
Citation: Yoon, H.; Yu, M.; Hahn, C.;

Koo, D.; Hur, J. Exploiting Hidden

Information Leakages in Backward

Privacy for Dynamic Searchable

Symmetric Encryption. Appl. Sci.

2024, 14, 2287. https://doi.org/

10.3390/app14062287

Academic Editors: Pengpeng Chen,

Liangyin Chen and Yanru Chen

Received: 30 January 2024

Revised: 4 March 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Exploiting Hidden Information Leakages in Backward Privacy
for Dynamic Searchable Symmetric Encryption
Hyundo Yoon 1 , Muncheon Yu 1, Changhee Hahn 2,*, Dongyoung Koo 3,* and Junbeom Hur 1

1 Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea;
hdyoon@isslab.korea.ac.kr (H.Y.); mcyu@isslab.korea.ac.kr (M.Y.); jbhur@korea.ac.kr (J.H.)

2 Department of Electrical and Information Engineering, Seoul National University of Science and Technology,
Seoul 01811, Republic of Korea

3 Department of Convergence Security, Hansung University, Seoul 02876, Republic of Korea
* Correspondence: chahn@seoultech.ac.kr (C.H.); dykoo@hansung.ac.kr (D.K.)

Abstract: Dynamic searchable symmetric encryption (DSSE) enables searches over encrypted data as
well as data dynamics such as flexible data addition and deletion operations. A major security concern
in DSSE is how to preserve forward and backward privacy, which are typically achieved by removing
the linkability between the newly added data and previous queries, and between the deleted data
and future queries, respectively. After information leakage types were formally defined for different
levels of backward privacy (i.e., Type-I, II, III), many backward private DSSE schemes have been
constructed under the definitions. However, we observed that the backward privacy can be violated
by leveraging additional secondary leakage, which is typically leaked in specific constructions of
schemes in spite of their theoretical guarantees. In this paper, in order to understand the security gap
between the theoretical definitions and practical constructions, we conduct an in-depth analysis of
the root cause for the secondary leakage, and demonstrate how it can be abused to violate Type-II
backward privacy (e.g., the exposure of the deletion history) of DSSE constructions in practice. We
then propose a novel Type-II backward private DSSE scheme based on Intel SGX, which is resilient
to the secondary leakage abuse attack. According to the comparative analysis of our scheme with
the state-of-the-art SGX-based DSSE schemes, Bunker-B (EuroSec‘19) and SGX-SE1 (ACNS‘20), our
scheme shows higher efficiency in terms of the search latency with a negligible utility loss under
the same security level (cf. Bunker-B) while showing similar efficiency with a higher security level
(cf. SGX-SE1). Finally, we formally prove that our scheme guarantees Type-II backward privacy.

Keywords: dynamic searchable encryption; information leakages; forward security; backward security

1. Introduction

Dynamic searchable symmetric encryption (DSSE) is a kind of searchable symmetric
encryption (SSE) specifically designed to support data dynamics such as addition and
deletion operations in an encrypted database (EDB) [1,2]. Although DSSE schemes benefit
from the flexible operations without decryption, they are likely to leak sensitive information.
For example, an adversary can observe added or deleted documents that are accessed by
users by exploiting the access pattern leakage [3], or identify the underlying keyword of
queries by exploiting the search pattern leakage [3].

To formally address this information leakage problem, Bost et al. [4,5] introduced the
notions of forward and three different types (i.e., Type-I, II, III) of backward privacy in
DSSE, mainly focusing on addressing security concerns regarding the linkability between
queries (e.g., update and search) and updated data. Although leaking less information
implies higher security, it inevitably incurs higher computational overhead. For example,
Type-I backward privacy has been only achieved by adopting cryptographically heavy
operations such as oblivious RAM (ORAM) [6].

Appl. Sci. 2024, 14, 2287. https://doi.org/10.3390/app14062287 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062287
https://doi.org/10.3390/app14062287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5803-3898
https://orcid.org/0000-0003-3283-5494
https://orcid.org/0000-0002-4823-4194
https://doi.org/10.3390/app14062287
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062287?type=check_update&version=1


Appl. Sci. 2024, 14, 2287 2 of 22

Recently, a trusted execution environment (TEE) such as Intel SGX [7] has been consid-
ered for DSSE to mitigate efficiency problems caused in favor of the forward/backward
privacy preservation [8–11]. Amjad et al. [8] proposed several forward and various types of
backward private DSSE schemes using Intel SGX. Their first scheme, called Fort, achieves
the highest security guarantee (i.e., Type-I), but suffers from high communication overhead
due to the usage of ORAM [6]. To balance security and efficiency, they proposed another
scheme, called Bunker-B (Type-II), aiming to reduce communication costs. However, it still
suffers from scalability degradation.

To resolve this problem, Vo et al. proposed SGX-SE1, providing Type-II backward
privacy [11], and Maiden providing Type-I backward privacy [12], both leveraging the
server-side SGX enclave as a proxy to reduce the communication cost and enhance the
scalability of the scheme. Unfortunately, despite its efficiency improvement, we observed
that SGX-SE1 does not fully guarantee Type-II backward privacy as expected. SGX-SE1 has
additional information leakage related to deletion history, which is information leakage
only allowed in Type-III backward privacy, by exploiting secondary leakage, which is
naturally allowed in the protocol construction. Thus, in this paper, we seek to answer
the following questions: What is the root cause or conditions for the leakage, and how can it be
exploited to break the backward privacy of DSSE schemes?

In search of the answer, we first conduct an in-depth analysis of the information
leakages in existing Type-II backward private DSSE schemes [8,11,13,14] in terms of both
theoretical definitions and scheme constructions. Consequently, we found that there exist
information leakages in several schemes [11,14], which can be utilized to extract a deletion
history of the encrypted data, leading to violation of Type-II backward privacy. Then, we
examine the condition allowing the vulnerability, and demonstrate how it can affect the
Type-II backward privacy in practice by exploiting the secondary information leakage on
Vo et al.’s [11] and Sun et al.’s [14] DSSE schemes.

Next, we propose a novel forward and Type-II backward private DSSE scheme based
on SGX. To this end, we design an obfuscation technique to hide the access and the search
patterns in order to prevent the information leakages related to update operations. To
minimize extra communication and computation costs caused by the obfuscation technique,
we selectively cache the top k-frequently accessed documents inside the SGX enclave for
fast data retrieval and obfuscation.

According to our comparative analysis results with the state-of-the-art SGX-based
DSSE schemes, Bunker-B [8] and SGX-SE1 [11], the search time of the proposed scheme is
approximately 27× faster than that of Bunker-B, while providing the same security level.
Compared with SGX-SE1, the proposed scheme achieves a higher level of security while
minimizing performance degradation.

Contributions: Our contributions are summarized as follows:

• We conduct a comprehensive analysis of the existing Type-II backward private schemes,
and discover information leakage that falls outside the purview of the existing back-
ward privacy notions. We then demonstrate how those leakages are exploited to
extract the deletion history in Type-II schemes.

• We demonstrate how our findings on information leakages exacerbate the security of
known Type-II backward private schemes by exploiting the Vo et al. DSSE scheme [11]
and Sun et al. DSSE scheme [14].

• We design a novel forward and Type-II backward private DSSE scheme based on SGX,
which hides the information leakage of deletion history with high efficiency.

• We conduct a comparative analysis of our scheme with the state-of-the-art SGX-based
DSSE schemes, Bunker-B [8] and SGX-SE1 [11], in both synthetic and real-world
Enron [15] datasets. According to the analysis, our scheme shows higher efficiency in
search latency with negligible utility loss under the same security level (cf. Bunker-B)
while showing similar efficiency with a higher security level (cf. SGX-SE1).



Appl. Sci. 2024, 14, 2287 3 of 22

2. Preliminaries

In this section, we introduce the basic background of Intel SGX, the preliminaries,
and the cryptographic background of forward/backward privacy in DSSE. λ denotes the
security parameter, and negl(λ) denotes a negligible function in the security parameter.
A database DB denotes a list of file identifier and keyword set pairs.

2.1. Intel SGX

A trusted execution environment (TEE) allows an arbitrary code to be executed in an
isolated environment, providing integrity and confidentiality protection on the executed
codes, stored data, and runtime states, such as sensitive I/O, CPU registers, and memory.
Intel SGX, one of the main prevailing and representative TEEs, is a set of extended Intel’s
x86 instructions providing isolated execution environments, called enclaves [7]. The enclave
is the trusted component located in a dedicated memory portion of the physical RAM,
called the enclave page cache (EPC). During system boot-up, a total of 128 MB is typically
reserved for the Intel SGX, out of which 96 MB is allocated to the EPC; this EPC is shared
among all the running enclaves on the system. The untrusted part is executed as an
ordinary process, and can trigger the enclave under a securely defined process. When the
data are loaded inside the enclave, the SGX-enabled processors protect their integrity and
confidentiality by isolating them from the outside untrusted environment, including the
operating systems and hypervisor. The enclave can access the entire virtual memory of its
untrusted host process, but the untrusted host or any other enclave cannot directly access
any code or data in the enclave.

When an enclave is required to communicate with other instances, an attestation
mechanism is executed for authentication before exchanging the data. There are two
forms of attestation: local attestation and remote attestation. Local attestation is used for
authenticating two enclaves running on the same physical machine, and is conducted using
the EREPORT and EGETKEY instructions, which generate signed reports for verification.
Remote attestation is used when an enclave attests its identity (usually represented by its
initial code and data) to another enclave running on a remote physical machine. The remote
enclave uses a quote generated by the quoting enclave (QE), and verifies the signature by
sending it to the Intel attestation server. Through the attestation service, a secure channel is
established between them.

2.2. Definition of DSSE

A DSSE scheme consists of three algorithms: Setup, Update, and Search. Let λ denote
the security parameter, and it is implicit input for all algorithms. DB = {(indi, wi)} refers
to the database, where ind denotes file identifier and w denotes the keyword. EDB denotes
an encrypted database, and σ denotes the state of the client. op denotes the type of update
operation (addition or deletion). Each algorithm is defined as follows:

• (EDB, σ) ← Setup(1λ, DB): Setup takes as input the security parameter λ and the
initial database DB.

• (σ′, EDB′) ← Update(σ, op, ind; EDB): Update is a client-server protocol, where
the client takes as input the state σ, a file identifier ind, and type of operation op
= {add, del}; and the server takes as input the encrypted database EDB. The client
outputs updated state σ′, and the server outputs an updated encrypted database EDB′

as a result.
• (σ′, DB(w); EDB′)← Search(σ, w; EDB): Search is also a client-server protocol, where

the client takes as input the state σ and search keyword w; the server takes as input the
encrypted database EDB. Then, the client outputs σ′ and DB(w) of the file identifiers
matching keyword w; the server outputs the updated encrypted database EDB′.

The adversary is only allowed to learn the information explicitly captured by the
leakage function L = (LSetup,LSrch,LUpdt).



Appl. Sci. 2024, 14, 2287 4 of 22

2.3. Forward and Backward Privacy of DSSE
2.3.1. Forward Privacy

Forward privacy [16] ensures newly updated data entries cannot be related to the
previous search queries. The forward-private DSSE scheme hides the linkability between
an update operation and the past search queries [2]. Thus, if a client performs any update
operations (i.e., document/keyword add or delete) on a keyword w, the adversary, includ-
ing the data server, cannot learn any information whether searches on keyword w have
been made beforehand, mitigating the file injection attack [17] in DSSE schemes.

2.3.2. Backward Privacy

When searching on keyword w is made, backward privacy [2,5] guarantees that the
deleted document identifiers containing w are not revealed.

Now, we introduce a leakage function defined in backward privacy. The record
information revealed in a list of queries issued so far is represented as the above leakage
function L. The list of queries is denoted as Q, where

Q = {(u, op, in) or (u, w)}.

There are two types of query: search query and update query. (u, w) is a search query, where
u refers to the timestamp and w refers to the search keyword. Note that the timestamp u
starts from 0 and increases with the incoming queries. (u, op, in) is an update query, where
op ∈ {add, del} and in refers to the input (w, ind).

The search pattern [3], sp(w), is one of the common leakage function, composed of
timestamps of all search queries on keyword w, which allows an adversary to identify
identical search queries. The formal definition of sp(w) is defined as follows:

sp(w) = {u|(u, w) ∈ Q}.

TimeDB(w), for a keyword w, leaks the list of all documents matching a search
keyword w and the timestamp of their insertion, except for documents that are deleted.
The formal definition is as follows:

TimeDB(w) = {(u, ind)|(u, add, (w, ind)) ∈ Q,
and ∀u′, (u′, del, (w, ind)) /∈ Q},

Note that u′ is the timestamp that comes after the u. Updates(w) refers to the list of
timestamps of all updates on keyword w. Formally, Updates(w) is defined as :

Updates(w) = {u|(u, add, (w, ind) or (u, del,
(w, ind)) ∈ Q}.

Lastly, the leakage function DelHist(w) is defined as follows:

DelHist(w) = {(uadd, udel)|∃ind s.t. (udel , del, (w,
ind)) ∈ Q, and (uadd, add, (w, ind)) ∈ Q}.

Bost et al. [5] introduced the formal definitions for three different types of backward
privacy ordered from the most to least secure notions, which are defined as follows:

• Type-I: It leaks the document identifiers matching the keyword w, timestamps of their insertion
(TimeDB(w)), and total number of updates on w.

• Type-II: It leaks the document identifiers matching the keyword w, TimeDB(w), and the list
of timestamps of the entire updates on keyword w (Updates(w)).

• Type-III: It leaks the document identifiers matching the keyword w, TimeDB(w), Updates(w), and
deletion history (DelHist(w)) that reveals which deletion update canceled which insertion update.



Appl. Sci. 2024, 14, 2287 5 of 22

3. Leakage Abuse Attack

In this section, we introduce how leakage information we found can be exploited
by an adversary to obtain the deletion history of the state-of-the-art Type-II backward
privacy schemes. Table 1 shows state-of-the-art Type-II backward private schemes that are
prone to our attack. In order to demonstrate its feasibility, we show how our attack can be
conducted on SGX-SE1 [11] and Aura [14] as representative SGX-based and non-SGX-based
Type-II backward privacy schemes, respectively. Finally, we discuss the root cause of the
vulnerability of the scheme constructions.

Table 1. Classification of existing Type-II DSSE schemes.

Scheme BP-Type Prone to Attack SGX

Fides Type-II X -

Mitra Type-II X -

Bunker-B Type-II X O

SGX-SE1 Type-II O O

SGX-SE2 Type-II O O

Aura Type-II O -

3.1. Threat Model

Similar to the previous DSSE schemes [8,11], we consider a semi-honest adversary at
the server side, such that the adversary can observe the interaction of the enclave with the
other resources located outside the enclave, and has the privilege of gaining full access
over software stack outside the enclave, as well as the operating system and hypervisor.
Additionally, the adversary can learn information about the access patterns by observing
memory addresses and encrypted data in the encrypted database. Finally, the adversary
can log the timestamps of every memory manipulation during the entire protocol, aiming
to extract the deletion history.

3.1.1. Trust Assumptions on Intel SGX

We assume that the SGX enclave behaves normally without hardware bugs or back-
doors. The preset code and data inside the enclave are securely protected, and crypto-
graphic primitives provided by SGX are trusted [7]. Furthermore, the communications
and data transfer between different clients or servers are protected by the secure channels
established by the SGX attestation service. The enclave can be invoked whenever clients
need. We do not consider the side-channel and denial-of-service (DoS) attacks against the
SGX as in many other SGX-based applications [13,18–21].

3.2. Extraction of Deletion History

As described in Section 2.3.2, Type-II backward privacy only leaks document identi-
fiers matching the searched keyword w, TimeDB(w), and Updates(w). If a scheme leaks
DelHist(w) along with the other Type-II leakages, the adversary is allowed to know which
deletion update cancels which add update that previously occurred, downgrading it into
Type-III backward privacy. Thus, if a part of deletion history is revealed to an adversary,
the privacy level of the scheme may be weakened than the original Type-II backward
privacy level.

According to our investigation of the existing Type-II backward private schemes, we
observed that they may leak DelHist(w) when an adversary can exploit the access and
search pattern leakages together with information leakages allowed in Type-II backward
privacy (especially when they are constructed with static data structures or static values for
identifying documents matching a specific keyword w). In order to obtain it, specifically,
the adversary should be able to (1) distinguish whether the update operation is addition
or deletion, and (2) distinguish whether two separate queries are on the same keyword w



Appl. Sci. 2024, 14, 2287 6 of 22

(search pattern leakage). When an addition operation is executed, the adversary is able to
observe the added document identifier id from the update query (but not the keyword w).
Thus, the adversary learns (u, add, (w, id)), where u refers to the timestamp of the operation.
According to the definition of Type-II backward privacy, DelHist(w) should be hidden
from the view of the server.

Next, during the search protocol for a specific keyword, the server is able to observe
the query tokens and memory access of the EDB (i.e., the access pattern). Note that each
query token refers to a single document. If the query token or the search index is encrypted,
the adversary may observe the following search query consisting of the encrypted i query
tokens Q = {qtw

1 , qtw
2 , ..., qtw

i }, where qtw
j refers to the j-th query token for keyword w for

1 ≤ j ≤ i. The adversary then observes and learns the search result Res = {id1, id2, ..., idi},
directly indicating the access pattern of the EDB for the documents in Res.

When a client sends a search query Q′ consisting of k query tokens later, the adversary
would observe Q′ = {qtw′

1 , qtw′
2 , ..., qtw′

k }, and learn Res′ = {id′1, id′2, ...,id′k}, for the search
result of Q′. If the value of query token qt is encrypted in a deterministic manner and
is bound to a specific keyword, then the adversary can identify whether two different
search queries are linked to the same keyword w by simply comparing the values of the
query tokens (When the query token is generated in a non-deterministic manner, such as
re-encryption, as in Bunker-B [8], for example, our extraction of deletion history might not
work due to the indistinguishability in the adversary’s view.).

When observing i > k, the adversary may learn the deletion updates are performed
between two searches of Q and Q′ on the same keyword w. Further, by comparing the
search results Res and Res′, the adversary can learn which document id was deleted.
Consequently, the probability that the adversary can determine which delete updates are
related to w is PDel(w) = i−k

Ndel
, where Ndel is the number of possible deletion operations

performed in the period. According to the definition of Type-II backward privacy, any
information on DelHist(w) should not be leaked. However, by exploiting the query token,
search result, and access pattern of the EDB, the adversary can learn which delete update
cancels which add update, leaking DelHist(w) information with a probability of PDel(w).
In addition, as mentioned in Section 2.2, if there exists an index such that the timestamp
of its insertion and deletion is revealed to the adversary, the scheme leaks DelHist(w).
Thus, if a deletion history can be successfully extracted, the claimed Type-II backward
privacy is violated. It is important to note that even though queries are encrypted using a
randomized encryption algorithm, the extraction of deletion history can still be applied as
long as the search pattern and the other information required for the extraction are leaked.
In Section 3.4, we demonstrate the efficacy of the extraction by showing that PDel(w) can be
non-negligible in the real-world scenario.

3.3. Attacks on Prior Works

We show how the deletion history can be extracted in Vo et al.’s SGX-SE1 [11] and
Sun et al.’s Aura [14]. For better understanding, we briefly explain the overview of each
scheme’s construction first. Then, we demonstrate how the deletion history can be extracted
from each protocol.

3.3.1. Vo et al. Scheme

Vo et al. [11] proposed SGX-based forward and Type-II backward private dynamic
searchable encryption schemes, named SGX-SE1 and SGX-SE2. In this paper, we focus only
on SGX-SE1 because it is the baseline scheme upon which SGX-SE2 is built.

When a client uploads a new document in SGX-SE1, the document is sent to the
SGX enclave in the server through the addition operation in the update protocol. The
enclave then parses all the keywords within the document, and uses the latest state ST[w],
which infers the number of documents containing w. Specifically, for each keyword w,
ST[w] increases by 1 whenever a document containing w is added. The encrypted index
u is a deterministic value generated by H(kw, c), where H refers to a hash function that



Appl. Sci. 2024, 14, 2287 7 of 22

hashes kw, which is a key value bound to w, and the count value c of ST[w]. A map of the
encrypted index MI [u] stores the encrypted document identifier.

When deleting a document, the client transfers the corresponding document identifier
id to the enclave. On receipt of it, the enclave stores the id within a deleted document list d,
and the actual deletion of it from the EDB is conducted during the search protocol.

In the search protocol, when the enclave receives a keyword w from the client, it
first fetches the document identifiers from the deleted document list d. Next, the enclave
loads the corresponding documents and checks whether the keyword w exists within each
document. The enclave retrieves ST[w] of the deleted documents, which were used when
they were added, and excludes these values from {0, ..., ST[w]}. The remaining values in
the set are then used to generate query token u for the non-deleted documents. The list of
query tokens u is transferred to the server. Finally, the server computes the id by decrypting
MI [u], and returns the corresponding encrypted documents to the client.

Extraction Scenario. Table 2 shows the example flow of SGX-SE1 protocol [11], along
with the leakage information and its type. When searching on keyword w in SGX-SE1, the
enclave sends a search query Qw containing a list of (u, kid) pairs to the server, where kid
refers to the key value bound to the document identifier. The adversary can observe and
trace from Qw the deterministic values of u’s, which are bound to the specific keyword.
Therefore, by comparing the values of u from the past search, the adversary learns if two
different queries are on the same keyword, leading to the search pattern leakage. Because
the document identifiers and encrypted documents are retrieved in the untrusted area, the
adversary can observe the access pattern of the matching result as well as the accessed
document identifiers. The adversary compares the matching results of the two queries
and learns that deletion update on id3 occurred in the period between the two searches (as
shown in Table 2). Among the three delete updates that occurred between the two searches,
one of them must correspond to the deletion of id3, thus the probability of making a correct
guess is 1

3 . Since the adversary has the knowledge of the timestamps of all updates and
when each document is added with their identifier values, the aforementioned leakage
information allows the adversary to learn DelHist(w).

Table 2. Example of SGX-SE1 protocol flow.

Algorithm Leakage Information (Attacker’s View) Leakage Type

Setup(1λ) - -

Update(add,
(add, id1)

Update
(doc1, id1)) Pattern

... ... ...

Search(w)

Qw −→ {(u1, kid1
), Search

(u2, kid3 ), (u3, kid4
)} Pattern

Res −→ {id1, id3, id4}
Access
Pattern

Update(del, id12) - -

Update(del, id3) - -

Update(del, id9) - -

Search(w)

Qw −→ {(u1, kid1
), Search

(u3, kid4
)} Pattern

Res −→ {id1, id4}
Access
Pattern

Qw: search query for keyword w, Res: search result, id: document identifiers, u: encrypted index, kid: key value for id.



Appl. Sci. 2024, 14, 2287 8 of 22

3.3.2. Sun et al. Scheme

Sun et al. [14] proposed a non-SGX-based Type-II backward private scheme called
Aura. Aura requires the client to revoke the encryption key after each search. The search
result does not need to be re-encrypted because the previous search result is cached.

When the client adds a keyword and document identifier ind to the database, the
client retrieves the most recently used encryption key msk, and computes a ciphertext with
ind and a tag t = FKt(w, ind), where F is a pseudo-random function and Kt is secret key
for t. Then, the computed ciphertext is inserted into the database EDBadd. For deletion, the
client inserts tag t corresponding to the deleting entry (w, ind) into the deletion list D.

For searching on keyword w, the client retrieves the number of searches on keyword
w, denoted as i, the current secret key sk, and the deletion list D. Then, the client computes
the revoked secret key skR and query token tkn, sends them to the server, and refreshes msk.
The server retrieves encrypted indices matching w and decrypts the non-deleted indices
with skR. The non-deleted indices are added to a list NewInd; the deleted tags are added
to a list DelInd. Then, the server retrieves indices stored in EDBcache[tkn] and excludes
entries that are in DelInd, where EDBcache stores the previous search result. Finally, NewInd
together with non-deleted indices stored in cache EDBcache[tkn] are returned to the client.

Extraction Scenario. As explained above, during the search protocol, the server
accesses EDBcache[tkn] for retrieving cached search results. By comparing the accessed
EDBcache[tkn], the adversary can learn which previous search query is on the same keyword
w. The timestamps of addition update queries on w (i.e., TimeDB(w)) that occurred between
two search queries on w are revealed to the adversary. Note that remaining update queries
between two search queries can be possibly deletion updates on w. During the execution of
the second search query, the adversary can obtain additional information on how many
deletion updates on w occurred by observing the number of entries excluded from EDBcache.
Since the entries stored in EDBcache are in the form of (ind, t), the deleted indices are also
revealed while excluding deleted entries from the cache.

Because the insertion timestamps of each (w, ind) are revealed, the adversary, similar
to the case of Vo et al.’s scheme [11], is able to extract DelHist(w) using the timestamps
of possible deletion updates on w and deleted ind. However, the attack against Aura
has a lower success rate than that of SGX-SE. The reason is that Aura does not follow
the traditional definition of Type-II backward privacy and follows a somewhat different
definition for Type-II backward privacy.

3.3.3. Discussion

As shown in the above attack scenarios, in addition to the information leakages defined
in Type-II backward privacy, there exists extra information that an adversary may learn
from the protocols and exploit for extracting a deletion history. A root cause for allowing
the additional leakage is the static data structures and static values used for updating and
searching a keyword. During the search protocol, for instance, SGX-SE1 [11] and Aura [14]
access the same locations of data structures when searching on the same keyword. Thus,
the adversary is able to specify whether a certain document is added or deleted when
compared with the same information learned from the previous search query on the same
keyword. Bunker-B [8], on the other hand, accesses different locations of data structure
for every search query on the same keyword, due to the re-encryption of the entries after
every search. However, the re-encryption of entries incurs high computational overhead,
degrading the practicality of the scheme. It is thus a challenging problem to minimize extra
information leakages while achieving high efficiency.

3.4. Feasibility of Deletion History Extraction

We evaluate the feasibility of deletion history extraction by conducting a simulation
on its probability in diverse distribution models of data upload, delete, and keyword search
in the cloud storage. In the simulation, we randomly generate queries and analyze the
probability of deletion history extraction.



Appl. Sci. 2024, 14, 2287 9 of 22

According to the distribution models for file transfer [22] and search query [23], we
assume that the document upload follows a Poisson distribution with rate λ̃, the data
lifespan follows an exponential distribution with a mean duration 1

µ , and the search request

on the same keyword follows an exponential distribution with a mean duration 1
µ′ . Also,

the keyword frequency of the documents follows a Zipf distribution.
Based on the aforementioned distribution models, we evaluate the feasibility of dele-

tion history extraction by measuring its probability under various simulation settings.
Figure 1 shows the evaluation results in each case. In the figure, the horizontal axis rep-
resents the time in hours, and the vertical axis represents the probability of successful
extraction PDel(w), which is the probability of identifying which document is deleted. When
simulating for 100 h with λ̃ = 3, 1

µ = 40, and 1
µ′ = 1, we have observed a total of 11 time in-

stances that enable our extraction with non-negligible probabilities. As shown in Figure 1a,
for example, there exists a time instance when the extraction succeeds with 100% (between
56 and 57 h), leading to the violation of Type-II backward privacy. As another example,
one can observe that PDel(w) reaches 0.5 two times between 20 and 70 h, meaning that the
deleted document can be identified with probability 1

2 , violating Type-II backward privacy
in a probabilistic (but still pragmatically meaningful) way in those periods. Figure 1b
shows the evaluation results when search requests are performed on average four times
more frequently than in Figure 1a. As a result, we could observe that there are two time
instances showing PDel(w) = 1 (between 33 and 34; 61 and 62 h) and five time instances
showing PDel(w) = 0.5.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

(b)
Figure 1. Extraction success rate. (a) λ̃ = 3, 1

µ = 40, 1
µ′ = 1. (b) λ̃ = 3, 1

µ = 40, 1
µ′ =

1
4 .

In Figure 1a,b, on average, 53 update queries (consisting of 41 addition and 10 deletion
queries) were generated for the target keyword. When considering all of the update queries
in the above simulations, the adversary could extract 1.6% and 3.2% of actual deletion
history for the target keyword, respectively. For deletion queries for the target keyword,
the adversary could extract 10% and 20% of deletion queries. When considering the attack
success rate above PDel(w) = 0.5, the probability of possible deletion history extraction
non-negligibly increases.

The aforementioned simulations indicate that the extraction probability increases as
the number of search requests on the same keyword increases (compare Figure 1a,b) When
calculating PDel(w), the total number of deletions that occurred between two searches on
the same keyword, Ndel , affects the probability. It is clear that if the search requests are
sent more frequently, Ndel would be smaller with high probability, leading to an increase
in PDel(w).

4. Our Construction

In this section, we propose a novel forward and Type-II backward private DSSE
scheme based on SGX.



Appl. Sci. 2024, 14, 2287 10 of 22

4.1. System Overview

Figure 2 shows the overview of the proposed scheme. There are three entities in the
system: the client, the server, and the SGX enclave within the server. The client is the data
owner, which is assumed to be trusted. We assume that all the entities above act normally
and do not consider incorrect queries or wrong operations. As described in Section 3.1.1,
although the enclave is located within the untrusted server, the server cannot observe the
code or data inside the enclave. Also, we assume that the enclave is fully trusted and
resilient to side-channel attacks.

Setup

EDB

Enclave

Attestation and 

Provision

SGX-enabled Server

Client

Add Document

Update Token

1

2 4

Secure Channel
3

Update

Search

5

Delete Document

6

7
Keyword 

8

9
Query Token

10
Retrieve Result

12

11

Retrieve Document

Insert Encrypted 

Document

Deleted 

Keyword 
Search Result

Figure 2. Overview of the proposed scheme.

In the proposed scheme, the client establishes a secure channel with the authenticated
enclave using the SGX remote attestation service. The client provisions a secret key K in
the enclave through the secure channel (step 1⃝). During this procedure, the client does not
deploy any encrypted database (EDB) to the server as in the other DSSE schemes [5,8].

The update procedure in the proposed scheme consists of two different operations:
addition and deletion. When adding a document to the cloud storage, the client assigns a
unique identifier id to the document, and encrypts the document with a key K (Step 2⃝).
Then, the encrypted document and its id are sent to the enclave through a secure channel
(Step 3⃝). With the received id and encrypted document, the enclave extracts all the key-
words within the document, and performs cryptographic operations to generate an update
token with the encrypted index and state. The update token and encrypted document are
then transferred to the server (Step 4⃝). The map of the encrypted index MI is separately
managed in the untrusted area. When deleting a document, the client simply sends the
document identifier id to the enclave (Step 5⃝ & Step 6⃝). (The actual deletion process of
the document will be further explained in Section 4.3).

When retrieving documents from the outsourced EDB, the client sends the search key-
word w to the enclave through the secure channel (Step 7⃝& Step 8⃝). The enclave then
computes the query tokens, and sends the final search query to the server except the tokens
for the deleted documents (Step 9⃝). The server then searches over the encrypted index, and
returns back the document identifier list to the enclave (Step10⃝). With the identifier list, the
enclave searches over the cached document list; and returns the identifiers not matching any
of the cached documents to the server to retrieve the encrypted documents (Step11⃝). Finally,
the enclave sends the matching documents to the client through the secure channel (Step12⃝).

4.2. Design Goal

As analyzed in Section 3, Vo et al. [11] and Sun et al. [14] schemes are vulnerable to
extraction of deletion history, related to leakage profile of Type-III, although their initial
security aimed at Type-II backward privacy. Our principal objective is to design a ‘solid’



Appl. Sci. 2024, 14, 2287 11 of 22

Type-II backward private scheme, which only leaks information that is allowed in Type-II
backward privacy.

4.3. Scheme Construction

To facilitate searches, our scheme lets the enclave store the following information:
(1) the map ST storing the pairs of a keyword and its latest state, (2) the deleted document
list d, (3) the map D storing the pairs of a keyword and a deleted document’s id in d
associated with the keyword, (4) the map SC storing the pairs of a document id and the
number of searches over the document, and (5) the map FD storing the pairs of a document
id and its encrypted data in the EDB. Each notation is defined in Table 3.

Table 3. Notations of data structures.

Notation Definition

K Secret key

ST Latest state of keywords

d List of deleted documents

D A map for keyword and deleted documents

SC Number of times each document searched

FD k-frequent documents

R Repository (EDB)

MI Encrypted index

Mc Encrypted state

The proposed scheme consists of three algorithms: Setup (Algorithm 1), Update
(Algorithm 2), and Search (Algorithm 3). In the algorithms, H1, H2, and H3 denote the
cryptographic hash functions, and Enc(a, b) is the encryption of b under a key a.

Algorithm 1 Setup(1λ)

Client:
1: kΣ, k f ←$ {0, 1}λ

2: Launch Remote Attestation ▷ Establish secure channel
3: Send K = (kΣ, k f ) to Enclave

Enclave:
4: Initialize maps ST, D, SC, FD; tuples T1, T2; a list d
5: Receive K = (kΣ, k f )

Server:
6: Initialize maps MI and Mc
7: Initialize Repository R

In the Setup algorithm, the client communicates with the enclave and provisions a
secret key K containing a key pair (kΣ, k f ) through the secure channel established by the
attestation service provided by Intel [7]. The enclave uses kΣ to generate update and query
tokens and a symmetric key k f to encrypt/decrypt a document. The enclave initializes the
maps ST and D and the list d. The server initializes the maps MI and Mc, where MI and
Mc refer to the encrypted index and the encrypted state, respectively. Also, the repository
R stores the encrypted document with its document identifier id.



Appl. Sci. 2024, 14, 2287 12 of 22

Algorithm 2 Update(op, in)

Client:
1: if op = add then
2: f ←Enc(k f , doc)
3: send (op, id, f ) to Enclave
4: else ▷ when op = del
5: send (op, id) to Enclave
6: end if

Enclave:
7: if op = add then
8: send (id, f ) to Server
9: {(w, id)} ← Parse(Dec(k f , f ))

10: foreach (w, id) do
11: kw∥kc ← F(kΣ, w)
12: c← ST[w]
13: if c =⊥ then c = −1
14: end if
15: c← c + 1
16: kid ← H1(kw, c)
17: (u, v)← (H2(kw, c),Enc(kid, id))
18: add (u, v) to T1
19: (u′, v′)← (H3(kw, id),Enc(kc, c))
20: add (u′, v′) to T2
21: end for
22: send (T1, T2) to Server
23: else ▷ when op = del
24: add id to d
25: end if

Server: ▷ when op = add
26: R[id]← f
27: receive (T1, T2) from Enclave
28: foreach (u, v) in T1 do
29: MI [u] = v
30: end for
31: foreach (u′, v′) in T2 do
32: Mc[u′] = v′

33: end for

The Update algorithm takes as an input (op,in), where op can be either add or del,
and in would be (doc, id) if op = add, or id if op = del. When an add update is invoked
(i.e., op = add) in the algorithm, the client generates an encrypted document f by encrypting
the doc under a key k f . The enclave receives (op, f , id) from the client. The received (id, f )
is stored in repository R, located in the server area. Then, the enclave parses the received
doc to retrieve a list of {(w, id)}. For each keyword w, the enclave uses kΣ to generate kw
and kc, and retrieves the latest state c. Then, kid is generated from c by executing the hash
function as kid = H1(kw, c); and two encrypted entries (u, v) and (u′, v′) are generated
using kw, kc, and kid as follows:

(u, v) = (H2(kw, c),Enc(kid, id)),

where the values of (u, v) contain the mapping information between c and id that is
retrieved based on u and kid.

(u′, v′) = (H3(kw, id),Enc(kc, c)),



Appl. Sci. 2024, 14, 2287 13 of 22

where (u′, v′) holds the encrypted state of the document with identifier id, and allows the client
to check the states of deleted documents by sending u′ in the Search algorithm. The enclave
adds each (u, v) and (u′, v′) to tuples T1 and T2, respectively, and sends (T1, T2) to the server
for updating MI and Mc. When a deletion update is invoked (i.e., op = del), the client simply
sends id to the enclave. On receipt of it, the enclave updates the list d by adding the received d
to the list, and does not require further computations or communications with the server.

Algorithm 3 Search(w)

Client:
1: Send w to Enclave

Enclave:
2: stwc ← {∅}, Qw ← {∅}
3: kw∥kc ← F(kΣ, w)
4: foreach idi in d do
5: fi ← R[idi]
6: doci ← Dec(k f , fi)
7: if w in doci then
8: D[w]← idi ∪ D[w]
9: end if

10: end for
11: foreach id in D[w] do
12: u′ ← H3(kw, id)
13: v′ ← Mc[u′]
14: c← Dec(kc, v′)
15: stdel

wc ← {c} ∪ stdel
wc

16: end for
17: stwc ← {0, ..., ST[w]} \ stdel

wc
18: foreach c in stwc do
19: u← H2(kw, c)
20: kid ← H1(kw, c)
21: with prob. p, Qw ← {(u, kid)} ∪Qw
22: end for
23: send Qw to Server
24: receive QdocId from Server
25: foreach idi in QdocId do
26: if sc =⊥ then sc = 1
27: else
28: sc← SC[idi]
29: SC[idi]← sc + 1
30: end if
31: if id in FD then
32: doci ← FD[idi]
33: else
34: doci ← R[idi]
35: end if
36: add doci to Res
37: end for
38: Send Res to Client
39: Update FD

Server:
40: receive Qw from Enclave
41: foreach (ui, kidi

) in Qw do
42: idi ← Dec(kidi

, MI [ui])
43: QdocId ← {idi} ∪QdocId
44: end for
45: send QdocId to Enclave



Appl. Sci. 2024, 14, 2287 14 of 22

In the Search algorithm, when the client sends a query containing a keyword w to the
enclave through a secure channel, the enclave begins with checking deleted documents in
the list d. Specifically, all of the documents in d are loaded into the enclave. The enclave
then decrypts them using k f , and checks if the queried keyword w is included in any
of them. If w exists in some documents, their document identifiers are updated to D[w].
After that, each id in D[w] allows retrieval of the state list stdel

wc ⊃ {cid}, where cid refers to
the state used when the document id is added for keyword w. By excluding the states in
stdel

wc from the set of {0, ..., ST[w]}, the enclave obtains a state list stwc for the non-deleted
documents. The enclave computes |stwc | number of encrypted index pairs (u, kid)s to form
search query Qw. Note that each pair (u, kid) is added to Qw with probability p (typically,
p will be close to 1), aiming to retrieve matching documents with false negatives of a small
probability (1− p). Therefore, it holds

Qw[i] ∼ Bern(p), where i ≤ |stwc |. (1)

The enclave sends Qw to the server. The server decrypts MI [ui] with kidi
, stores obtained

document identifiers in QdocId, and sends QdocId to the enclave. After that, the enclave
increments the search counter SC[idi] of each matching document idi. When retrieving
them, the enclave adds the corresponding encrypted documents to the search result Res
without accessing the untrusted area if they are stored in the frequently matched document
map FD to minimize the possibility of access pattern leakage to the server, or they are
retrieved from the repository R located in the untrusted area, otherwise. Finally, the enclave
sends Res to the client and updates FD based on the updated SC.

5. Security Analysis

In this section, we analyze the security of the proposed scheme, and prove that it
guarantees forward and Type-II backward privacy.

Setup leaks nothing to the server by leveraging a secure channel established by re-
mote attestation. However, because the adversary can observe the interactions between its
memory and the enclave during the search and update procedures, we consider the com-
munications between them as information leakage in the proposed scheme. For addition,
Update leaks timestamp and memory access patterns when inserting new entries to the
data structures MI , Mc, and R. For deletion, Update does not reveal any information to the
server because there is no interaction between the enclave and the server. In Search, the
access patterns on MI , Mc, and R are revealed to the server.

Definition 1 (Obfuscated Search Pattern). The obfuscated search pattern Φ̃→
w

is the vector
characterized by Equation (2)

Φ̃→
w
= (u1, ..., u|i|), where i ≤ |stw|, (2)

where u refers to the encrypted index or query token generated during the search.

Definition 2 (Obfuscated Access Pattern). The obfuscated access pattern Π̃→
w

is the vector

Π̃→
w
= (id1, id2, ..., id|i−| f d||), (3)

where | f d| refers to the number of documents retrieved from cached map FD.

We formulate the leakage function, and define RealA(λ) and IdealA,S (λ) games for
an adaptive adversary A and a polynomial time simulator S . D denotes the proposed
scheme, and the leakage function of D is

L = (LStp,LUpdt,LSrch,Lhw).



Appl. Sci. 2024, 14, 2287 15 of 22

Note that the first three leakage functions define the information exposed in Setup, Update,
and Search, respectively. Lhw refers to the inherent leakage of the enclave exposed during
the interaction between the enclave and the server.

Setup leaks nothing to the server, but the data structures of MI , Mc, and R are revealed
to the server during the initialization. Update leaks information to the server only when
op = add. The access pattern of encrypted entries is observed by the server when they are
inserted to MI , Mc, and R. When op = del, D leaks nothing to the server because there is
no interaction between the enclave and the server. Therefore,

LUpdt(op, in) = (T1, T2, R[idi]).

T1 is a tuple of {(u, v)} that is inserted to MI (i.e., encrypted index), and T2 is a tuple of
{(u′, v′)} that is inserted to Mc (i.e., encrypted map of keyword states). R[idi] refers to the
encrypted document inserted with document identifier idi.

Search leaks obfuscated search pattern Φ̃→
w

when the enclave sends query tokens to
the server, obfuscated access pattern Π̃→

w
when it retrieves the encrypted documents from

the server, and the patterns on the deleted documents’ list dw. LSrch is defined as

LSrch = (Φ̃w, Π̃w, dw).

Lhw includes hardware leakages observed during Update and Search, such as memory
access patterns, locations, timestamps, and manipulated memory areas for MI , Mc, and R.
Lhw is defined as

Lhw = ((MI , Mc, R)Updt, (MI , Mc, R)Srch).

RealA(λ): As presented in Algorithm 1, the challenger performs Setup(1λ) to initial-
ize data structures used by the client, the server, and the enclave. A selects a database
DB = {doci}i∈N and performs a polynomial number of updates, where N is a natural num-
ber of documents. When the challenger runs Update(op, in), (MI , Mc, R)Updt is returned
to A. After that, A selects a keyword w and performs Search. As a result of Search(w),
the challenger returns the transcript of each operation and outputs (MI , Mc, R)Srch to A.
Finally, A outputs a bit b.

IdealA,S (λ): A selects a DB = {doci}i∈N. S generates a tuple of (MI , Mc, R) by
using LUpdt and (MI , Mc, R)Updt. Then, S sends the generated tuple to A. A adaptively
selects the keyword w to search. The transcript obtained by S(LSrch(w)) is returned by the
challenger. Finally, A returns a bit b.

For all probabilistic polynomial time algorithms A, if there exists a PPT simulator
such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S (λ) = 1]| ≤ negl(λ),

then D is L-secure against adaptive chosen-keyword attacks.

Definition 3 (L-security). Scheme D consists of three protocols: Setup, Update, and Search.
RealA(λ) and IdealA,S (λ) are probabilistic experiments, where A is a stateful adversary and S is
a stateful simulator that gets the leakage function L. D is L-secure if A can distinguish RealA(λ)
and IdealA,S (λ) with negligible probability.

The schemeD is secure if it achieves both forward and Type-II backward privacy. Since
the client issues a query on keyword w to the enclave through the secure channel, A has to
generate a query token by itself in the game presented in Definition 3. Forward privacy is
guaranteed because state ST[w] increases when a new document containing w is inserted.
The increase in state value constrains A to generate a query token to retrieve newly added
documents. Regarding backward privacy, A can learn the timestamps indicating when the
deleted states of w were added in Mc, when the enclave requests the server to access Mc
during Search, but A cannot know when they were actually requested for deletion. Scheme
D caches deletion requests in the enclave and only accesses them during Search. Due to



Appl. Sci. 2024, 14, 2287 16 of 22

the obfuscation technique in the scheme, during the search on w, the enclave generates
the query tokens and includes them with probability p. In other words, a false negative
occurs with probability 1− p, which probabilistically omits the query tokens in the result.
Therefore,A is unable to identify whether the tokens are omitted due to deletion operations
or false negatives. In addition, the enclave stores the most frequently retrieved document.
Thus, if the matching document exists within the map FD, the enclave does not request the
server to access R for those documents. As a result, A does not know which delete updates
are conducted for specific document identifiers.

Theorem 1. Scheme D is L-secure according to Definition 3.

Proof. We now prove Theorem 1 by illustrating a PPT simulator S for which A, a PPT
adversary, can distinguish RealA(λ) and IdealA,S (λ) with negligible probability.

• Setup : S performs a random key generation K̃ = (k̃σ, k̃ f ) to simulate the key compo-
nents provisioned inside the enclave.

• Simulate : S executes Update on a random keyword w and obtains a query token
q. Then, S performs an addition update for w based on K̃ and Lhw(MI , Mc, R), and
passes them to the enclave to receive the new update of (MI , Mc, R).
However, A cannot classify which update tokens match q because the enclave keeps
increasing the state ST[w]. Thus, S is unable to distinguish between the output of
RealA(λ) and the simulated output in Update and Search, guaranteeing forward privacy.

• Simulate : S executes Search on a random keyword w. The encrypted documents in
the deleted document list d stored in the enclave are only requested during Search.
Thus, S is unable to specify the exact timestamp for deletion updates. When gen-
erating query token during Search, false negative occurs with rate 1 − p, causing
probabilistic omission of query token via Φ̃→

w
. In addition, for generated query tokens,

if the matching encrypted documents are cached within the enclave, those tokens are
omitted from the result sent to S via Π̃→

w
.

When A compares the matching document identifier lists of the same query, Φ̃→
w

and
Π̃→

w
prevents A from learning information required for reconstructing the deletion

history. However, A is able to learn the timestamps of the inserted entries related to
specific id via Lhw. Hence, the scheme D guarantees Type-II backward privacy.

6. Implementation and Evaluation

In this section, we evaluate our scheme in comparison to those of Amjad et al. (Fort,
Bunker-A, and Bunker-B) [8] and Vo et al. (SGX-SE1, SGX-SE2, Maiden) [11,12], which are
state-of-the-art SGX-based DSSE schemes. The comparison results related to performance
and security are shown in Tables 4 and 5.

6.1. Implementation Setup

We implemented the prototype of our scheme in C++ using Intel SGX SDK 2.15.1 in
a system with SGX-enabled Intel i5-8500 3.0 GHz, 16 GB RAM, and Ubuntu 18.04.5 LTS.
Also, we used a synthetic dataset [11] consisting of 100,000 documents with a keyword
frequency following the Zipf distribution.

The prototype utilizes cryptographic primitives in the SGX SDK for supporting cryp-
tographic operations. We also used APIs provided by SDK to create, manage, and access
the enclave. Note that the enclave is only allocated 96 MB memory [7], thus using memory
more than 96 MB requires the paging mechanism [7]. As paging triggers extra overhead to
the system, we leveraged batch processing during the search. In the experiment, we set the
batch size to 1 × 104 for all schemes. For large datasets, the size of the query token may be
large; thus, by dividing the size of the search query to the multiple batches, we minimize
the chances of a paging mechanism.



Appl. Sci. 2024, 14, 2287 17 of 22

Table 4. Comparison of SGX-based DSSE schemes.

Schemes
Computation Communication

Backward Privacy Type
Search Update Search Update

Fort O(nw + Σwdw) O
(

log2 N
)

O(nw) O(1) I

Maiden O(nw) O(1) O(nw) O(1) I

Bunker-B O(aw) O(1) O(nw) O(1) II

SGX-SE1 O(nw + d) O(1) O(nw) O(1) II

SGX-SE2 O(nw + vd) O(1) O(nw) O(1) II

Proposed O(nw + d) O(1) O(nw) O(1) II

Bunker-A O(aw) O(1) O(nw) O(1) III
N: the total number of keyword/document pairs; W: the total number of keywords; aw, nw, d: the total number of
entries (including all updates) performed on w, the number of non-deleted documents containing w, and the number
of deleted documents, respectively; vd: the vector of a bloom filter to check the membership of #d documents.

Table 5. Storage comparison.

Schemes
Storage

Client Enclave

Fort O(W log D) -

Maiden O(W log D+ -aw + N

Bunker-B O(W log D) -

SGX-SE1 - O(W log D + d)

SGX-SE2 - O
(

W log D + |b⃗ f |
)

Proposed - O(W log D + d + |K|)
Bunker-A O(W log D) -

N: the total number of keyword/document pairs; D: the total number of documents; W: the total number of
keywords; aw: the total number of entries (including all updates) performed on w; d: the number of deleted
documents; b⃗ f : the configurable bloom filter vector; K: the number of frequently searched documents cached in FD.

6.2. Performance

We now evaluate the performance of each scheme. In the evaluation, we compare our
scheme mainly with SGX-SE1 and Bunker-B, because they are both designed using Intel
SGX with the same assumptions and system environment. Bunker-B provides the same
security level as the proposed scheme. Even though SGX-SE1 was originally designed
to provide Type-II backward privacy with high efficiency, we prove it guarantees Type-II
privacy partially. Although SGX-SE2 also provides the same level of backward privacy as
SGX-SE1, it is a simple extension from SGX-SE1 adopting a bloom filter. Thus, SGX-SE2 is
not considered in the performance evaluation.

6.2.1. Insertion and Deletion Time

We evaluate the time required for insertion and deletion updates. As shown in Table 4,
both the computation and communication costs for update (i.e., addition and deletion)
are O(1) in time complexity. However, when evaluated with real-world implementation
using a synthetic dataset, there is a noticeable difference in efficiency. In the experiment, we
measured the runtime for adding 1× 104, 5× 104, and 1× 105 documents into the EDB in
each scheme. As shown in Figure 3a, Bunker-B takes 881 ms, 4099 ms, and 8443 ms to insert
1× 104, 5× 104, 1× 105 documents, respectively. SGX-SE1 takes 426 ms, 2221 ms, and
4340 ms, and the proposed scheme takes 341 ms, 1667 ms, and 3329 ms for each respective



Appl. Sci. 2024, 14, 2287 18 of 22

case, demonstrating the proposed scheme outperforms SGX-SE1 slightly. Compared to
Bunker-B, both the proposed scheme and SGX-SE1 show significantly higher efficiency as
the number of inserted documents increases.

For deletion, we evaluate the runtime by varying the portion of deletion from
1× 105 documents: 25%, 50%, and 75%. As shown in Figure 3b, Bunker-B takes 2065 ms,
3907 ms, and 5885 ms to delete 25%, 50%, and 75% of documents, respectively. SGX-SE1
takes 164 ms, 319 ms, and 470 ms, and the proposed scheme takes 169 ms, 346 ms, and
480 ms for each respective case. It shows the proposed scheme and SGX-SE1 have almost
the same computational overhead while significantly outperforming Bunker-B. This is
mainly because the proposed scheme and SGX-SE1 implement the deletion process by
simply inserting the ids of the documents to be deleted into a list, but Bunker-B actually
deletes the documents from the EDB as in the insertion process.

1  104 5  104 1  105
0

2,000

4,000

6,000

8,000

10,000
SGX-SE1
Bunker-B
Proposed

(a)

25% 50% 75%
10
2

10
3

10
4

SGX-SE1

Bunker-B

Proposed

(b)
Figure 3. Total time for insertion/deletion. (a) Insertion. (b) Deletion.

6.2.2. Search Time

Now, we evaluate the search time or query delay of the proposed scheme. Because
the proposed scheme caches frequently searched documents FD within the enclave for
obfuscation and faster retrieval, it is important to find the optimal size of FD. Figure 4a
shows the search time of the proposed scheme with various sizes of FD. The search time
decreases as the number of documents in FD increases up to 200; but, when more than 250
documents are stored, the search time rather increases. We observed that this is mainly
due to the limitation of the enclave memory, which triggers the paging mechanism more
frequently to process the search query when it caches more than 250 documents. With the
synthetic data with 1× 105 documents, we set the optimal size of FD as 200 which shows
the average search time of 346 µs.

Next, with the optimal size of |FD| = 200, we compare the search time of the proposed
scheme with those of Bunker-B and SGX-SE1. Figure 4b illustrates the search time when
inserting 1× 105 documents and deleting 50% of the documents. In the experiment, we
select the top 20 frequent keywords to perform the Search algorithm. For the top-20 frequent
keywords, Bunker-B takes on average 9434 µs to query, SGX-SE1 takes 203 µs, and the
proposed scheme takes 348 µs. Because Bunker-B requires documents to be re-encrypted,
it has a larger computational overhead of which computation complexity is O(aw). The
proposed scheme requires on average 9086 µs less search time (27× faster) than Bunker-
B, while guaranteeing a similar level of security, on average 140 µs more search time
(1.7× slower) than SGX-SE1 due to the extra computations required to obfuscate access
patterns on MI and R while providing higher security.

6.2.3. Storage Overhead

We can consider three storage types: client, server, and enclave. Among them, the
server storage is used to store all of the data for data retrieval such as EDB, encrypted
indices, and so on. Because it is a commonly required storage overhead in all of the schemes,



Appl. Sci. 2024, 14, 2287 19 of 22

we exclude the server storage when analyzing the storage overhead, and consider only the
client and enclave storage, as shown in Table 5.

10 50 100 150 200 250 300 350 400

320

340

360

380

400

(a)

0 5 10 15 20

103

104

SGX-SE1

Bunker-B

Proposed

(b)
Figure 4. Search latency. (a) Search latency depending on |FD|. (b) Search latency comparison of
different schemes.

Among the three schemes, Bunker-B only requires O(W log D) storage overhead
on the client, without requiring enclave storage. In contrast, the proposed scheme and
SGX-SE1 maintain persistent data structures for tracing the deleted documents and their
mapping information with keywords within the enclave without incurring any storage
overhead on the client. Specifically, SGX-SE1 requires O(W log D + d) storage overhead
on the enclave for storing the deleted document list d, and the mapping information D
between the keyword and the deleted documents in d. The proposed scheme also requires
the same enclave storage overhead as SGX-SE1, but requires additional storage for the
frequently retrieved K-documents, FD, on the enclave.

6.2.4. Utility Loss

We evaluate the retrieval rate of our scheme with synthetic and real-world datasets.
Synthetic dataset. When generating a search token, we generate it with a probability

(true positive rate) p close to 1. Hence, there should be the possibility of false negatives,
leading to utility loss. In order to evaluate the utility loss, we insert 1× 105 documents,
delete 20% of the documents, and query the top 20 most frequent keywords by setting
p = 0.9999. We then repeat the above experiment 20 times and calculate the average rate
of document retrieval. Figure 5a illustrates the retrieval rate when querying the ith most
frequent keywords. In the experiment, the 14th and 1st most frequent keywords show the
lowest and highest rates of 97.46% and 99.54%, respectively. On average, the proposed
scheme retrieves 98.98% of the matching documents, showing a 1.02% utility loss.

Real-world dataset. We further evaluate the utility loss of the proposed scheme with a
real-world Enron [15] email dataset. For the evaluation, we insert 3.14× 105 documents, and
delete 10% of them. Identical to the previous evaluation with the synthetic dataset, we query
the top 20 most frequent keywords and calculate the average rate of document retrieval after
repeating the experiment 20 times. Figure 5b shows the retrieval rate when querying the
ith most frequent keywords. In the experiment, the 3rd and 2nd most frequent keywords
show the highest and the lowest retrieval rates of 99.49% and 98.11%, respectively. On
average, the proposed scheme retrieves 98.96% of the matching documents, showing 1.04%
utility loss, which is almost the same as the experimental result with the synthetic dataset.

Discussion. The utility loss is an inevitable trade-off for providing higher security
without degrading the efficiency of the proposed scheme, as many of the other schemes
adopt a differential privacy technique to obfuscate access and search patterns [24,25]. Even
if the utility loss rate is very low (which is approximately 1% in the proposed scheme),
the possibility of utility loss should affect the number of documents retrievable by the
client. A simple solution to mitigate this problem is to add redundancy in the stored data



Appl. Sci. 2024, 14, 2287 20 of 22

or to send redundant queries for a single search. For example, Chen et al. scheme [24]
adopted erasure code to add redundancy to the stored data. On retrieval, the encoded
message can be reconstructed into its original one even though some parts of the message
are lost. Therefore, the erasure coding method may be applied to our design scheme to
eliminate utility loss. However, how to minimize such additional overheads further without
incurring any utility loss while guaranteeing Type-II backward privacy is a challenging
and open problem in the literature.

0 5 10 15 20

94

95

96

97

98

99

100

(a)

0 5 10 15 20

94

95

96

97

98

99

100

(b)
Figure 5. Retrieval rate of the ith most frequent keywords. (a) Synthetic dataset. (b) Enron email dataset.

7. Related Work

Since the first proposal in 2000 [26], a number of searchable symmetric encryption
(SSE) schemes have been proposed for formally defining the security model [3], improving
efficiency [1,27], and supporting expressive queries [28,29]. Recently, several works have been
introduced on how access pattern and search pattern leakages can be exploited by an adversary
to break the security of SSE [17,30]. Cash et al. [30] exploited the search pattern leakages to
recover the plaintext of the query or reconstruct the client’s indexed documents. Zhang et
al. [17] introduced a file injection attack on SSE schemes that exploits access patterns on file
identifiers to identify what specific file identifiers correspond to the maliciously injected file.

Another important research area in SSE is to support dynamic operations in SSE,
which enables a client to perform keyword searches as well as update operations on the
encrypted documents, known as dynamic symmetric searchable encryption (DSSE) [1,27].
Stefanov et al. [2] and Bost et al. [4,5] first introduced two fundamental security requirements
for DSSE, that is, forward and backward privacy. Recently, Sun et al. [14] introduced a non-
interactive forward and backward private DSSE method by constructing revocable encryption.
Even though it could reduce the information leakage by making the deletions oblivious to the
server, it allows additional information leakage such as the number of deleted documents and
candidate timestamps of deletion updates, which can be further exploited by an adversary
to violate the backward privacy via obtaining the deletion history. In addition, Vo et al. [11]
proposed a Type-II backward private scheme by leveraging Intel SGX enclave as a server-side
proxy and constructed a more efficient scheme than Amjad et al. Bunker-B [8]. Despite the
improvement of its efficiency, the Vo et al. [11] scheme allows more information leakages than
Bunker-B, which can be abused to violate its backward privacy. Therefore, accomplishing
high efficiency while minimizing exploitable information leakage is still a challenging and
open problem in DSSE literature.

8. Conclusions

In this paper, we first conduct a comprehensive analysis of Type-II backward privacy
in the aspects of both theoretic definition and practical constructions. We then demonstrate
how information leakage that is not covered by the current notions can be utilized to extract
the deletion history from Type-II backward private schemes under specific conditions and
violate their Type-II privacy in practice. Finally, we propose a novel forward and Type-II
backward private DSSE scheme based on Intel SGX, and formally prove the security. The



Appl. Sci. 2024, 14, 2287 21 of 22

proposed scheme outperforms the previous works in either search latency or security
level with negligible utility loss. To the best of our knowledge, this is the first work that
investigates the importance of secondary information leakages that are not captured in
traditional backward privacy notions and discusses their practical implications on the
backward privacy schemes.

Author Contributions: Conceptualization, H.Y., C.H., D.K. and J.H.; methodology, H.Y. and M.Y.;
validation, H.Y., C.H., D.K. and J.H.; formal analysis, H.Y., C.H., D.K. and J.H.; investigation, H.Y.
and M.Y.; writing—original draft preparation, H.Y. and C.H.; writing—review and editing, H.Y., C.H.,
D.K. and J.H.; supervision, C.H., D.K. and J.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported as part of the Military Crypto Research Center (UD210027XD)
funded by the Defense Acquisition Program Administration (DAPA) and the Agency for Defense
Development (ADD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in [MonashCybersecu-
rityLab /SGXSSE] at [https://github.com/MonashCybersecurityLab/SGXSSE], and in [Enron Email
Dataset at [https://www.cs.cmu.edu/~enron/], reference number [15].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kamara, S.; Papamanthou, C.; Roeder, T. Dynamic searchable symmetric encryption. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 965–976.
2. Stefanov, E.; Papamanthou, C.; Shi, E. Practical dynamic searchable encryption with small leakage. Cryptol. ePrint Arch. 2013.

https://eprint.iacr.org/2013/832, accessed on 5 March 2024.
3. Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R. Searchable symmetric encryption: Improved definitions and efficient

constructions. J. Comput. Secur. 2011, 19, 895–934. [CrossRef]
4. Bost, R. Forward secure searchable encryption. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1143–1154.
5. Bost, R.; Minaud, B.; Ohrimenko, O. Forward and backward private searchable encryption from constrained cryptographic

primitives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 1465–1482.

6. Stefanov, E.; Dijk, M.V.; Shi, E.; Chan, T.H.H.; Fletcher, C.; Ren, L.; Yu, X.; Devadas, S. Path ORAM: An extremely simple oblivious
RAM protocol. J. ACM (JACM) 2018, 65, 18. [CrossRef]

7. Costan, V.; Devadas, S. Intel SGX explained. Cryptol. ePrint Arch. 2016. Available online: https://eprint.iacr.org/2016/086
(accessed on 5 March 2024).

8. Amjad, G.; Kamara, S.; Moataz, T. Forward and backward private searchable encryption with SGX. In Proceedings of the 12th
European Workshop on Systems Security, Dresden, Germany, 25 March 2019; pp. 1–6.

9. Fuhry, B.; Bahmani, R.; Brasser, F.; Hahn, F.; Kerschbaum, F.; Sadeghi, A.R. HardIDX: Practical and secure index with SGX.
In Proceedings of the IFIP Annual Conference on Data and Applications Security and Privacy, Philadelphia, PA, USA,
19–21 July 2017; Springer: Cham, Switzerland, 2017; pp. 386–408.

10. Priebe, C.; Vaswani, K.; Costa, M. EnclaveDB: A secure database using SGX. In Proceedings of the 2018 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 264–278.

11. Vo, V.; Lai, S.; Yuan, X.; Sun, S.F.; Nepal, S.; Liu, J.K. Accelerating forward and backward private searchable encryption using
trusted execution. In Proceedings of the International Conference on Applied Cryptography and Network Security, Rome, Italy,
19–22 October 2020; Springer: Cham, Switzerland, 2020; pp. 83–103.

12. Vo, V.; Lai, S.; Yuan, X.; Nepal, S.; Liu, J.K. Towards efficient and strong backward private searchable encryption with secure
enclaves. In Proceedings of the International Conference on Applied Cryptography and Network Security, Kamakura, Japan,
21–24 June 2021; Springer: Cham, Switzerland, 2021; pp. 50–75.

13. Ghareh Chamani, J.; Papadopoulos, D.; Papamanthou, C.; Jalili, R. New constructions for forward and backward private
symmetric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1038–1055.

14. Sun, S.F.; Steinfeld, R.; Lai, S.; Yuan, X.; Sakzad, A.; Liu, J.K.; Nepal, S.; Gu, D. Practical Non-Interactive Searchable Encryption
with Forward and Backward Privacy. In Proceedings of the NDSS, Online, 21–25 February 2021.

15. Klimt, B.; Yang, Y. Introducing the Enron corpus. In Proceedings of the CEAS, Mountain View, CA, USA, 30–31 July 2004.

https://github.com/MonashCybersecurityLab/SGXSSE
https://www.cs.cmu.edu/~enron/
http://doi.org/10.3233/JCS-2011-0426
http://dx.doi.org/10.1145/3177872
https://eprint.iacr.org/2016/086


Appl. Sci. 2024, 14, 2287 22 of 22

16. Chang, Y.C.; Mitzenmacher, M. Privacy preserving keyword searches on remote encrypted data. In Proceedings of the
International Conference on Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005 ; Springer: Cham,
Switzerland, 2005; pp. 442–455.

17. Zhang, Y.; Katz, J.; Papamanthou, C. All Your Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption.
In Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016; pp. 707–720.

18. Mishra, P.; Poddar, R.; Chen, J.; Chiesa, A.; Popa, R.A. Oblix: An efficient oblivious search index. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 279–296.

19. Biondo, A.; Conti, M.; Davi, L.; Frassetto, T.; Sadeghi, A.R. The Guard’s Dilemma: Efficient {Code-Reuse} Attacks Against Intel {SGX}.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 14 May 2018; pp. 1213–1227.

20. Weichbrodt, N.; Kurmus, A.; Pietzuch, P.; Kapitza, R. AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves.
In Proceedings of the European Symposium on Research in Computer Security, Heraklion, Greece, 26–30 September 2016;
Springer: Cham, Switzerland, 2016; pp. 440–457.

21. Murdock, K.; Oswald, D.; Garcia, F.D.; Van Bulck, J.; Gruss, D.; Piessens, F. Plundervolt: Software-based fault injection
attacks against Intel SGX. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
18–21 May 2020; pp. 1466–1482.

22. Carofiglio, G.; Gallo, M.; Muscariello, L.; Perino, D. Modeling data transfer in content-centric networking. In Proceedings of the
2011 23rd International Teletraffic Congress (ITC), San Francisco, CA, USA, 6–9 September 2011; pp. 111–118.

23. Fenner, T.; Levene, M.; Loizou, G. A stochastic evolutionary model generating a mixture of exponential distributions. Eur. Phys. J.
B 2016, 89, 50. [CrossRef]

24. Chen, G.; Lai, T.H.; Reiter, M.K.; Zhang, Y. Differentially private access patterns for searchable symmetric encryption.
In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA,
16–19 April 2018; pp. 810–818.

25. Shang, Z.; Oya, S.; Peter, A.; Kerschbaum, F. Obfuscated Access and Search Patterns in Searchable Encryption. In Proceedings of
the NDSS, Online, 21–25 February 2021.

26. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the Proceeding 2000
IEEE Symposium on Security and Privacy: S&P 2000, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

27. Kamara, S.; Papamanthou, C. Parallel and dynamic searchable symmetric encryption. In Proceedings of the International
Conference on Financial Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 258–274.

28. Lai, J.; Zhou, X.; Deng, R.H.; Li, Y.; Chen, K. Expressive search on encrypted data. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; pp. 243–252.

29. Yang, Y.; Liu, X.; Deng, R. Expressive query over outsourced encrypted data. Inf. Sci. 2018, 442, 33–53. [CrossRef]
30. Cash, D.; Grubbs, P.; Perry, J.; Ristenpart, T. Leakage-abuse attacks against searchable encryption. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 668–679.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1140/epjb/e2016-60926-8
http://dx.doi.org/10.1016/j.ins.2018.02.017

	Introduction
	Preliminaries
	Intel SGX
	Definition of DSSE
	Forward and Backward Privacy of DSSE
	Forward Privacy
	Backward Privacy


	Leakage Abuse Attack
	Threat Model
	Trust Assumptions on Intel SGX

	Extraction of Deletion History
	Attacks on Prior Works
	Vo et al. Scheme
	Sun et al. Scheme
	Discussion

	Feasibility of Deletion History Extraction

	Our Construction
	System Overview
	Design Goal
	Scheme Construction

	Security Analysis
	Implementation and Evaluation
	Implementation Setup
	Performance
	Insertion and Deletion Time
	Search Time
	Storage Overhead
	Utility Loss


	Related Work
	Conclusions
	References

