review would have been improved by including other sources, such as books.

• We limited the scope of our search to English-language materials. The possibility that
comparable papers in this field of study exist in languages other than English can lead
to linguistic bias. Appreciatively, all of the research papers were written in English.
Therefore, we do not have language bias.

• The primary databases were considered while searching through the study articles;
nevertheless, other digital libraries containing relevant studies were likely overlooked.
To overcome this limitation, we matched the search terms and keywords to a reputable
library of research works. However, when looking for the keywords, certain synonyms
could be missed. To solve this issue, the SLR methodology has been adjusted to
guarantee that no crucial phrases are overlooked.
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7. Conclusions and Discussion

In this study, we presented a systematic literature review on bioinspired-based meth-
ods for solving the MSA problem that can guide researchers and practitioners in under-
standing the challenges and new trends in the area. In particular, many bioinspired-based
techniques were examined, emphasizing the MSA. The study used the SLR method, which
thoroughly analyzes and synthesizes the published articles. We considered studies con-
ducted from 2010 to 2024 to provide more recent and comprehensive developments. After
collecting and examining several studies, 45 papers were found after eligibility screening
and quality assessment. The results showed that the Genetic Algorithm and Memetic
Optimization are the most used bioinspired-based algorithms applied for solving MSA
problem with 49%, followed by the Memetic Algorithm representing 13% of the total
papers identified for the MSA solutions. Next is the PSO, which accounts for 11% of the
total articles identified in the review, followed by the BO and BFO, which represent 5%
of each of the total number of bioinspired-based algorithms applied for solving the MSA
problem. Finally, we can see that based on the reviewed literature, the Simulated Annealing
algorithm is the least utilized algorithm with 2% of the total reviewed papers.

Furthermore, the results of the performance evaluation measures used for the MSA
problem were illustrated. Figure 8 shows that several benchmark datasets are used to
validate the effectiveness of the Multiple Sequence Alignment solutions. Based on the
articles from the literature selected for the proposed SLR study, the most popular benchmark
techniques include BAliBASE, SABmark, HOMSTRAD, OXBench, and Prefab. The figure
shows that the most commonly applied benchmark datasets are BAliBASE and SABmark,
with 64% and 13%, respectively, followed by OXBench and Prefab with 10% each. Finally,
HOMSTRAD has been identified as the least benchmark dataset for the MSA with a 3%
use case.

Moreover, the proposed review shows the performance evaluation measures used
for the MSA problem among the reviewed papers. Figure 9 shows that several perfor-
mance quality measures were used to validate the effectiveness of the Multiple Sequence
Alignment solutions. Based on the published papers from the literature selected for the
proposed SLR study, the most popularly used performance quality evaluation measures
include structural-based techniques, simulated-based approaches, and consistency-based
approaches. Figure 9 shows that structural techniques based on the idea that amino acid
residues corresponding to the same position in the three-dimensional structure should be
aligned are the most popular quality measures for MSA with 73%. Next is consistency,
which is predicated on the notion that two residues are probably accurately aligned if many
software programs reliably align them with 17%; finally, the simulation-based techniques,
which use a probabilistic model to simulate sequence evolution and produce evolved
sequences and reference alignments, come with 10%.

Additionally, we examined the open issues of the study, which include the creation
of more potent algorithms based on parallel and distributed paradigms, as well as the
blending of various algorithms; the creation of more resilient algorithms that consider the
uncertainty or stochasticity present in bioinformatics; the development of frameworks for
parameter fine-tuning to take advantage of instance-specific aspects to improve results; and
the application of multi-objective techniques to take into account the various objectives in
the majority of issues.

Finally, the last section of the proposed systematic literature review (SLR) outlines
several study limitations. These limitations include the targeted sources, predominantly
journals and conferences. Additionally, the review was limited to English-language publi-
cations, potentially excluding valuable contributions from non-English sources. Moreover,
the primary databases used for the review may have influenced the scope of the findings.
Despite these limitations, acknowledging them provides valuable insights into the con-
straints of the SLR process. This recognition encourages future research efforts to address
these limitations, thereby enhancing the comprehensiveness and inclusivity of systematic
literature reviews in MSA methods.
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