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Abstract: The task of 3D reconstruction of urban targets holds pivotal importance for various
applications, including autonomous driving, digital twin technology, and urban planning and
development. The intricate nature of urban landscapes presents substantial challenges in attaining
3D reconstructions with high precision. In this paper, we propose a semantically aware multi-
view 3D reconstruction method for urban applications which incorporates semantic information
into the technical 3D reconstruction. Our research primarily focuses on two major components:
sparse reconstruction and dense reconstruction. For the sparse reconstruction process, we present a
semantic consistency-based error filtering approach for feature matching. To address the challenge
of errors introduced by the presence of numerous dynamic objects in an urban scene, which affects
the Structure-from-Motion (SfM) process, we propose a computation strategy based on dynamic–
static separation to effectively eliminate mismatches. For the dense reconstruction process, we
present a semantic-based Semi-Global Matching (sSGM) method. This method leverages semantic
consistency to assess depth continuity, thereby enhancing the cost function during depth estimation.
The improved sSGM method not only significantly enhances the accuracy of reconstructing the edges
of the targets but also yields a dense point cloud containing semantic information. Through validation
using architectural datasets, the proposed method was found to increase the reconstruction accuracy
by 32.79% compared to the original SGM, and by 63.06% compared to the PatchMatch method.
Therefore, the proposed reconstruction method holds significant potential in urban applications.

Keywords: three-dimensional reconstruction; semantic segmentation; SfM; SGM

1. Introduction

With advancements in fields such as autonomous driving [1], digital twins [2,3], cul-
tural heritage preservation [4], and humanities research and education [5], the importance
of 3D reconstruction has become increasingly paramount. There are numerous methods
for 3D reconstruction, including active reconstruction techniques like LiDAR, synthetic
aperture radar (SAR), Time-of-Flight (TOF), and structured light cameras, as well as passive
reconstruction methods based on vision cameras [6–10]. Compared to active reconstruction
methods such as LiDAR and TOF, visual 3D reconstruction offers several advantages in-
cluding ease of use, richness of information, and cost-effectiveness. Consequently, visual
3D reconstruction is a widely applied technique in various fields [11].

Traditional 3D reconstruction techniques yield various geometric models such as depth
maps, point clouds, voxels, and meshes [12]. However, as the complexity of applications
increases, purely geometric models are often insufficient to meet the advanced requirements
of various domains. Consequently, the acquisition of corresponding 3D semantic models
has become increasingly critical [13]. Such 3D semantic models are typically obtained
either by mapping semantically segmented 2D images onto 3D point clouds or by directly
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performing semantic segmentation on 3D point clouds [14–16]. A 3D semantic model
can label each point or surface in a scene with its corresponding object category, thereby
providing information of a higher dimensionality [17].

Croce proposed a semi-automatic semantic reconstruction method based on deep
learning for reconstructing ancient buildings [18]. Similarly, for cultural heritage preserva-
tion, Li and colleagues were the first to employ CityGML for semantic modeling of ancient
buildings in the Forbidden City [19]. Huang introduced a semantic-based method for 3D
change detection at construction sites, which correctly identifies changes with different
characteristics, including both geometric and semantic alterations [20]. In certain scenarios,
incorporating semantic information to enhance reconstruction accuracy is an important
research direction. Wang proposed a semantic-and-primitive-guided method for 3D re-
construction of indoor scenes by reconstructing indoor scenes from an incomplete and
noisy point cloud [21]. Christian and colleagues proposed a concept wherein semantic
segmentation and dense 3D reconstruction mutually reinforce each other. This approach
enables the inference of surfaces that are not directly observable [22]. Performing semantic
reconstruction concurrently with 3D reconstruction could leverage prior knowledge (such
as walls being smooth planes that are perpendicular to the ground) to enhance reconstruc-
tion accuracy [23]. The incorporation of semantic information can enhance the accuracy of
mesh reconstruction in individual models [24].

Urban 3D reconstruction faces numerous challenges. Firstly, urban environments
are not purely static; they contain a multitude of moving objects, such as cars, people,
and animals [25]. Whether in SfM or SLAM (Simultaneous Localization and Mapping),
these variable factors present in a scene can significantly impact the accuracy of a camera’s
extrinsic parameter estimation [1,26]. Secondly, urban scenes are exceedingly complex, as
they are characterized by various forms of obstruction from different objects [20]. Therefore,
achieving high-quality urban 3D semantic reconstruction remains a challenging task.

To address these issues, we propose a semantically aware multi-view 3D reconstruction
approach for urban scenes. Three-dimensional semantic reconstruction adds semantic
information to traditional 3D reconstruction results, thus providing richer information for
complex automated tasks. Our work includes the following key aspects: Firstly, we present
a semantic consistency-based error filtering approach for feature matching. Secondly,
during the sparse reconstruction process, we propose SfM with semantic-based static
and dynamic separation. Semantic information is used to distinguish static and dynamic
objects in a scene and to exclude semantically inconsistent feature matching and feature
points of dynamic targets, thereby improving the camera’s external parameter calculation
accuracy and sparse point cloud reconstruction accuracy. Thirdly, we propose an sSGM
algorithm that performs semantic optimization on its cost aggregation function, thus
enabling it to perceive the continuity of depth in a scene through semantic information,
improving the reconstruction accuracy of object edges in the scene. Finally, we validate our
method using architectural datasets and compare it with the original SGM and PatchMatch
methods, and the validation proves that our proposed method has significant potential in
3D reconstruction.

2. Materials and Methods

In the field of 3D semantic reconstruction, the ultimate goal is to achieve target point
clouds enriched with semantic information. There are primarily two methodologies to
acquire such 3D semantic data: one method involves semantic segmentation of point
clouds, and the other method entails mapping semantic segmentation from 2D images
onto 3D point clouds. In this study, we adopted the latter approach. Our main workflow
encompasses three key stages: the acquisition of semantics from 2D images, followed by
sparse and then dense reconstruction based on these semantics. Incorporating semantic
information during the reconstruction process not only enhances the precision of the
reconstruction but also yields dense point clouds with high-level semantic information.
Considering the unique aspects of urban targets, we developed a comprehensive 3D
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semantic reconstruction technique specifically designed for complex urban settings. The
detailed process of this technique is illustrated in Figure 1.
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Figure 1. The flowchart of semantic-based 3D reconstruction.

The main idea of our proposal is to semantically optimize the two steps of multi-
view 3D reconstruction, sparse reconstruction and dense reconstruction, as illustrated in
Figure 1. In the sparse reconstruction process, we propose semantic consistency-based
feature matching and dynamic object separation algorithms to achieve semantic-based
SfM. In the dense reconstruction process, we propose the sSGM reconstruction method to
implement semantic-based MVS. Combined together, the semantic SfM and the semantic
MVS constitute our proposed semantic-based 3D reconstruction pipeline.

In our implementation, the SfM module utilizes the OpenMVG platform [27], while
for semantic dense reconstruction, OpenMVS is employed [28].

2.1. Preparation of Complex Urban Semantic 3D Reconstruction Data

We selected a dataset collected at Tsinghua University, which includes scenes of several
buildings at Tsinghua University (Tsinghua University’s Old Gate, Tsinghua Xuetang, and
Tsinghua Life Sciences Building). This dataset not only contains multi-angle images but
also includes the true values of the buildings, which were obtained using a LMS-Z420i laser
scanner (Riegl, Horn, Austria) manufactured by Riegl in Horn, Austria. The accuracy of the
laser scanner within 10 m was 2 mm, with a scanning angle interval of 0.0057 degrees. These
images were captured under natural conditions; therefore, they include elements beyond
the architecture itself. Particularly, the images of Tsinghua University’s Old Gate, which is
located by the roadside, contain a large number of pedestrians, bicycles, and cars. Therefore,
this dataset can serve as a typical case example of a complex urban environment. The
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dataset was sourced from the National Laboratory of Pattern Recognition at the Institute of
Automation, Chinese Academy of Sciences [29].

2.2. Image Semantic Segmentation

We utilized the Cityscapes dataset as the training dataset for semantic training (Table 1).
Cityscapes is an open-source dataset featuring street scenes from 50 different cities, with
pixel-level and instance-level annotations. The dataset comprises 5000 finely annotated
images and 20,000 coarsely annotated images [30]. It categorizes urban scenes into 8 groups
and 30 categories. Owing to its detailed classification, accurate annotations, and ample
data volume, this dataset was the preferred choice for our semantic training. The urban
semantic recognition capabilities acquired through training with this dataset served as the
foundation for our semantic 3D reconstruction of complex urban scenes.

Table 1. Classification of the Cityscapes dataset.

Group Classes

flat road · sidewalk · parking+ · rail track+
human person · rider
vehicle car · truck · bus · on rails · motorcycle · bicycle · caravan+ · trailer+

construction building · wall · fence · guard rail+ · bridge+ · tunnel+
object pole · pole group+ · traffic sign · traffic light
nature vegetation · terrain

sky sky
void ground+ · dynamic+ · static+

The Cityscapes dataset comprises 30 categories, but the majority of training applica-
tions are aimed at providing perception capabilities for autonomous driving. Consequently,
in most semantic segmentation competitions, the categories are reclassified into 19 types,
with the categories marked with a “+” considered invalid. Among these 19 categories,
greater emphasis is placed on factors affecting driving. For instance, cars are divided into
as many as 8 different types, and roads are categorized into road and sidewalk. These
detailed classifications are critical for autonomous driving and road perception but are
overly specific for 3D reconstruction. The three categories “ground+·dynamic+·static+” in
the “void” group of the original dataset include all other targets that cannot be specifically
classified. In previous semantic segmentation competitions and most applications, these
three categories were often not considered. However, in the 3D reconstruction process,
these three categories are important parts that cannot be ignored. Therefore, we reclassified
the semantic segmentation categories. The specific classifications are shown in Table 2.

Table 2. Redefined semantic segmentation classes.

Old Classes New Classes

road · sidewalk · parking+ · rail track+ · ground+ flat
person · rider human

car · truck · bus · on rails · caravan+ · trailer+ vehicle
motorcycle · bicycle cycle

building · wall · fence · guard rail+ · bridge+ · tunnel+ construction
pole · pole group+ · traffic sign · traffic light object

vegetation · terrain nature
Sky sky

dynamic dynamic-other
static static-other

Based on the classification criteria of the groups outlined in Table 1, we added static
and dynamic categories which were renamed as dynamic-other and static-other. These
categories were used to accommodate other objects in urban scenes that do not fit into the
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previously defined eight categories. Additionally, we included surfaces outside of roads
into the flat category and made appropriate integrations to several other categories. These
adjustments, made without violating the original classification principles, enabled us to
easily determine whether objects within a category were moving or stationary, while also
fulfilling the category number requirements for 3D semantic reconstruction.

2.3. Static and Dynamic Separation-Based SfM

The method of SfM typically involves extracting feature points from images, solving
the external parameters between cameras through feature matching, and computing sparse
point clouds. This method poses no problem for fixed scenes, but in urban 3D reconstruc-
tion, the presence of numerous continuously moving objects, such as cars, people, animals,
and vegetation swaying in the wind, presents challenges. Feature points extracted from
these dynamic objects possess unstable characteristics which can introduce errors when
solving for the camera’s external parameters.

In earlier works, scholars utilized the frame difference and optical flow methods to
obtain information on moving objects in order to optimize the effects of 3D reconstruction.
However, the frame difference method is only applicable to cameras with fixed positions,
and the optical flow method is limited to sequential images and thus presents certain
limitations. With the development of deep learning, some scholars proposed the image
masking method [31]. Although image masking can eliminate dynamic targets in a scene,
it impacts the extraction of feature points. Therefore, we proposed an SfM based on the
separation of dynamic and static elements. Initially, we used high-level semantic informa-
tion to intelligently determine the attributes of image feature points to enhance the overall
accuracy of SfM by filtering out unstable feature points. Then, before proceeding with
the SfM calculations, we assessed the semantic consistency of the feature point matching
results, thus further improving the precision of feature point matching.

We performed semantic segmentation on the reconstructed multi-view images using
deep learning to obtain the corresponding semantic images as follows:

SemImgi = segmentation(RGBi) (1)

In this formula, i = 1, 2, . . . , N, with N being the total number of images used for
reconstruction. We calculated the SIFT feature points for each image and input the semantic
attributes of the features during the calculation process:

sFeati, Desci = SIFT(grayi) (2)

The obtained feature information is as follows:

sFeati,=
[

f 1
i , f 2

i , . . . , f k
i , . . . , f n

i

]
, Desci =

[
d1

i , d2
i , . . . , dk

i , . . . , dn
i

]
(3)

In the formula, f k
i is the information of the k-th feature point of image i, and dk

i is the
128-th dimensional descriptor of the k-th feature point of image i, where:

f k
i = [x, y, scale, orientation, semantic] (4)

The last item of f k
i is the semantic attribute of the feature point.

Figure 2 shows the principles of semantic SfM. The first is feature matching based on
semantic consistency. During the feature matching process, feature point pairs are evalu-
ated to determine whether they belong to the same semantic category, thereby reducing
mismatches. The second approach is to use semantic information to separate dynamic target
feature points and reduce the impact of unstable feature points in the scene on calculations.
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2.4. Semantic-Based SGM

The traditional SGM algorithm encompasses several steps: initialization, computation
of matching costs, cost aggregation, disparity calculation, and disparity fuse, as shown in
Figure 3. Among these, the computation of matching costs and cost aggregation are the
core components of the SGM algorithm [32].
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2.4.1. Computation of Matching Costs

Several methods exist for computing matching costs in SGM. The original study
employed a matching-cost computation based on Mutual Information (MI) [32]. Mutual
Information is a correlation measure that is insensitive to variations in image brightness
and contrast. However, due to its complex nature and the need for iterative computation,
it is inefficient. Therefore, in practical applications, a simpler method like the census
transform is often used, followed by calculation of the Hamming distance (the number of
corresponding bits that differ between two-bit strings).



Appl. Sci. 2024, 14, 2218 7 of 21

This study utilized weighted zero-mean normalized cross correlation (WZNCC) as
a consistency measure [33], which is derived from the ZNCC by applying a weighting
calculation to each pixel. The formula for the ZNCC calculation is as follows:

ZNCC
(

x, x′
)
=

∑i
(

I(x + i)− I(x)
)(

I′(x′ + i)− I′(x′)
)

√
∑i

(
I(x + i)− I(x)

)2
∑i

(
I′(x′ + i)− I′(x′)

)2
(5)

The WZNCC with the inclusion of weighting factors is defined as follows:

WZNCC
(

x, x′
)
=

∑i w(x + i)w′(x′ + i)
(

I(x + i)− I(x)
)(

I′(x′ + i)− I′(x′)
)

√
∑i w2(x + i)

(
I(x + i)− I(x)

)2
∑i w′2(x′ + i)

(
I′(x′ + i)− I′(x′)

)2

(6)
The weight w in this context is composed of three components: color, distance, and

orientation.
w(x + i) = wc(x + i)× ws(x + i)× wr(x + i) (7)

w′(x′ + i
)
= wc

(
x′ + i

)
× ws(x + i)× wr

(
x′ + i

)
(8)

Considering the weights in the left image, the three weight components include the
color weight component, which is defined as follows:

wc(x + i) = exp(−

√
∑j∈R,G,B

(
cj(x + i)− cj(x)

)2

max
i

√
∑j∈R,G,B

(
cj(x + i)− cj(x)

)2
) (9)

The distance component is defined as follows:

ws(x + i) = exp(−∥s(x + i)− S(x)∥
t/2

) (10)

The orientation component is defined as follows:

wr(x + i) = exp(− r(ψ(x + i), ψ(x))
σr

) (11)

2.4.2. Cost Aggregation

Cost aggregation employs a global stereo matching algorithm which involves finding
the optimal disparity for each pixel such that the overall energy is minimized. The energy
equation is as follows:

energy(X, P) = ∑
.
i

DataCost(i, xi) + ∑
j=neighbor(i)

SmoothCost
(
xi, xj

)
(12)

This is a two-dimensional optimization problem. To enhance optimization efficiency,
SGM (Semi-Global Matching) is used to convert the problem into an approximation of
two-dimensional optimality using one-dimensional path aggregation. This approach not
only improves efficiency but also ensures effectiveness. The SGM energy equation is as
follows:

E(D) = ∑
xb

C(xb, D(xb)) + ∑
xN

P1T[∥D(xb)− D(xN)∥ = 1] + ∑
xN

P2T[∥D(xb)− D(xN)∥ > 1] (13)

In Formula (13), C(xb, D(xb)) represents the matching cost based on WZNCC, and the second
and third terms are the smoothing terms. Since we expect the disparity of pixels to be continuous,
if the disparity of the current pixel differs slightly from its neighboring pixels (equal to 1 pixel), we
assign a smaller penalty P1. If it is greater than one pixel, a larger penalty P2 is assigned. Through
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the implementation of these two penalty terms, we aim to ensure that the global disparity is as
consecutive as possible. This approach is a common method in machine learning that is known as
regularization constraints.

Depth in real-world scenes is not completely consecutive and there are numerous abrupt
depth changes. As a result, there is a need for a certain level of tolerance toward situations where
the disparity exceeds one pixel. Therefore, P2 needs to be dynamically adjusted to account for
discontinuity in disparity. Consequently, the formula for the optimized P2 chosen in the openMVS is
as follows:

P2 = P′
2 × (1 + α × e(−(Ixb−IxN )2/(2×β2))) (14)

where Ixb and IxN represent the brightness values of adjacent pixels. In this equation, the value of P′
2

is 4, the value of α is 14, and the value of β is 38 [28,32]. The purpose of implementing this formula is
to determine whether two pixels are discontinuous parts based on the difference in brightness values.
If it is actually a foreground–background relationship, then we reduce the penalty intensity of P2 for
cases where the disparity exceeds one pixel. However, this method cannot completely determine
whether the disparity is continuous. Therefore, we incorporate a semantic term and calculate the
final value of P2 using a weighted computation as follows:

P2 = P′
2 × [0.8 × γ × (T[S(xb) = S(xN)]) + 0.2 × (1 + α × e(−(Ixb−IxN )2/(2×β2)))]. (15)

In the above equation, the value of γ is 48, and the other parameters are the same as in Equation
(10). The weights of the grayscale criterion and the semantic criterion are 0.8 and 0.2, which are
summarized through the experiments. Our purpose is to set an accurate P2 penalty term for the path
pointed by the red arrow in Figure 4 through semantics, and then to obtain the accurate disparity
of the pixel. Compared with using only the grayscale criterion to calculate the penalty term P2 and
judging the continuity of depth, using semantic weighted Formula (15) can calculate a more accurate
disparity.
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In the specific solution process, the idea of path cost aggregation in SGM is as follows: the
matching cost under all disparities for a pixel is aggregated over all possible paths around the pixel
in a one-dimensional manner to obtain the path cost value under each path. The calculation is as
follows:

Lri (xb, d) = C(xb, d) + min


Lr(xb − ri, d),

Lri (xb − ri, d − 1) + P1,
Lri (xb − ri, d + 1) + P1,

Lri (xb − ri, i) + P2

− mink(Lr(xb − ri, k)) (16)
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Then, by summing up the path cost values from all paths, the aggregated matching cost value
for that pixel is obtained. Thus, the final cost value (the sum of all paths) is calculated as follows:

S(xb, d) = ∑
ri

Lri (xb, d) (17)

3. Results and Discussion
We first reorganized the categories in the Cityscapes dataset and employed three sets of semantic

segmentation networks for training. We selected the network set with the highest segmentation
accuracy to validate accuracy based on the reconstructed dataset. Upon achieving sufficient accu-
racy for semantic reconstruction, we performed semantic optimization for both sparse and dense
reconstruction.

3.1. Semantic Segmentation for Complex Urban Scenes
We opted to utilize the MMSegmentation platform to train our semantic segmentation mod-

els [34]. This platform has benchmarked models and datasets that it supports, significantly easing
our model selection process. We analyzed the performance of all semantic segmentation networks
supported by the platform using the Cityscapes dataset. We identified the top three semantic seg-
mentation networks in terms of accuracy, including DeeplabV3+, Ocrnet, and Mask2Former. These
networks were then trained using our new classification scheme, after which we compared the
accuracy of the various networks.

In 2017, Chen conducted a study on atrous convolutions for image semantic segmentation
(DeepLab V3) and employed atrous convolutions to expand the receptive field [35]. This approach
facilitated target segmentation on various scales by concatenating atrous convolutions with different
dilation rates. In 2018, Chen proposed an architecture for image semantic segmentation by incor-
porating atrous separable convolutions within an encoder–decoder structure (DeepLab V3+) [35].
This model aimed to integrate the best aspects of spatial pyramid pooling and the encoder–decoder
framework, thereby creating a faster and more efficient overall model.

In the OCRNet (Object-Contextual Representations Network), a novel approach to constructing
contextual information for semantic segmentation tasks is proposed which focuses on new object
contextual information. By utilizing features corresponding to the object classes to describe pixels,
this method transforms the pixel classification challenge into an object region classification prob-
lem, thereby explicitly enhancing object information [36]. The High-Resolution Net (HRNet) is a
specialized Convolutional Neural Network designed to retain high-resolution inputs throughout the
network, thus enhancing the accuracy of pixel-level segmentation. Its primary goal is to improve
semantic segmentation in high-resolution images while effectively managing the balance among mul-
tiple classes. This design ensures detailed and precise segmentation, which is particularly important
in complex scenarios with diverse object categories [37].

Mask2Former is composed of a backbone feature extractor, a pixel decoder, and a transformer
decoder. The backbone feature extractor is typically a transformer model, such as Swin. The pixel
decoder is a deconvolution network that gradually restores the feature map resolution to the original
image size through deconvolution operations. Finally, the transformer decoder is used to manipulate
image features to process object queries [38,39]. The equipment information used is shown in Table 3.

Table 3. Experimental platform configuration.

Name Configuration

OS Ubuntu 20.04
GPU NVIDIA TITAN RTX (Santa Clara, CA, USA)
CPU Intel i9-10900k (Santa Clara, CA, USA)

CUDA Cuda 11.3 (NVIDIA, Santa Clara, CA, USA)
RAM 32 G

Deep Learning Framework Pytorch 1.12
Python 3.8

The specific configurations for several networks are described below. We set the network batch
size of OCR_hr48 to four and that of the other two networks to two. The number of training iterations
was set to 100 epochs. Considering that both our reconstructed data and the Cityscape dataset images
are not square, the image input for our segmentation network was set to 512 × 1024. During the
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training process, an SGD optimizer was used. Taking Mask2Former as an example, the semantic
segmentation results of 3D reconstructed data are shown Figure 5 below.
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Figure 5. Three-dimensional reconstruction data and semantic segmentation results: (a) Tsinghua
University’s Old Gate, and (b) semantic segmentation results using Mask2Former.

Pixel accuracy (PA) is a metric that quantifies the proportion of correctly classified pixels in an
image segmentation output relative to the total number of pixels. The formula is as follows:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(18)

where k denotes the number of target classes, and pij refers to the number of pixels of class i predicted
as class j. Another critical metric in the field of semantic segmentation is intersection over union
(IoU). The IoU metric is based on the calculation that involves taking the intersection and the union
of the predicted segmentation results and the actual segmentation results, followed by computing
the ratio of the intersection to the union:

IoU =
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(19)

A lower IoU value signifies a closer approximation of the predicted segmentation to the actual
segmentation, thus indicating higher accuracy and effectiveness of the model.

To validate the segmentation accuracy of the training results based on the Cityscape dataset and
the reconstructed dataset, we annotated 10% of the reconstructed dataset and created a validation
dataset for verification. We compared the semantic segmentation accuracy of the three best semantic
segmentation networks using the reconstructed dataset. The results are shown in Figure 6.
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Figure 6 shows the validation accuracy when the networks were trained internally on the
Cityscape dataset and the validation accuracy when trained on the reconstructed dataset. Since
the dynamic-other and static-other classes inherently occupy a small proportion of the scenes, and
static targets do not significantly affect our reconstruction, the segmentation accuracy is overall
acceptable. In this comparison, we examined the Mask2Former, OCRNet, and DeepLabV3+ networks,
which are three types of semantic segmentation networks. Among them, Mask2Former achieved the
best accuracy performance, and thus, we used the training results of Mask2Former to segment the
reconstructed images. The specific validation accuracy of Mask2Former on the reconstructed dataset
is shown in Table 4.

Table 4. Semantic segmentation accuracy of the Mask2Former network when validated on the 3D
reconstructed dataset.

Class IoU Acc

flat 78.13 82.55
construction 91.05 97.79

pole 25.29 54.55
vegetation 88.96 92.62

sky 97.41 98.39
human 90.97 96.61
vehicle 55.73 90.34
bicycle 72.12 84.01

static-other 42.29 51.56
dynamic-other 30.68 62.11

As can be seen from Table 4, the segmentation accuracy for buildings and people, which are
our primary concerns, reached over 95%, and the accuracy for cars and bicycles also exceeded 85%.
These segmentation results met the requirements for our subsequent semantic reconstruction.

3.2. SfM Based on Dynamic and Static Separation
The traditional Structure-from-Motion (SfM) 3D reconstruction process encompasses several

components: feature extraction, feature matching, incremental or global reconstruction, and bun-
dle adjustment. The entire process inputs multi-angle images of a target and outputs the target’s
sparse point cloud along with the external parameters of the cameras, including their positions and
orientations. The external parameters between cameras, which are crucial for subsequent dense
reconstruction, significantly influence the final accuracy of the reconstruction. In our approach, along-
side the input of multi-view images, we also input the semantic segmentation results corresponding
to each image. By utilizing semantic information, we assessed objects within the reconstructed
environment while eliminating the dynamic parts of the scene. These dynamic elements correspond
to unstable landmark points in the final sparse point cloud.

For SfM based on semantic motion separation, we implemented it through secondary develop-
ment using the open-source 3D reconstruction library OpenMVG. As the dataset’s image acquisition
followed a chronological sequence, we adopted an incremental reconstruction strategy. Utilizing
a pre-trained urban semantic segmentation model, we performed semantic segmentation on the
reconstructed dataset. By inputting the semantic attributes of feature points during feature extraction,
we integrated semantic information into the 3D reconstruction pipeline. We rewrote all relevant
functions in OpenMVG, including feature point data formats, feature matching, and SfM, to enable
the library to support semantic SfM.

Firstly, we added a control switch in the CmakeLists.txt of the OpenMVG library, which
allowed us to choose whether the compiled executable supports semantics. Secondly, we rewrote
the relevant code of “Regions”. The “Regions” data structure is a generic container used to store
image descriptions. Regions contain features and descriptors. We rewrote everything related to
features, including feature point extraction, saving, and reading. After the feature extraction process
had been improved, semantic information was added while obtaining the four attributes x, y, scale,
and orientation of the feature points. Then, during the feature matching process, we filtered out
mismatches based on semantic consistency. Finally, in the calculation process of SfM, we added the
operation of dynamic and static separation.

In our semantic classification, we categorized objects based on common urban elements, pri-
marily distinguishing between dynamic and static objects. In urban environments, common moving
objects include cars, pedestrians, and bicycles, among others. These objects move at different speeds
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and can have varying impacts. Due to the inability to synchronize multi-view image acquisition,
dynamic objects may exhibit real-space displacements in adjacent multi-view images. These dynamic
object feature points introduce errors during feature matching, SfM reconstruction, and bundle
adjustment processes. By incorporating semantics, we can filter stable feature points for computation,
which aids in enhancing the accuracy of external parameters from the camera calculations. We
validated our method by using both the original and semantically optimized approaches on the
Tsinghua University architectural dataset. The resulting sparse point cloud reconstruction is shown
in Figure 7.
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Figure 7. Sparse point cloud reconstruction results: (a) the sparse point cloud of the Old Gate
reconstructed using the original SfM; (b) the sparse point cloud of the Tsinghua Life Sciences Building
reconstructed using the original SfM; (c) the sparse point cloud of the Old Gate reconstructed using
semantic SfM based on static and dynamic separation; and (d) the sparse point cloud of the Life
Sciences Building reconstructed using semantic SfM based on static and dynamic separation.

We compared the accuracy of the reconstructed sparse point clouds with the ground truth (mesh
model) by calculating the distance from the point clouds to the mesh, which allowed us to assess the
accuracy of the Structure-from-Motion (SfM) reconstruction. With the semantically enhanced SfM,
we could directly output point clouds of architectural targets based on semantic information, but
the point clouds output by the original openMVG required the target architecture to be manually
cropped. We used the CloudCompare 2.12.0 software for progress comparison. The results are shown
in Figure 8.

Due to the limited quantity of point clouds for the Tsinghua University’s Old Gate, we magnified
the display of the gate’s sparse point clouds. We used different colors to represent the magnitude
of the points’ errors. As shown in the figure, in the color transitions from blue to green to red, blue
indicates smaller errors and red indicates larger errors. The assignment of colors was based on relative
error values. Due to the large structure of the Tsinghua Life Sciences Building, the overall relative
error is small, resulting in most points being displayed in blue. For a fair comparison, we calculated
the alignment accuracy of each point cloud with the true model. We compared the reconstruction
precision under the condition of ensuring the same possible alignment accuracy. The results of the
accuracy evaluation are shown in Table 5.
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Table 5. Sparse reconstruction accuracy comparison.

Old Gate Life Sciences Building

SfM Sem-SfM SfM Sem-SfM

Alignment accuracy (RMS) 0.088 0.15 0.12 0.11

Max. distance 3.188 1.739 377.846 463

Average distance 0.163856 0.09 0.4365 0.1995

Sigma 0.300248 0.12 3.3472 3.146

Max. error 0.0494042 0.048 1.611 2.07

As shown in Table 5, the semantic-based SfM demonstrates higher precision, even under
conditions of equal or slightly lower alignment accuracy. This increase in precision is particularly
evident in more complex scenes. Given that the gate is located by the roadside, where there is a higher
volume of pedestrians and vehicular traffic, the scene contains more dynamic objects. Therefore,
the enhancement in Sigma is more pronounced after incorporating semantic optimization in this
scenario.

To further examine the significance of our static–dynamic separation process, we analyzed
the proportions of various objects in the final sparse point cloud. This helped us determine the
extent to which dynamic feature points, without semantic integration, contributed to the final point
cloud computation. After feature extraction, we applied a matching filter based on the fundamental
matrix. We then performed semantic filtering on the matched feature point pairs, which included
inconsistencies in semantic attributes of the left and right feature points or those belonging to dynamic
objects. The results are presented in Table 6.

Table 6. Semantic statistical analysis of feature points.

Category Old Gate Life Sciences Building

Sky 3610 1909
Human 254 863
Vehicle 308 30
Cycle 151 4442

Dynamic-other 595 3501
Sum feature point 284,252 2,324,635

Instability point in landmark 6.59% 6.91%

We conducted a statistical analysis of the feature matches between all pairs of images, wherein
the most significant source of error was found to be the sky, followed by the impact caused by people
and vehicles. The influence of rapidly moving people and vehicles is not significant; rather, points
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that remain stationary for short periods or move slowly within the scene are more likely to cause
errors. We compared the number of landmarks generated by the semantic SfM and the original
method. Among these, landmarks belonging to dynamic objects and those with inconsistent semantic
attributes accounted for approximately 6.5% of the total.

To intuitively demonstrate the positive value of adding semantic information into the feature
matching process, we selected two images from the Tsinghua University‘s Old Gate dataset for
detailed analysis and demonstration. The results are shown in Figure 9.
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(b) feature point matching pairs of dynamic targets in the scene; and (c) feature point matching results
after semantic optimization.

Figure 9a shows the error of semantic inconsistency in feature point matching. These points may
be matched together due to similar grayscale features, but they are actually mismatches. The result
after semantic segmentation is no longer displayed in pixels but is divided into area blocks based on
the essential attributes in the scene. This kind of high-dimensional information that goes beyond two
dimensions is no longer affected by the gray value of a single pixel, so it is easy to find semantically
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inconsistent matching errors. Figure 9b shows the impact of dynamic targets on feature matching. It
can be seen that slow-moving objects in the scene or people who are stationary for a short period of
time are more likely to form false matches. These people or objects are not completely static, and this
mismatch has a negative impact on the SfM. Since our data were not collected synchronously, this
mismatch would be more likely to be encountered in adjacent frames. Figure 9c shows the matching
results after eliminating the first two error-introduction items. It can be seen that although there are
some individual mismatches, all feature point pairs matched, as a whole, are basically correct.

3.3. Semantic-Based SGM
The dense reconstruction of point clouds can be approached using various methods, such

as PatchMatch and SGM. We opted for the SGM method for semantic optimization. The specific
computation process of SGM includes the following steps:

1. Initialization: select the best neighborhood frames for each image based on three criteria—the
angle of co-visibility points between two images, the area covered, and the scale similarity.

2. Depth map initialization: initialize a coarse depth map for each image using the Delaunay
triangulation method based on sparse point clouds.

3. Perform epipolar rectification on the image pairs and calculate the matching cost per pixel by
row using the WZNCC consistency measure.

4. Aggregate the one-dimensional path costs from various directions to approximate the calcula-
tion of the optimal two-dimensional disparity.

5. After cost aggregation, find the disparity value with the minimum cost for each pixel.
6. Fuse the three depth maps generated from the three sets of image pairs involved in the calcula-

tion for each image.
7. Perform a semantically based fusion on the corresponding dense point clouds calculated for

all mages.

We performed dense reconstruction of Tsinghua University’s Old Gate and Life Sciences Build-
ing following the steps outlined above, and we compared the results of the original method with
those reconstructed using the semantic SGM method. After obtaining the disparity maps of pairwise
images reconstructed by means of semantic SGM, in step f, we selected three sets of depth maps
reconstructed from adjacent images for each image to be fused. During this process, we fused
the images based on the semantic consistency across different images. The result is shown in the
Figure 10.
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Figure 10. Dense point cloud reconstruction results: (a) the dense point cloud of the Tsinghua Life
Sciences Building reconstructed using the original SGM; and (b) the dense point cloud of the Life
Sciences Building reconstructed using sSGM based on semantics. Yellow points represent buildings,
green points represent vegetation, gray points represent static-other, dark blue points represent
bicycles, and light blue points represent sky.

In step g, it is not sufficient to simply combine the dense point clouds reconstructed from all
images, as points from different images may correspond to the same point in real three-dimensional
space. Thus, it is necessary to evaluate points that are redundantly present. During the fusion process,
there are instances where the same point possesses different semantic attributes in different images.
We performed a weighted statistical analysis of the semantics of such a point across various depth
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maps, and we assigned the attribute with the highest weight to the final, fused dense point cloud of
the scene. The resulting target dense point cloud is shown in Figure 7.

The dense point cloud after semantic reconstruction not only possesses coordinates in the XYZ
space but also carries semantic properties. We assigned colors based on these semantic attributes:
vegetation is colored green, people are magenta, vehicles are blue, buildings are yellow, the sky is
blue, and static clutter in the scene is gray. It is evident that the results obtained from our semantic
SGM reconstruction exhibit less noise around the edges of objects, such as the edges of building
rooftops. Moreover, dense reconstruction based on semantics yields dense point clouds containing
semantic information, which is extremely important for scene perception.

After fusing a dense point cloud from all views, one can choose whether to optimize the dense
point cloud using one of three options: REMOVE_SPECKLES, FILL_GAP, and ADJUST_FILTER.
To assess the effectiveness of our semantic optimization, we conducted a comparison of the results
before and after optimization. The comparison results for the reconstruction of the Tsinghua Life
Sciences Building are shown in Figure 11.
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Figure 11. Comparison of results of dense reconstruction of Tsinghua Life Sciences Building: (a) re-
construction results using the original SGM method and without post-processing; (b) reconstruction
results using the semantic-based sSGM method and without post-processing; (c) reconstruction
results using the original SGM method and with filtering; and (d) reconstruction results using the
semantic-based sSGM method and with filtering.

The above figure shows the reconstruction results for the Tsinghua Life Sciences Building. The
first row of images presents the results obtained without filtering, while the second row displays
the outcomes after filtering. The left side depicts the results obtained using the original method,
and the right side shows the results after semantic optimization. It is evident that using the original
SGM reconstruction method introduces a substantial amount of noise, particularly in areas of depth
discontinuity, such as the edges of the building. Even after filtering the dense point cloud, the noise
level remains significantly higher compared to that obtained using the sSGM method. In the collected
multi-view images, the building is adjacent to the sky. During computation, it becomes challenging
to accurately identify the positions of disparity discontinuities when using the original SGM method,
especially when calculating the one-dimensional path costs transitioning from the building to the sky.
This is due to the lack of distinct features in the sky region. Hence, the subsequent cost aggregation
process is prone to computing some incorrect disparities.

Next, we conducted a quantitative statistical analysis to evaluate the reconstruction accuracy.
Ultimately, the dense point cloud obtained from the reconstruction was aligned with the true-value
grid using the Iterative Closest Point (ICP) algorithm, and the distance between the point cloud and
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the grid was calculated. The calculation process was consistent with that used for sparse point clouds,
and the results are presented in Table 7.

Table 7. Dense reconstruction accuracy comparison.

Old Gate Life Sciences Building Xuetang

SGM sSGM SGM sSGM SGM sSGM

Alignment accuracy (RMS) 0.11 0.12 0.098 0.098 0.078 0.11

Max. distance 28.5 6.66 10.004 9.92 3.8 2.48

Average distance 0.085 0.084 0.077 0.024 0.021 0.016

Sigma 0.435 0.12 0.646 0.173 0.11 0.08

Max. error 0.18 0.048 0.228 0.22 0.15 0.144

We aligned the reconstructed dense cloud point with the ground-truth grid and compared
the reconstruction accuracy while ensuring the same alignment accuracy. As shown in Table 7, we
compared three sets of reconstructed data, and the results all show that the dense point clouds
obtained using sSGM have a higher accuracy, which is mainly manifested as a smaller max. distance,
a smaller average distance, and a lower Sigma value. There are two reasons for the smaller maximum
distance. One is that sSGM has semantic perception capabilities and can judge depth continuity
based on semantic consistency, which greatly improves the reconstruction accuracy of the edge areas
of objects. The second reason is that we can perform directional output according to the semantic
attributes contained in the reconstructed dense point clouds, thereby excluding some outliers and
errors. A lower Sigma value indicates that the sSGM method can improve the overall accuracy. We
also compared this method with the current mainstream PatchMatch method, and the results are
shown in Figure 12.
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green and then to red signifies a gradation of error from minimal to maximal.
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Figure 12 shows the reconstruction results of Tsinghua Xuetang as an example. We compared
the sSGM method to the original SGM and PatchMatch methods. It is evident that in the point clouds
obtained using the SGM and PatchMatch methods, the trees and building sides on both sides of the
door are mixed together. However, the point cloud reconstructed by using the sSGM method can
well separate the trees and building sides. Moreover, for the eaves of the building, the reconstruction
error of the sSGM method is also smaller. We calculated the statistics related to the reconstruction
accuracy of the three methods for the three datasets by performing an error analysis of the three
models and averaging the results. The results are shown in Table 8.

Table 8. Comparison of dense reconstruction accuracy of different methods.

SGM sSGM PatchMatch

Max. distance 14.101 6.353 16.843

Average distance 0.061 0.041 0.111

Sigma 0.397 0.124 0.629

Max. error 0.186 0.137 0.205

As can be seen from Table 8, after adding semantics to the SGM method, the reconstruction
accuracy is greatly improved, and the reconstruction results are better than the reconstruction results
of the mainstream method PatchMatch. The max. distance may be affected by gross errors, so we
compared the average distance. The accuracy of sSGM is 32.79% higher than the original SGM
method, and 63.06% higher than the PatchMatch method. This is mainly reflected in the smaller
distance error from the ground-truth mesh. The error caused by outliers is smaller. Our experimental
results are therefore consistent with our theoretical design. After obtaining the dense point clouds,
we performed a mesh reconstruction operation.

Figure 13 shows the results of mesh reconstruction from dense point clouds generated by three
methods. We can find that compared to the original SGM method and the PatchMatch method, the
point clouds obtained by the sSGM method have better results in the mesh reconstruction process.
Buildings can be completely and independently reconstructed using the sSGM method. The original
SGM method is insensitive to the location of depth mutations and inaccurately reconstructs a part of
the sky at the edge of the building. The sSGM method that we proposed can well judge the depth
continuity of adjacent pixels through the semantically optimized penalty term, so it can obtain high
reconstruction accuracy at the edge of the building.

During the mesh reconstruction process, the point clouds obtained by sSGM can avoid simply
connecting all points. Both the SGM method and the PatchMatch method inevitably reconstruct the
building and other objects (such as bicycles, bushes, etc.) into a mesh as a whole. Thanks to the
semantic information that we incorporated into the reconstruction process, the dense point clouds
obtained by the sSGM method can improve the accuracy of subsequent mesh reconstruction.
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4. Conclusions
In this study, we addressed the limitations present in the traditional multi-view 3D reconstruc-

tion process by proposing a semantic-based optimization method. Our approach was experimentally
validated using a dataset comprising complex urban scenarios, which demonstrated the superiority
of our semantic optimization. Initially, we selected a dataset comprising urban architectural objects.
To acquire a semantic segmentation model for the city, we trained the model using the open-source
Cityscapes dataset. As the original dataset’s focus differs from our areas of interest, we adjusted its
categories by reducing the original 19 categories to 10. Our aim was twofold: firstly, we identified
and separated dynamic targets in an urban environment that could significantly affect reconstruction
accuracy, and secondly, we distinguished architecturally significant buildings needing detailed recon-
struction from other elements in the setting. To ensure the precision of semantic segmentation, we
compared three state-of-the-art (sota) methods, including DeepLab V3+, OCRNet, and Mask2former,
for training and conducting validations using both the Cityscapes dataset and the reconstructed
dataset. Ultimately, we chose the Mask2former network, which exhibits the highest accuracy. It
achieved a pixel accuracy of 88% in the validation test using the Cityscapes dataset and 85% in
the validation test using the reconstructed dataset, thus meeting the requirements for subsequent
semantic reconstruction tasks. Following the acquisition of semantic maps corresponding to the
images, we optimized the SfM process by segregating static and dynamic elements, while excluding
dynamic targets (such as people and vehicles) and semantically inconsistent feature matches. This
semantic optimization process generally enhanced the SfM’s accuracy. In the reconstruction results
of the two scenarios, the overall accuracy improved by 49%. After obtaining more stable camera
external parameters, we applied semantic optimization to the dense point cloud reconstruction. We
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semantically enhanced the classic SGM algorithm for dense reconstruction by semantically weighting
a penalty term during cost computation. This improvement allowed for a better identification of
depth discontinuities within the scenes. The sSGM method significantly improves the reconstruc-
tion accuracy of object boundaries. Through comparison with the ground-truth data from LiDAR
scanning, it is evident that our semantically optimized sSGM reconstruction achieves an overall
increase of 32.79% in accuracy compared to the original SGM reconstruction. Compared to the other
mainstream algorithm PatchMatch, our method’s accuracy is 63.06% higher.

The performance of the method proposed in this paper depends on the number of categories
included in semantic segmentation. A finer semantic segmentation enables a higher accuracy in
reconstruction. Another factor that restricts the performance of our method is the influence of
different individuals of the same category after semantic segmentation. In future work, we will
attempt to classify more detailed semantic segmentation or instance segmentation.
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