
Citation: Sarabia-Jácome, D.;

Giménez-Antón, S.; Liatifis, A.;

Grasa, E.; Catalán, M.; Pliatsios, D.

Progressive Adoption of RINA in IoT

Networks: Enhancing Scalability and

Network Management via SDN

Integration. Appl. Sci. 2024, 14, 2300.

https://doi.org/10.3390/app14062300

Academic Editor: Subhas

Mukhopadhyay

Received: 7 February 2024

Revised: 29 February 2024

Accepted: 5 March 2024

Published: 9 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Progressive Adoption of RINA in IoT Networks: Enhancing
Scalability and Network Management via SDN Integration
David Sarabia-Jácome 1,* , Sergio Giménez-Antón 2, Athanasios Liatifis 3 , Eduard Grasa 4 , Marisa Catalán 1

and Dimitrios Pliatsios 3

1 IoT Research Group, Fundació i2CAT, 08034 Barcelona, Spain; marisa.catalan@i2cat.net
2 Software Networks Research Group, Fundació i2CAT, 08034 Barcelona, Spain; sergio.gimenez@i2cat.net
3 Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece;

aliatifis@uowm.gr (A.L.); dpliatsios@uowm.gr (D.P.)
4 Operations and Digital Infrastructure and Services, Fundació i2CAT, 08034 Barcelona, Spain;

eduard.grasa@i2cat.net
* Correspondence: david.sarabia@i2cat.net; Tel.: +34-93-55-325-10

Abstract: Thousands of devices are connected to the Internet as part of the Internet of Things (IoT)
ecosystems. The next generation of IoT networks is expected to support this growing number of
Intelligent IoT devices and tactile Internet solutions to provide real-time applications. In view of this,
IoT networks require innovative network architectures that offer scalability, security, and adaptability.
The Recursive InterNetwork Architecture (RINA) is a clean slate network architecture that provides a
scalable, secure, and flexible framework for interconnecting computers. SDN technology is becoming
a de facto solution to overcome network requirements, making RINA adoption difficult. This paper
presents an architecture for integrating RINA with SDN technologies to lower the barriers of adopting
RINA in IoT environments. The architecture relies on a RINA-based distributed application facility
(DAF), a RINA southbound driver (SBI), and the RINA L2VPN. The RINA-based DAF manages RINA
nodes along the edge–fog–cloud continuum. The SBI driver SDN enables the hybrid centralized
management of SDN switches and RINA nodes. Meanwhile, the RINA L2VPN allows seamless
communication between edge nodes and the cloud to facilitate the data exchange between network
functions (NFs). Such integration has enabled a progressive deployment of RINA in current IoT
networks without affecting their operations and performance.

Keywords: edge computing; IoT; future networks; L2VPN; NFV; SDN; RINA

1. Introduction

Future networks envision the evolution of traditional network architectures into more
advanced and efficient ones. Along with this vision, several research efforts focus on
enhancing the network capacity and data transmission rates to provide low latency and
massive connectivity [1]. These new goals are modeling the future network architectures
based on new networking paradigms and key enabler technologies such as Software-
Defined Networking (SDN), Network Function Virtualization (NFV), and edge computing.
Internet of Things (IoT) architectures are taking advantage of the emerging technologies to
improve their current architectures [2]. For example, SDN technologies enable centralized
IoT network management and programmability. As result, SDN has improved network
visibility and dynamic configuration. Furthermore, NFV has facilitated the virtualization of
network functions to provide greater flexibility, scalability, and cost-efficiency. Meanwhile,
edge computing has enabled data analytics closer to the data source, reducing latency and
reducing the large amount of sensor data sent to the cloud [2].

A few years ago, the Recursive InterNetwork Architecture (RINA) was proposed as
an alternative to traditional networking architectures mainly based on the Transmission
Control Protocol (TCP)/Internet Protocol (IP) stack. RINA is a novel network architecture
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paradigm that provides a robust, scalable, and flexible framework for interconnecting
computer networks. The foundation of RINA is that a computer network is a distributed
application that provides distributed Inter-Process Communication (IPC) services to other
distributed applications [3]. The set of distributed IPCs forms a single layer known as the
Distributed Inter-Process Communication Facility (DIF). The most important aspect of
RINA is its recursion so that the DIF layer can be repeated depending on the network’s
requirements. RINA avoids redundant mechanism implementation in the current network
architectures and extracts as much commonality as possible [4]. As a result, RINA facilitates
network customization through policies.

RINA has demonstrated several advantages in terms of scalability [5], flexibility [6],
mobility [7], security [8], and performance [9] that are desired by IoT environments. How-
ever, RINA has not been studied in IoT environments yet. The current IoT networks rely
on SDN technologies to fulfill the IoT requirements, making the adoption of RINA difficult.
For this reason, the integration of RINA with SDN technologies aims to lower the barriers
of adopting RINA in IoT environments. Such integration enables a progressive deploy-
ment of RINA in current IoT networks without affecting their operations and performance.
Consequently, this strategical integration will open new areas of ongoing exploration and
development for modeling the next generation of IoT network architectures.

However, achieving such integration is challenging because RINA must guarantee
seamless interoperability along the edge–fog–cloud continuum. On this account, the IoT
devices and the IoT gateways must be able to implement the RINA protocols and layer
management functionalities to enable a RINA network at the edge and fog computing
levels. On the other hand, the current SDN controllers cannot support the RINA network
model. For example, SDN controllers have their own data models to manage their SDN
switches, and these data models are quite different from the RINA management layer and
transmission protocols. Furthermore, the current IoT applications and services cannot
seamlessly use the RINA Application Programming Interfaces (APIs). IoT applications and
services must be able to communicate transparently with each other using RINA protocols
in the fog–cloud computing levels.

This work addresses the challenges mentioned earlier to enable the integration of SDN
technologies and RINA by providing a RINA-based management Distributed Application
Facility (DAF), a RINA SouthBound Interface (SBI) driver, and a RINA-Layer 2 Virtual
Private Network (L2VPN). The architecture proposed in this work enables the management
of RINA nodes and the management of SDN switches. The DAF management enables a
DIF layer to establish management connections between the RINA nodes and the SDN
controller. A RINA SBI driver is proposed to translate the SDN data models into RINA
data models. The RINA SBI driver is a Ryu framework [10] component with a well-defined
API to enable the development of control and management applications. Finally, the RINA
L2VPN provides a transparent connection between applications that cannot use the RINA
API to allocate flows. These developments have been accomplished within the context of
the TERMINET [11] project.

In summary, the main contributions and novelties of the proposed work are the following:

• A RINA-based DAF to manage RINA nodes along the edge–fog–cloud continuum. A
detailed description of the Management DAF can be found in Section 3.1; moreover,
a validation can be found in Section 5.1.1.

• The SBI driver SDN to enable the hybrid centralized management of SDN switches
and RINA nodes. A detailed description of its design and implementation be found
in Section 3.2; moreover, a performance evaluation can be found in Section 5.2.1.

• The RINA L2VPN to enable seamless communication between edge nodes and the
cloud by using RINA to facilitate the data exchange between Network Functions (NFs).
A detailed description of RINA L2VPN’s design and implementation can be found in
Section 3.3; moreover, a performance evaluation can be found in Section 5.2.2.

The remainder of this document is organized as follows: Section 2 reviews the current
SDN and NFV technologies with a special focus on IoT environments, and presents the
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RINA concept and its current developments. Section 3 describes the proposed architecture
to integrate SDN technologies with RINA. Section 4 presents the smart building use case
implementation. Section 5 provides information on the obtained results and, lastly, Section 6
compiles the lessons learned and presents the future work.

2. State of the Art

This section presents the state of the art on the main topics related to this work. Mainly,
this section describes SDN and NFV technologies in general, and the main features of RINA
and its recent advances.

2.1. SDN and NFV in IoT Environments

SDN has demonstrated its benefits widely in managing complex networks. The sepa-
ration of the data plane and data control has brought about highly dynamic and scalable
network operations [12]. The SDN controller centralizes the data control and maintains
global visibility of the network state [13]. The SDN controller can monitor, prioritize,
and de-prioritize network traffic through APIs [14].

The generic SDN architecture is composed of three layers: (i) the application layer,
(ii) the control layer, and (iii) the infrastructure layer, as is shown in Figure 1. The SDN
controller is part of the control layer and keeps communication with the entities of the appli-
cation layer and infrastructure layer through APIs [15]. Furthermore, the SDN controller is
responsible for providing security, routing, and network management [16]. The infrastruc-
ture layer comprises virtual (e.g., OpenvSwitch or OpenFlow) and physical network devices.
The SDN controller communicates with the infrastructure layer through southbound APIs
and the application layer through northbound APIs.

Application
Layer Smart Home Smart

Transport
Smart
Health

Smart
Agriculture

Control
Layer

Infrastructure
Layer

Network Services

API

SDN CONTROLLER

API API API

Network ServicesNetwork Services

NorthBound

APIAPI API APISouthBound

Network
Device

Network
Device

Network
Device

Network
Device

Figure 1. Generic SDN architecture in IoT environments.

The southbound APIs facilitate the SDN controller’s ability to control heterogeneous
networks. By doing so, the SDN controller can dynamically change forwarding rules in-
stalled in switches and routers, among others [17]. OpenFlow is the most used southbound
API [18], but it is not the only one available. For instance, the following are implemented
southbound APIs: NETCONF, OF-Config, Opflex, as well as some routing protocols such
as IS-IS, OSPF, and BGP [17]. OpenFlow controls network devices’ routing tables and other
hardware using an SDN controller. The SDN controller can remotely configure the flow
tables of OpenFlow switches. Each open-flow table consists of the packet header, action,
and statistics [13]. In this way, the user can program the behavior of the network.

On the other hand, the northbound interfaces support and enable innovative applica-
tions. Currently, most controllers implement the northbound API through the Representa-
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tional State Transfer (REST) web architecture, but it can offer other more specialized APIs
such as NVP NBAPI and SDMN API [19]. There are other northbound interfaces to abstract
the controller functionalities and facilitate the data plane behavior from the application
developers [19], but these are more related to programming and query-based languages,
such as Frenetic, Procera, and Netcore, among others [13].

Several controller implementations have been proposed to manage, mainly, OpenFlow-
based switches. The NOX and the Python-based open source (POX) were the first open-
source controller implementation of the OpenFlow protocol based on the C++ and Python
programming languages [17]. Other controller implementations have since been proposed
for providing a centralized and distributed control based on the C, Java, JavaScript, or Ruby
programming languages. These controller implementations include Beacon, Helios, ONIX,
ONOX, OpenDaylingt, and the Ryu framework [13]. Furthermore, some implementations
aim to manage wireless networks and provide programmable and flexible stack layers
for wireless networks, such as openRadio and MobileFlow [19]. This wireless network
controller implementation focuses on solving mobility routing issues.

The SDN approach has been used in the design of IoT architectures [20]. SDN demon-
strates that it can reconfigure the IoT network according to the environment changes [14].
In addition, SDN technologies can handle IoT requirements in terms of Quality of Ser-
vice (QoS) guarantee, traffic engineering, and security services. Furthermore, the virtu-
alization of the network functions has demonstrated an enhancement of IoT networks’
scalability and flexibility [21].

2.2. RINA-Based Networks

RINA networks are built upon the use of a single type of layer that is being reused.
That layer is called DIF. A DIF is no more than a distributed application composed of
several Inter Process Communication Processs (IPCPs) that cooperate with each other to
provide IPC services to applications of upper DIFs. There are two types of DIFs: shim
DIFs and normal DIFs. The shim DIFs are adaptations of existing protocols such as Wi-
Fi [22], VLAN [23], and TCP/UDP [24]. The shims facilitate the underlying protocol layer
with the IPC service interface. Meanwhile, a normal DIF provides fixed mechanisms for
data transfer, data transfer control, routing, access control, and Service Data Unit (SDU)
protection, among others. A normal DIF uses the services of underlying DIFs (shims or
normal) to transfer data across the network. Figure 2 shows an example of a generic RINA
architecture that is composed of normal DIFs and shim DIFs.

Host

App
Process

App
Process

Distributed IPC Facility (DIF)IPCP

        SHIM-WiFiIPCP

IPCP

SHIM-VLAN SHIM-VLAN

    SHIM-VLAN IPCPNORMAL DIF

Host

Border Router Border RouterInternal Router

Figure 2. Example of a RINA network architecture.

RINA-based networks are only built using two generic protocols in every DIF: the
Error Flow Control Protocol (EFCP) and the Common Distributed Application Protocol
(CDAP). No more protocols are required because DIF functionalities (e.g., security, QoS,
or routing) are programmed using policies without implementing dedicated protocols.
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EFCP oversees the data transfer and data transfer control. EFCP provides tightly cou-
pled mechanisms for transferring SDUs, such as flow addressing or sequencing. Further-
more, EFCP provides loosely coupled mechanisms, such as flow control or re-transmission
control, for data transfer control. Meanwhile, CDAP oversees layer management functions
such as enrollment, namespace management, flow allocation, resource allocation, routing,
and security coordination [4]. CDAP operates on remote objects used by all the layer
management functions. All the objects and states are modeled and stored on the Resource
Information Base (RIB). The RIB objects model includes the object naming, relationships be-
tween objects—inheritance and containment, among others—the object attributes, and the
CDAP operations that can be applied to them [4]. The RIB daemon manages access to
the RIB and exchanges CDAP Protocol Data Units (PDUs) with RIB daemons of neighbor
IPCPs. The only operations that can be performed on objects are: create/delete, read/write,
and start/stop. Table 1 details the CDAP messages and their purposes to operate over RIB
objects. The RIB daemon implements the Common Application Connection Establishment
Phase (CACEP), which exchanges naming information with peers. CDAP helps implement
layer management functionalities such as enrollment, flow allocation, and routing.

Table 1. CDAP messages and purpose.

Message Name Purpose

M_CREATE Create a RIB object

M_CREATE_R Response to M_CREATE, carries the result of a create request

M_DELETE Delete a specified object

M_DELETE_R Response to M_DELETE, carries the result of a deletion attempt

M_READ_R Response to M_READ, returns the result and (possibly
incomplete) value of the object

M_WRITE Writes a specified value to a specified object

M_WRITE_R Response to M_WRITE, carries the result of a write operation

M_START Start the operation of a specified application object, typically used
when the object has operational and non-operational states

M_START_R Response to M_START, indicates the result of the start operation

M_STOP Stops the operation of a specified application object, typically
used when the object has operational and non-operational states

M_STOP_R Response to M_STOP, indicates the result of the stop operation

RINA-based networks have demonstrated advantages regarding network manage-
ment compared to traditional networks. A RINA-based network reduces the number of
specialized protocols to perform some network features. For instance, RINA has demon-
strated that it does not require particular protocols or mechanisms to support mobility
by providing a complete naming scheme [25]. Naming the interface instead of the node
raises a relevant issue in enabling mobility, and it is solved by using specialized protocols
for setting up tunnels [4]. Furthermore, RINA has demonstrated its capacity to support
transport over heterogeneous networks [9] as well as its simplicity in managing multiple
layers in the multi-tenant data center network scenario [6].

The use of RINA in large-scale networks, such as the ones found in NFV-based
environments, is a topic that has been widely discussed. Previous research showcases
the advantages of RINA networks in large-scale networks. On the one hand, ref. [6]
discusses the advantages of managing a large data center RINA network in comparison
with managing a similar IP-based network. On the other hand, ref. [24] presents and
discusses several Key Performance Indicators (KPIs) regarding configuration management,
software complexity, and automation in large-scale networks.
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These large-scale scenarios bring diverse and challenging requirements, such as a
broader range of performance, cost, security protection, and mobility management. Net-
work slicing has emerged as a potential approach to fulfill such requirements [26]. In [27] is
presented what the authors called IPC Virtual Private Network (VPN) (Inter-Process Com-
munication Virtual Private Network) slicing. IPC VPN is a RINA-based network slicing
solution that focuses on connecting groups of applications instead of connecting endpoints
with IP or Media Access Control (MAC) addresses. The goal is no longer focused on devices
and physical location but on providing an isolated and fit-for-purpose connectivity domain
to instances of distributed applications, regardless of their physical location. Following
this IPC VPN slicing approach, recent research has been conducted in the framework of
the Open-VERSO project [28], proposing RINA L2VPN, a virtual networking solution to
provide tailored connectivity to virtualized NFs. In [26], RINA L2VPN is briefly presented
as a novel network slicing solution, and it is compared with other network slicing solutions.

Currently, a RINA L2VPN slicing solution is being implemented, and its preliminary
results were presented in [29]. In such an implementation, performance is one of the key
features we have in mind to support the transmission of high loads, e.g., for media use cases
running in 5G and beyond 5G infrastructures. In this regard, the current implementation,
as proved in [29], overcomes by 30–50 times the performance provided by IRATI [22]—the
most generic and mature RINA implementation to date—in terms of speed—packets pro-
cessed per second—and throughput. The high throughput result was achieved by imple-
menting the data path with netmap [30] instead of the Unix kernel stack. The advantages of
a netmap-based implementation are twofold. First, it provides relatively high throughput
with a significant amount of flexibility; since the implementation of the software program is
only bound by the constraints of compute hardware instruction sets. Second, the diversity of
supported available hardware platforms—Linux and FreeBSD systems.

3. Architecture Proposed

This section describes the architecture proposed to manage a RINA network for IoT
environments by using an SDN controller. Figure 3 presents the layered RINA and SDN
integration architecture proposed in this work.

RINA
Manager App

RINA SBI

NBI 

Controller Application

MA

Operator User App

MA MA

HTTPCDAP

App
Layer

Control
Layer

Infrastructure
Layer

RINA Devices

OpenFlow
Switch

OpenFlow

Figure 3. RINA and SDN integration architecture proposed.

The proposed architecture follows the SDN generic architecture that is based on three
layers: the application layer, control layer and infrastructure layer, to facilitate the adoption
of RINA in the current SDN networks. The architecture presents three key components in
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the control layer and the infrastructure layer to enable the management of RINA devices
(RINA-based IoT devices, RINA-based IoT gateways, RINA-based EdgeNodes, and the
RINA-based core). These components are the RINA Management Agent (MA), the RINA
manager application, and the RINA SBI.

The RINA MA enables the control of RINA devices. There are two kinds of MAs:
CDAP-based and the Hypertext Transfer Protocol (HTTP)-based. The CDAP-based MA
follows the RINA principles of design and implementation detailed in [4]. Meanwhile,
the HTTP-based MA is a particular solution for enabling the progressive adoption of RINA
in cloud-based scenarios. Specifically, the HTTP-based MA facilitates the deployment of
L2VPN to enable seamless communication between edge nodes and cloud application by
using RINA capacities. Section 3.3 presents the L2VPN functionalities and explains the
HTTP-based MA functionalities.

The RINA manager application facilitates the control of RINA devices under the same
management DAF by using CDAP messages. A DAF is the collection of two or more
cooperating application processes that exchange information using DIF’s IPC services.
In this case, the RINA manager and the CDAP-based MA make up the management DAF.
Section 3.1 explains the management DAF’s main characteristics and functionalities.

The RINA SBI driver abstracts the RINA manager and HTTP-based MA functionalities
to enable a seamless integration with current controller applications. Section 3.2 details the
RINA SBI driver design and implementation.

3.1. Management DAF

The network management DAF is composed of several application processes that
enable management characteristics in RINA nodes or RINA systems. In this case, the appli-
cation processes are the MAs implemented in each RINA system and the RINA manager
implemented in the SDN controller. Figure 4 shows the management DAF composed of
the MAs and the RINA manager.

DAF                                                          DAF

MANAGEMENT.DIF

SHIM.DIF

IPCP

MA

SDN CONTROLLER

MA

RINA-Based IoT GW

SHIM.DIF

RINA
MANAGER

MANAGEMENT.DIFIPCP IPCP

RINA-Based IoT GW

IPCP IPCP IPCP IPCP

MA

Figure 4. Network management DAF.

The MAs are in charge of running one or more IPCPs for implementing one or more
DIFs. To do so, the MAs have read and write permissions to operate over the IPCPs’
RIB. In this case, the MAs can operate over the management DIF IPCPs, as shown in
Figure 4. This capability allows for creating and deleting RIB objects and setting up
DIF’s configurations—e.g., routing table, and security policy, among others. The RINA
manager controls the MAs through the interchange of CDAP messages. In that way,
the RINA manager can send commands to operate over the IPCPs’ RIB. In the architecture
proposed, there are some MAs deployed on cloud infrastructures that are TCP/IP based
and do not support the RINA protocols (EFCP and CDAP). As result, the MA deployed
on cloud infrastructures cannot interchange CDAP messages to operate over the IPCPs’
RIB. To overcome this limitation, MAs based on HTTP were designed and implemented to
be deployed in these kinds of scenarios (cloud-based scenarios). In these cases, the HTTP-
based MAs expose a well-defined REST API to facilitate the management from the SDN
controller. These HTTP-based MAs do not follow the RINA MA principles of design
detailed in [4] because they are considered a particular solution for enabling the progressive
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adoption of RINA in the current networks’ architectures. More details about the HTTP-
based MA’s design and implementation are explained in Section 3.3.

On the other hand, the RINA manager is the core of this centralized network manage-
ment DAF and must be implemented in the SDN controller. The RINA manager oversees
the communication with the agents in each system of its management domain to provide
central configuration, fault, security, and performance management. There is the possi-
bility of implementing more than one RINA manager and reduce the area each RINA
manager covers. In other words, the IoT network can be split into several management
subareas, with an SDN controller for each subarea. This approach reduces the IoT network
management complexity.

The application processes require a single DIF dedicated to interconnecting the RINA
manager with each MA. Figure 4 shows how the management DIF is implemented for com-
municating the RINA manager with the MAs of each system to be controlled. The RINA
manager comprises the configuration manager module and the events manager. The con-
figuration manager is responsible for sending a request to the agent management to create
or delete IPCPs by sending CDAP messages. Meanwhile, the events manager receives and
handles the events sent by the agent managements [31].

Once the single dedicatedDIF has been established, the MAs intend to communicate
with the RINA manager. To do so, the MAs and the RINA manager change several CDAP
messages in the first stage of shaping the DAF management. Figure 5 shows this initial
process. The MAs intend to send an M_CONNECT—CDAP message—to the RINA manager.
This message contains information about the source application process, destination ap-
plication process, and authentication mechanism employed. The application process will
change more messages depending on the authentication mechanisms selected in each case.
Once the authentication mechanisms have finished, the RINA manager responds with an
M_CONNECT_R. Immediately, the RINA manager sends an M_READ to request a reading of the
remote RIB objects. The MAs react with as many M_READ_R messages as the MA has RIB
objects. Once this initial stage is finished, the RINA manager is ready to start operations.

MAManager

M_CONNECT_R

M_CONNECT

M_START_R (Authentication)

M_START (Authentication)

M_READ (RIB)

M_READ_R (RIB)

M_READ_R(RIB)
.
.
.

Figure 5. Initial process of CDAP message sharing.

3.2. RINA SBI Driver

The RINA SBI driver serves as the API to communicate between the SDN controller,
the RINA manager application process, and the HTTP-based MA. The RINA SBI driver is
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responsible for translating the application request into the RINA data model descriptor
file (DIF configuration templates), managing the descriptor files (creating or deleting DIF
configuration templates), managing the connection with the RINA manager (connecting
or disconnecting), managing the connection with the HTTP-based MAs in the cloud, and
sending an operational request so that the RINA manager executes it.

The driver abstracts the current functionalities of the RINA manager application
process and HTTP-based MAs. The driver was developed as a library in Python to facilitate
the development of management network applications based on the Ryu Framework SDN
controller (https://github.com/faucetsdn/ryu) (accessed on 15 June 2023). The library is
composed of two main classes: the RinaManager() that makes an abstraction of the RINA
manager, and the RinaCoreManager() that makes an abstraction of the HTTP-based MAs.
An instance of these classes allows making a connection with the desired MA (CDAP-
based and HTTP-based) to be controlled, as is shown in Figure 3. This RINA manager-
instanced object requires the following initialized parameters: the RINA manager socket
path and the path to store the description files. The description files contain the RINA nodes
that will take part of the DIF and the specific DIF configuration options, such as routing
algorithm, QoS supported in that DIF, the security schemes used, and the RINA nodes’
names and addresses that are part of the DIF. More details about the DIF configuration
options are found in the IRATI GitHub repository (https://github.com/IRATI) (accessed on
10 May 2023). Meanwhile, the RINA core manager-instanced object requires the following
initialized parameters: the MA Uniform Resource Locator (URL), a system identifier (ID),
and a short description of the MA. In this case, the DIF specifications are not supported
because the HTTP-based MA has as only functionality to create and delete L2VPN.

Moreover, the RinaManager() and the RinaCoreManager() objects offer a set of meth-
ods related to the DIF manager functionalities that each MA supports. Each method creates
the operation request, arranges it in a fixed format, and sends it to the DIF manager. Mean-
while, the DIF manager receives the requested operation and operates the management of
DAF members. The current methods supported are described as follows:

• list_systems(): Makes a list of systems that the RINA SBI driver can control. Each
RINA node is considered a system. Each system has its ID, the MA name, and the
RINA port’s ID exposed in the DAF.

• create_ipcp(systemId, IpcpDescription): Creates an IPCP in the requested sys-
tem using the IPCP template file. It returns the remote IPCP’s created ID.

• create_dif(DifDescription): Creates a DIF following the DIF template file. The DIF
template file must indicate the systems’ ids that will participate in the DIF.

• destroy_ipcp(systemId, IpcpId): Destroys a specific remote IPCP by using as pa-
rameters the remote system’s ID and the IPCP’s ID.

• destroy_dif(difName): Destroys the group of IPCPs that take part of the requested
DIF name.

• create_L2VPN(systemId): Creates an IPCP to enable an L2VPN in the indicated
system. This operation is supported only by the HTTP-based MAs.

• delete_L2VPN(systemId): Destroys a specific remote IPCP in the indicated system.
This operation is supported only by the HTTP-based MAs.

The above operations are currently available because they are required for the context
of the TERMINET project and its use case validation. However, the object-oriented pro-
gramming approach chosen for the SBI driver development ensures ease and extensibility
in the future to improve the current version and support more operations. The RINA SBI
driver GitHub repository (https://github.com/esmaxness/RinaDriver) (accessed on 15
June 2023) provides some examples for an easy understanding of the SBI execution and
more details.

3.3. RINA L2VPN

The proposed RINA L2VPN networking solution provides a framework to deploy a net-
work overlay on top of a RINA network in the form of Layer two (L2) networks. The L2VPN

https://github.com/faucetsdn/ryu
https://github.com/IRATI
https://github.com/esmaxness/RinaDriver
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overlay allows non-RINA network services made up of distributed NFs to allocate flows in
the underlying RINA network, without making use of the RINA API. In this way, the network
service takes advantages of RINA network capabilities without the need to use the RINA
APIs. This approach is useful to enable seamless communication between edge nodes and
cloud applications or NFs, either in the form of Container Network Functions (CNFs) or
Virtual Network Functions (VNFs). Figure 6 shows a network service formed by two NFs.

VM / Container

Compute Server 1 Compute Server 2

Whatever Underlay Network (Ethernet, IP, MPLS...)

RINA Network

NF NF

VM / Container

Network Service

L2VPN Network Overlay

Figure 6. Generic diagram of the relevant layers involved in the RINA L2VPN solution (front view).

RINA L2VPN offers horizontal scalability to support several network overlays on
top of a RINA network, i.e., the last DIF of the network. In this way, several L2VPNs
overlays can be deployed on top of the same DIF network depending on the network
service demands. Furthermore, the solution can group several network services into a
network overlay to isolate the traffic generated by these NFs. Figure 7 shows a high level
representation of several independent network overlays supported in the same RINA
network, as well as network services running on top of these overlays.

It is important to note that RINA L2VPN is implemented on top of netmap [30],
a fast packet processing framework that enables high performance packet switching, pro-
grammable via a set of APIs at user space. That way, RINA L2VPN is able to provide
higher packet data rates than traditional Linux networking mechanisms.

Network Overlay 1

...

RINA
Network

NF NFNetwork Service 1

NF

NF

NF

NF

NF
Network Service 2.1

NF Network Service 2.2

NF NFNetwork Service N

Network Overlay N

Network Overlay 2

Compute
Server 1

Compute
Server 2

Figure 7. Generic diagram of the relevant layers involved in the RINA L2VPN solution (zenithal view).

The HTTP-based MAs take a key role in the deployment of the RINAL2VPN solution
on cloud-based applications. These HTTP-based MAs are in charge of (i) slice allocation
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and de-allocation requests, (ii) managing the creation of L2 switches using the L2 Factory
Module—see Figure 8—and (iii) exposing an interface to interact with upper management
layers. There is one HTTP-based MA per compute node, and its interfaces are depicted
in Figure 8. The HTTP-based MA exposes a well-defined northbound interface (NBI) to
the upper management layers, so the RINA SBI can interact with it. On the other hand,
the HTTP-based MA exposes an SBI—the IPCP Connector in Figure 8—directly attached
to the IPCP, in order to ask to allocate or de-allocate the necessary RINA flows needed to
deploy a slice. This SBI is implemented using the netmap API, the endpoints exchange a
domain-specific language codified using protocol buffers. The domain-specific language
contains the following fields:

1. opcode. There are six operational codes to identify which operation the remote MA
should execute:

• for creating an L2 overlay: M_ACK, M_ALLOCATION_REQ, M_ALLOCATION_RSP.
• for deleting an overlay: M_NACK, M_DELETE_REQ, M_DELETE_RSP.

2. invoke_id. Sequence number of the message. Every pair of request–response shares
the same invoke ID; hence, it is used to handle asynchronous requests and responses.

3. slice_id. Network overlay unique identifier. In RINA terminology, the slice identifier
maps to the application entity, which refers to a task within an application process
directly involved with exchanging application information with other application
processes. In other words, it is used to identify the instance of the network overlay
that the message refers to.

4. serialised_flow_msg. Serialized object value that is directly passed without any pro-
cessing to the IPCP. It contains information that the IPCP needs to allocate the flow
within the neighbor IPCP.

VIM
Connector

DB
RINA SBI

Driver

Northbound
API

SDN Controller

HTTP - REST

Northbound
APIL2

Network
Factory

MA
Connector

Netmap Underlay Network

Netmap - DSL

IPCP
Connector

Northbound
APIL2

Network
Factory

IPCP
Connector

Northbound
API

L2
Network
Factory

Netmap - DSL

IPCP
Connector

MA A

IPCP A

Netmap 

Kernel

MA
Connector

Netmap

IPCP B

MA
Connector

Netmap IPCP C

HTTP - REST

Netmap 

Kernel

Netmap 

Kernel

HTTP - REST

Netmap - DSL

DB DB DB

MA B MA C

DIF DIF

DIF

Figure 8. RINA L2VPN’s overall architecture and interfaces.

The SDN controller can control the HTTP-based MAs by using the RINA SBI. The RINA
SBI is responsible for requesting the needed resources to every HTTP-based MA involved
in the slice. Every slice creation or deletion request is processed with the reception of
an HTTP request on the REST endpoint notify of the NBI. Figure 9 shows the message
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interchanged between the RINA SBI driver and the HTTP-based MAs to create the slice.
In order to create an L2 network overlay between two MAs, one takes the role of master
and the other takes the role of slave. The master will start the flow allocation process and
the slave will be awaiting the allocation request from the other MA. By looking at Figure 9,
it can be seen that the SBI driver starts the L2VPN overlay creation by sending a message
to MA_A, stating that the remote MA involved is MA_B. In this L2VPN creation, MA_A will
perform the role of slave, i.e., it will be awaiting MA_B’s flow allocation request. On the
other hand, the SBI driver sends a message to MA_B stating that the remote MA is MA_A and
its role in the overlay creation is master. Immediately, MA_B starts the L2VPN creation by
sending a RINA flow allocation request to MA_A.

MA_ASBI
Driver

create_slice([(MA_B, slave)], slice_id])

ACK

create_slice([(MA_A, master)], slice_id)

ACK

MA_B

START_Flow_Allocation

R_START_Flow_Allocation

Figure 9. Message exchange between RINA SBI Driver and two MAs for the creation of a network slice.

4. Use Case: Smart Buildings

Smart buildings’ concept aims to manage properly building resources and optimizing
them by using advanced technology and automation for enhancing the comfort, safety,
and productivity of its occupants [32]. To achieve this objective, smart buildings leverage a
range of technologies, including sensors, data analytics, machine learning, and Artificial
Intelligence (AI), to collect and analyze data on various aspects of building performance,
such as energy consumption, indoor air quality, occupancy, and security [16]. A smart
building is a complex system that is composed of several subsystems such as lighting,
Heating Ventilation Air Condition (HVAC), security, and energy management, among
others. Smart buildings’ complexity directly affects network performance and management.
Consequently, smart buildings are facing network management complexity, scalability,
and security issues.

RINA has the potential to offer several benefits to smart building scenarios such as
hierarchical management, scalability, service differentiation, and security, among others.
The RINA recursion enables the network designer to re-use a single DIF as many times as
it is required. In smart buildings, each DIF can be responsible for a particular function and
communicate with adjacent DIFs in a hierarchical manner. Furthermore, as the building’s
needs change or new devices and sensors are added, additional DIFs can be dynamically
created to accommodate the growing network requirements. In fact, each DIF can be
designed to allow the prioritization and management of different services with the smart
building network. In addition, RINA is secure by design, so a DIF is a secure layer with
highly customizable privacy and security levels based on policies.

This section details the proposed architecture implementation in a smart building
scenario to enhance the network scalability and management by using the RINA approach.
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4.1. Indoor Environmental Subsystem Scenario

A smart building has already implemented several subsystems such as energy, lighting,
HVAC, flooring, and motion sensors. The current smart building subsystems rely on
technologies such as Wi-Fi, Bluetooth, ZigBee, Message Queuing Telemetry Transport
(MQTT) and SDN as communication technologies. The smart building architecture follows
an edge–fog–cloud continuum approach, that was demonstrated to be suitable for reducing
the large amount of data generated by sensors [33]. In other words, the smart building
has an edge node that can process data, analyze data, and make decisions. By monitoring
and analyzing data in real-time, smart buildings can make automatic adjustments to
various subsystems, such as heating, cooling, lighting, and ventilation, to ensure optimal
performance and energy efficiency. The smart building system follows a centralized
learning approach. Typically, the centralized learning approach centralizes the data from
sensors in the cloud and trains AI models that can be distributed and applied to all
devices [34]. Consequently, historical data is stored in the cloud infrastructure, to be
used to train AI models to optimize the smart building resources. The trained models are
deployed to the edge node for making useful predictions to automate decision making.
Thus, the smart building has distributed application and services along the edge–fog–cloud
continuum that require a continuous communication between the edge node and the
cloud infrastructure.

An indoor environmental subsystem based on RINA was designed, implemented,
and deployed at a smart building following the architecture proposed to integrate this
subsystem with the current SDN-based system. Figure 10 shows the subsystem architecture
for the analyzed scenario. The subsystem is composed of several RINA-based sensors to
measure the temperature, humidity, and carbon dioxide (CO2). These sensors communicate
to the edge node RINA-based application by using a RINA-based IoT gateway (more details
are provided in Section 4.2). The RINA-based application receives data that come from the
sensors and inserts them into an InfluxDB database system. The InfluxDB database system
contains the data from all smart building subsystems. In other words, this database receives
data through a MQTT broker from the lighting, energy management, security, and fire sub-
systems that are already working on the building with SDN OpenFlow switches and other
IoT wireless technologies (Wi-Fi, Bluetooth, and ZigBee) and communication protocols.

Figure 10. Indoor Environmental subsystem high level architecture.

The real-time analytics application and predictive services are fed by using the data
within InfluxDB. The data process application is in charge of three main tasks: (i) aggregating
the sensors’ data to reduce the large amount of data to be transferred to the cloud, (ii) filtering
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and preparing data for predictive analytics carried on by the AI models, and (iii) calculating
descriptive analytics (e.g., mean, maximum, and minimum values) to be published on
a dashboard. Meanwhile, the predictive services are AI-based applications that make
predictions to make automatic adjustments in the smart building subsystems. The current
distributed data process application and predictive services were designed for receiving
support from the TCP/IP stack. This fact complicates the use of the RINA network to
enable communication between the application and predictive services deployed on the
edge node and the cloud core. To overcome this limitation, the RINA L2VPN provides
an innovative solution to TCP/IP-based applications for using a RINA network without
changing the current applications and services. Consequently, end-to-end RINA flows are
smoothly allocated to take advantage of the RINA performance derived from the protocols’
headers reduction, previously analyzed in [35,36].

4.2. Implementation

The scenario described was implemented in a controlled environment. The following
subsubsections describe the hardware and software employed to build the RINA network
implementation and describe the integration of the RINA SBI with an SDN controller.

4.2.1. Rina Network Implementation

The RINA network comprises five types of nodes (IoT devices, RINA-based IoT
Gateway, EdgeNode, Core, and SDN controller), as Figure 11 shows. The DAF management
was implemented using the aforementioned nodes configured with the latest version of
IRATI open-source software v2.3.0 (https://github.com/IRATI/stack) (accessed on 10 May
2023) [31]. IRATI enables a fast prototyping of Linux-based RINA nodes.

MA

RINA-Based IoT GW
(1)

SLICE1.DIF

SHIM.DIF

MA MA

APP APP

IoT Devices EdgeNode

RINA MANAGER

SDN-CONTROLLER

RINA SOUTHBOUND DRIVER

SLICE1.DIF

SHIM.DIF

MA

APP

Core

CORE.DIF

VPN-Ethernet

Ethernet

Figure 11. RINA architecture for the use case.

The IoT devices are RINA sensors that are in charge of collecting temperature
and humidity data. These sensors have been implemented using the ESP32 IoT plat-
form and the DHT22 sensor. Furthermore, the RINAsense open-source software was
employed to develop the temperature and humidity application. The RINAsense
(https://github.com/Fundacio-i2CAT/rinasense) (accessed on 15 June 2023) is based on
the FreeRTOS real-time embedded Operative System (OS) that allows a rapid prototyping
of RINA sensors for RINA networks [36].

The RINA-based IoT gateway was implemented using the IRATI open-source soft-
ware [31], and using as hardware a Raspberry Pi 4 with Debian Buster OS, Quad-core
Cortex-A72 (ARM v8) 64-bit SoC @1.8GHz, and 4GB SDRAM. IRATI has been developed
with a GNU/Linux based OS, and this software can be deployed on a Raspberry Pi.

https://github.com/IRATI/stack
https://github.com/Fundacio-i2CAT/rinasense
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The EdgeNode and the Core were implemented using two Intel® NUC9VXQNX with
Intel® Xeon® E-2286M 2.40GHz with 32 GB of RAM, running Ubuntu 22.04. Furthermore,
the Docker platform was employed in the EdgeNode to ease the deployment of applications
in Docker containers. The applications deployed in Docker were the InfluxDB, Mosquitto
MQTT Broker, Graphana dashboard, Python-based ML application, and Apache Kafka
stream analytics. In addition, a RINA application was deployed on the edge node responsi-
ble for collecting data from RINA sensors (temperature and humidity) and ingesting them
into the InfluxDB. It is relevant to highlight that only this RINA application used the RINA
APIs to write into RINA flows. The other applications did not use RINA APIs because they
are based on TCP/IP stack. However, these applications would communicate with their
peers in the core using the L2VPN to enable the progressive adoption of RINA in current
TCP/IP networks.

The SDN controller was implemented using as hardware an Intel® NUC 11 Per-
formance Core i5-1135G7 4.2 GHzwith Ubuntu 20.04 LTS OS. Furthermore, it required
the IRATI open-source software for deploying the RINA manager and the UoWM SDN
Controller software. More details about the SDN controller will be detailed in Section 4.2.2.

4.2.2. SDN Controller Integration

The Ryu SDN framework is a widely acclaimed open-source SDN controller, imple-
mented in the Python programming language, known for its user-friendly and highly
extensible nature [37]. Leveraging Ryu’s Software Development Kit (SDK), developers can
craft sophisticated SDN applications with ease, enabling network monitoring, data plane
statistics collection, and the enforcement of intricate network policies [38]. Figure 12 illus-
trates the core modules of the Ryu framework structured in a layered fashion. The lower
layers house basic protocols and message handlers, while the middle layer consists of core
modules like event dispatcher, responsible for delivering events to registered applications,
core libraries such as topology, and basic classes offering a unified API. At the higher levels,
Ryu built-in applications and user-defined applications (RyuApps) reside. RyuApps are
SDN applications that perform routing, load balancing, security, or expose a REST API for
third-party tools and services. Finally third-party SDN applications can also interact with
the Ryu SDN controller using the REST API.

SDN Application SDN Application SDN Application

Ryu Built-in apps

Event Dispatcher

OpenFlow
Parser/Deparser

Protocol Support (OVSDB,
VRRP, BGP)

Core Libraries

User
Developed
Ryu App

RINA
REST...

OpenFlow NetConf RINA
Figure 12. Ryu-based SDN controller integrating RINA capabilities.
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The RyuApp developed in this work extends the existing REST API framework to
support RINA commands. The RyuApp communicates with the RINA SBI driver using
a UNIX socket and exposes common commands to create and destroy RINA objects,
and obtain information from the RINA-based data plane using the commands of the SBI
driver detailed in Section 3.2 RINA SBI Driver.

5. Evaluation

The architecture instance implementation was evaluated and validated to determine
its performance and limitations. The SDN controller demonstration is shown in the first
part of this evaluation. Then, the architecture components (RINA IoT gateways and RINA
L2VPN) are evaluated in terms of the quantity of useful information (goodput).

5.1. SDN Controller Evaluation

The SDN controller and the RINA SBI driver were evaluated in terms of their ability
to interact with the RINA nodes—functional testing. In addition, the Appendix A shows
the SDN controller dashboard functionalities.

5.1.1. Funtional Testing

The main objective was to validate the SDN controller’s ability to control RINA-based
network devices. The functional testing is divided into two parts: (i) validation of DAF
management with RINA manager and MAs, and (ii) validation of RINA SBI to translate
requests from the SDN controller.

The first validation consisted of verifying the IRATI console of the edge node to check
if the IPCP was enrolled into the management DAF. During enrollment, the RINA manager
interchanges CDAP messages with the MA to establish the DAF management, as described
in Section 3.1. Figure 13 shows the edge node console, and we can notice in the last line that
the edgeNode1.management was assigned to DIF management. In this case, the edgeNode1
MA was accepted as part of the management DAF and interchanged CDAP messages
with the terminet.manager-1. Furthermore, the RINA SBI registered MA as a new system
and assigned a system ID. This register is relevant to keep track of the MA connected
into the DAF and to return as systems information when the SDN controller requests the
list_systems API.

Figure 13. EdgeNode1 IRATI management console.

The second validation consisted of creating a slice (RINA DIF) using the SDN controller.
The RINA SB driver translates the SDN controller data model into the RINA data model
to create DIFs. The DIFs’ creation request is sent to the edgeNode1. The RINA SB driver
interchanges CDAP messages with the edgeNode1, as part of the creation process. Figure 14
shows the CDAP messages interchanged with the edgeNode1 (M_CREATE and M_CREATE_R).
The first CDAP message (1740 Bytes) contained the IPCP configuration description (IPCP
name, N-1 DIF, and name of the DIF to be enrolled) and the DIF configurations (QoS Cube,
routing, namespace directory, enrollment task, resource allocator, and EFCP configurations).
Once the IPCP was created and enrolled successfully, the edgeNode1 agent sent the result of
the request (result:0 means success) using an M_CREATE_R. Figure 15 shows the console of
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the edgeNode1, and we can notice in the last line that there is a new IPCP (edge1.slice1) and it
was assigned into the slice1 DIF.

The other functionalities (destroy DIF, destroy IPCP, create IPCP) were tested following
the same procedure as the create DIF showed. In those cases, we validated that the RINA
SBI drive translated the SDN controller requests into CDAP messages and sent them to the
edgeNode1 using the CDAP messages (M_CREATE and M_CREATE_R).

5.2. Performance Analysis

The performance analysis intended to show the performance of the RINA network
and it was split into RINA IoT gateway performance and RINA L2VPN performance.

Figure 14. EdgeNode1 log during CDAP messages interchanging.

Figure 15. EdgeNode1 IRATI management console after CDAP messages.

5.2.1. RINA IoT Gateway Performance

The main goal of this performance evaluation was to measure the quantity of useful
information (goodput) transmitted by the RINA IoT gateway when the number of RINA
sensors connected to the RINA IoT gateway increases. Then, the RINA IoT gateway
performance was measured on the shim Wi-Fi DIF and shim eth-VLAN DIF.

The first evaluation was focused on determining how the number of flows affects the
goodput of unreliable with re-transmission control flows over shim Ethernet VLAN DIF by
using the rinaperf application [39]. The test consisted of allocating unreliable flows with the
re-transmission control policy activated, and sending 10,000 packets of different sizes. This
rinaperf configuration follows the recommendations detailed on the rlite open-source reposi-
tory [39]. Figure 16 shows the goodput of unreliable flows with re-transmission in the function
of the number of flows for different SDU sizes and the test for diverse SDU sizes. The curves
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in the figure show the expected goodput degradation as far as the increasing number of
flows that the RINA-based IoT gateway supports. Since the allocated flows are unreliable,
the goodput achieved is lower than the theoretical throughput in a fast Ethernet network
card and higher than the unreliable flows with transmission control. The maximum goodput
achieved with 1400 bytes of SDU size is 34.5 Mbps. This is 1/3 of the theoretical throughput
100 Mbps, and this significant degradation is caused by the transmission control overhead.

Figure 16. Goodput of unreliable flows with re-transmission control.

In contrast to the first test, this test allocated unreliable flows without re-transmission
control, so the allocated flows are similar to a User Datagram Protocol (UDP) connection.
The measurement was performed similarly to the first experiment. Figure 17 shows the
goodput of unreliable flows in the function of the number of flows for different SDU sizes
and the test for diverse SDU sizes. Similar to the first experiment, the curves show a
degradation of goodput as far as the increasing number of flows that the RINA-based
IoT gateway supports. Since the allocated flows are unreliable, the goodput achieved is
lower than the theoretical throughput in a fast Ethernet network card and higher than
the unreliable flows with transmission control. This variability is the expected behavior
because this case does not use the transmission control mechanism that affects the goodput,
as was observed in the unreliable flows with the transmission control case. The maximum
goodput achieved was 72.2 Mbps with SDUs of 1400 bytes. This goodput is more than 2/3
of the theoretical throughput (100 Mbps).

Figure 17. Goodput of unreliable flows without re-transmission control.
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5.2.2. RINA L2VPN Performance

In order to evaluate the performance of RINA L2VPN, two different tests have been
performed. In the initial test depicted in Figure 18, a traffic generator was employed to
transmit L2 packets across a single overlay. This test scenario is illustrated in Figure 6,
where the network service took on the role of the traffic generator, while the receiver and
sender sides functioned as dedicated network functions (NFs). For the traffic generator, we
opted for pkt-gen v11.3 [40], a traffic generator leveraging the netmap API. This choice was
motivated by the netmap API’s capacity to attain higher data rates. It is important to note
that all experiments were conducted within a fully virtualized environment, thus avoiding
hardware limitations. Consequently, these controlled experiments serve as a benchmark.

L2 overlays deployed simultaneously
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12

1 2 3 4 5

Speed [Mpps] Throughput [Gbps]

Figure 18. Performance degradation of several L2 VPNs running at the same times. Packet size is set
to 60 bytes.

The second test shown in Figure 19 validates the viability of deploying multiple
network overlays within a single RINA network, as well as characterizing how performance
degrades as more network overlays are added in parallel. An idea of that experiment is
illustrated in Figure 7. This characterization was accomplished through the stacking of L2
overlays, coupled with the deployment of the traffic generator tasked with transmitting
traffic at its maximum attainable capacity. This test served as a pivotal assessment of the
system’s scalability and adaptability under conditions of heightened demand.

Packet Size
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Figure 19. Evolution of speed and throughput of a flow running on single L2 VPN overlay.

6. Conclusions and Future Work

This article has presented a methodology for enabling a progressive adoption of RINA
in IoT networks and overcoming the challenges of current IoT networks. The proposed
architecture has tackled the current limitation on seamless integration of RINA and SDN
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technologies by providing a RINA SBI driver to control RINA nodes using an SDN con-
troller. The proposed methodology has highlighted three components: (i) RINA-based
DAF, (ii) RINA SBI driver, and (iii) RINA L2VPN.

The RINA-based DAF has provided a secure management framework based on the
RINA manager, the SDN controller, and the CDAP-based and HTTP-based MAs. Using
this secure management framework, the SDN controller through the RINA SBI could
request to allocate resources along the edge–fog–cloud continuum. Functional testing has
demonstrated that the DAF management helped enable a secure connection between MAs
and the RINA SBI for interchanging crucial CDAP messages to create and destroy slices
(DIFs). Consequently, all the RINA nodes deployed along the edge–fog–cloud continuum
can be managed using a centralized approach.

Furthermore, the RINA SBI driver has powered the current OpenFlow-based SDN
controller software to enable the hybrid centralized management of SDN switches and
RINA nodes. The SDN controller and RINA SBI driver integration will open opportunities
for RINA in some challenging IoT scenarios with emerging technologies such as the tactile
Internet. Furthermore, the RINA L2VPN was demonstrated to be an efficient solution
enabling seamless communication between edge nodes and the cloud. By doing so, the no-
RINA applications could benefit from RINA networks without any changes. All these
features will enable a progressive adoption of RINA in IoT environments and bridge
the gap between future network developments and current network deployments. As an
alternative Internet stack, RINA may introduce benefits in terms of scalability and flexibility
in an environment where devices are highly mobile. The RINA nodes can be managed
from an SDN controller by using the acRINA SBI driver. As a result, the SDN controller
can manage heterogeneous network devices (OpenFlow-based and RINA-based), allowing
the opportunity to progressively adopt RINA in IoT environments.

The proposed architecture integration is the starting point for establishing RINA as
a network solution option in high–low latency applications. Further research will be con-
ducted to analyze and experiment with RINA on the Radio Access Network (RAN). Fur-
thermore, the current implementation will be used to conduct experiments to evaluate the
QoS in IoT and tactile Internet scenarios and assess scenarios centered on mobility appli-
cations. In addition, the RINA SBI driver will be adapted to support to other controllers
(ONOS, µONOS).
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Appendix A. SDN Controller Dashboard

The SDN dashboard is a Python3 Django-based app that interacts with the SDN
controller using its REST API. The SDN dashboard can operate on OpenFlow-based and
RINA-based environments simultaneously, offering a simple centralized point of interaction
for both protocol stacks. A dedicated menu is developed to visualize RINA information to
ensure backwards compatibility and mitigate any interoperability challenges caused by the
differences between the traditional TCP/IP stack and the RINA stack, as show Figure A1.

Figure A1. RINA topology section in the SDN controller.

As illustrated in Figure A2, the RINA menu offers a clear visualization of the parsed
REST replies, offering the user a valuable resource of compact information related to MAs
and the IPCP layers of the registered systems.

Figure A2. RINA systems visualisation in the SDN controller.

Furthermore, the SDN controller dashboard shows the RINA topology and the switch
port summary, as illustrated in Figure A3.

Figure A3. RINA topology and switch por summary in the SDN controller.
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