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Abstract: As important load-bearing structures, suspension cables have been widely used in suspen-
sion bridges, engineering ropeways, cable suspension systems and other special equipment. Their
dynamic problems have always been a research hotspot. Especially for complex cable systems such as
engineering ropeways and cable lifting equipment, there will be moving loads acting on multi-span
continuous friction-slip cable structures, resulting in nonlinear coupled vibration. Therefore, few
scholars have studied how to calculate the nonlinear coupling vibration effect between such moving
loads and multi-span continuous cables considering friction slip. Therefore, this paper proposes the
use of the combination of the direct stiffness method and the Newmark-β integration method to
solve the nonlinear system of equations of motion, which can be derived from the coupled vibration
response between the moving load and the main cable. The corresponding calculation program is
prepared. Combined with the dynamic load test and simulation results of engineering cases, the
correctness and reasonableness of the coupled vibration equations and the program can be verified
through comparative analysis. The results show that the calculation results of the self-programmed
program are in good agreement with the dynamic load test results, in which the maximum error
of the vertical displacement in the span is −4.40% and 0.86%, and the error of the static calculation
reaches −13.90%. The impact effect is more obvious when hoisting the weight out of the pulling
cable, in which the impact coefficient of the main cable can be up to 2.0. The impact coefficient of
the deviation of the cable tower is 4.0. During the traveling process of the moving load, the vertical
downward deflection of the main cable at the action point is the largest, and the upward deflection is
in the region of 0.2~0.8L from the action point.

Keywords: frictional slip; nonlinear coupled vibration; Newmark-β; dynamic load test; moving load

1. Introduction

Suspension cables are widely used in suspension bridges, cable–stayed bridges, en-
gineering ropeways, cable hoisting systems and other structures because of their strong
tensile properties, large spans and ease of construction and fabrication. Suspension cables,
as flexible materials, with long and elastic cables and low damping, have obvious nonlinear
effects under the excitation of external loads. Especially for complex cable systems such
as engineering ropeways and cable lifting equipment, there will be moving loads acting
on multi-span continuous friction–slip cable structures, resulting in nonlinear coupled
vibration. Therefore, few scholars have studied how to calculate the nonlinear coupling
vibration effect between such moving loads and multi–span continuous cables considering
friction slip. This paper takes a cable hoisting system, which is a special piece of equipment
for bridges, as the background for carrying out research.

The cable hoisting system mainly consists of cable towers, anchorages, main cables,
hoisting cables, pulling cables, fixed saddles, traveling cranes (Figure 1), spreaders, hoisting
and traction winches, automation control systems and other major systems [1,2] (Figure 2).
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Figure 1. Traveling crane. 

 
Figure 2. Cable hoisting system. 

When the crane is traveling with a load, the main cable under its action will be forced 
to vibrate, resulting in a load greater than the static load under the action of deformation 
and internal force; this phenomenon is the “coupling vibration” effect. Since the main ca-
ble is pulley-supported at the top of the cable tower (as shown in Figure 3), the main cable 
will produce relative sliding at the saddle when the crane is traveling. However, the fric-
tion between the main cable and the saddle will lead to longitudinal deflection of the cable 
tower. So, the forced vibration of the main cable will be different from the single cable 
vibration. 
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Figure 2. Cable hoisting system.

When the crane is traveling with a load, the main cable under its action will be forced
to vibrate, resulting in a load greater than the static load under the action of deformation
and internal force; this phenomenon is the “coupling vibration” effect. Since the main cable
is pulley-supported at the top of the cable tower (as shown in Figure 3), the main cable will
produce relative sliding at the saddle when the crane is traveling. However, the friction
between the main cable and the saddle will lead to longitudinal deflection of the cable
tower. So, the forced vibration of the main cable will be different from the single cable
vibration.
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Flexible suspension cables are susceptible to complex coupled vibrations under mov-
ing load excitation. The coupled vibration response between the main cable and the moving
load can be analyzed with reference to the theory of coupled vibration of a vehicle and
bridge, but they are different. The differences are as follows: First, the bridge structure
is rigid, with strong bending performance, while the cable structure is a flexible material
with strong geometric nonlinearity. Second, the boundary conditions are different. When
analyzing the coupled vibration of a vehicle and bridge, the bridge structure is generally
constrained to the longitudinal displacement. For the coupled vibration of a moving load
and cable, the two ends are in a relative slip. Therefore, in order to investigate the response
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mechanism of coupled vibration, two major difficulties need to be solved. One is the
problem of geometric nonlinearity and relative slip of the cable structure, and the other is
the dynamic characteristics of the cable structure.

In order to model the sliding friction action of cable structures, many scholars have
also proposed their own theories and insights. Chung et al. developed a three-dimensional
cable element considering frictional slip based on the theory of catenaries, which provided
research ideas for subsequent scholars, but only for two-node catenary cable elements,
which are not adapted to multi-node continuous cable structures [3]. Kan et al. proposed a
new multi-node sliding catenary cable element to solve the slipping problem that exists in
the main cables of the cable hoisting system. But the element does not take into account the
friction effect of the cables [4]. Nizar et al. proposed an accurate finite element method for
continuous cable structures based on the suspension line theory and the Euler–Eytelwein
equation with consideration of sliding friction, but they did not consider temperature
effects [5,6]. Yang et al. proposed a finite element formulation for cable structures that takes
into account the effects of temperature and sliding friction. The equation overcomes the
limitations of existing methods that ignore or approximate friction, pulley size, temperature
and geometric nonlinearities [7].

For the dynamic response of suspension cables under external load excitation, scholars
have carried out a large number of experimental and theoretical studies. Irvine and
Caughey put forward the linear theory of free vibration by conducting free vibration
experiments on a single–curved suspension structure [8,9]. However, the suspension
cables themselves have strong geometric nonlinearities, and the nonlinearities have a large
influence on the vibration of the cables. So, the geometric nonlinearities of the suspension
cables cannot be ignored in the research process. Luongo et al. started to extend the linear
vibration study of the suspension cables to the geometric nonlinearities by utilizing the
Galyokin method [10]. Subsequently, researchers used a variety of methods to study the
free vibration, nonlinear periodic and semi-periodic vibration characteristics of suspension
cables [11–14]. In this aspect of research, the first use of a multi–degree–of–freedom
discrete model with a linear modal deviation function was Green’s program applied to
partial differential control equations and the use of multiple scaling methods to obtain the
expected vibration response.

The above solution of nonlinear vibration equations for suspension structures is only
applicable in the case of weak nonlinearity. In order to analyze the strong nonlinear
vibration effects of suspension cable structures, researchers used vibration differential
equations and finite elements combined with the direct integration method. Wu and Chen
analyzed the vibration response of suspension cables due to dynamic loads by using the
Newmark direct integration combined with the Newton–Raphson iteration method [15].
Larsen and Nielsen discretized the cable structure into a two–degree–of–freedom system
and analyzed the vibration response of the structure under nonlinear excitation by the MCS
method [16]. But this method is prone to convergence difficulties. In addition, the virtual
force method [17,18] and the incremental superposition technique [19,20] have also been
applied to the nonlinear vibration response analysis of suspension cables. Brennan and
Kovacic obtained the vibration differential equations of a cable structure in the undamped
case and solved the intrinsic frequency and characteristic equations of the cable structure
by using transcendental equations [21]. Luo et al. analyzed the effect of nonlinear coupled
vibration using a multiscale model order reduction strategy, which solved the problem of
error and convergence difficulty brought by the finite method [22]. However, these studies
all analyzed single cable structures for multi-span continuous complex cable systems. Han
F et al. proposed using the dynamic stiffness method to calculate the vibration equations of
a cable structure in the damped case and established the relationship between the damped
frequency and the undamped frequency [23–26]. However, this method cannot calculate
the slip state of a complex cable system at the support.

In summary, for a multi-span continuous complex cable system, to calculate the
nonlinear coupled vibration response of the suspension structure under the consideration
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of the friction–slip state, it is still necessary to discretize the cable structure by using the
finite element method and then solve it by using the method of direct integration over
the time step. This paper simulates the slip of the main cable at the top of a cable tower
by drawing on the three-node slip cable element. The two–node catenary cable element
simulates the nonlinearity of the main cable, coupled to form a subsystem model of the
main cable structure, and is combined with the direct stiffness method to establish a system
model of the moving load. By analyzing the force relationship between the moving load
and the main cable, the coupled vibration dynamics of the moving load and the cable
are deduced to control equations. Based on the Newmark−β direct integration method
combined with the dynamic stiffness method, the nonlinear system of equations of motion
is solved. The coupled vibration response between the moving load and the main cable can
be obtained when the crane is traveling with a load. The corresponding calculation program
is compiled. Combined with the dynamic load test and simulation results of engineering
cases, the correctness and feasibility of the vibration equations and the program can be
verified by comparing and analyzing the finite element calculation results, the dynamic
load test values and the program calculation results.

2. Nonlinear Coupled Vibration Model
2.1. Moving Load Model

The main cable of the cable hoisting system can slide at the cable saddle at the top of
the cable tower, and the crane only operates with a load in the mid–span. So, this paper only
considers the coupling vibration between the crane and the main cable in the mid–span,
in order to establish the dynamic control equations of the crane–cable coupling vibration.
The computational model of the main cable under the action of the crane traveling with
a load is shown in Figure 4. In the figure, points A and D are fixed, and the main cable
can produce x–direction sliding at points B and C. The main cable can also slide in the
x–direction. In order to further establish a model close to the actual cables, the hoisting
cables between the crane and the hoisting section are considered as springs and damping
devices, so as to establish the model as shown in the figure below. The moving load on the
main cables consists of the two traveling crane masses m1 and m2 and the hoisting section
m3. The mass moment of inertia I3 is due to the fact that m3 is connected between two axes
at a certain distance, which generates the mass moment of inertia I3. The two cranes are
connected to the hoisting arch section by the damper c1, spring k1, damper c2 and spring
k2. The distance between the two traveling cranes is a. It is assumed that the cranes do not
separate from the main cables during the moving process. Let the modulus of elasticity
of the main cable be E, the area be A, the damping coefficient be C and the mass per unit

length of the cable be
¯

m.
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2.2. Main Cable Subsystem Model 
With the direct stiffness method, the main cable subsystem model of the cable hoist-

ing system is established. According to what was assumed earlier, when the crane passes 
through the main cable with speed V, the main cable is subjected to the force of gravity Fg 
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Figure 4. Calculation model of the main cable under the action of crane with a load movement.

Since the speed of the crane is very small when it is traveling with a load, it is assumed
that the crane travels at a constant speed with a speed V and moves a distance x = Vt,
and the main cable produces only a vertical dynamic deflection of ub without bending
deformation. The vertical dynamic displacement of the hoisting arch section m3 is h3,
the rotational displacement θ, and the vertical dynamic displacements of the two cranes
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are h1 and h2. Then, the force acting on the undersprung mass m3 has the inertial force
P2 = (m3 + I3)

..
uv. The forces of m1 and m2 include inertial forces P1 = (m1 + m2)

..
uv,

elastic forces generated by hoisting cables PS = (k1 + k2)(uv − ub)|x=Vt, damping forces
generated by hoisting cables PD = (c1 + c2)

( .
uv −

.
ub

)∣∣
x=Vt. The equation of motion for m3

can be obtained from the force balance of m3 as [27]

[Mv]
{ ..

uv
}
+ [Cv]

{ .
uv

}
+ [Kv]{uv} = 0 (1)

where Mv is the mass matrix of the moving load model, Cv is the damping matrix of the
moving load model and Kv is the stiffness matrix of the moving load model.

[Mv] =


m3 0 0 0
0 I3 0 0
0 0 m1 0
0 0 0 m2

, [Cv] =


c1 + c2 (c1 − c2)

a
2 −c1 −c2

(c1 − c2)
a
2 (c1 + c2)

( a
2
)2 −c1

a
2 c2

a
2

−c1 −c1
a
2 c1 0

−c2 c2
a
2 0 c2

,

[Kv] =


k1 + k2 (k1 − k2)

a
2 −k1 −k2

(k1 − k2)
a
2 (k1 + k2)

( a
2
)2 −k1

a
2 k2

a
2

−k1 −k1
a
2 k1 0

−k2 k2
a
2 0 k2


2.2. Main Cable Subsystem Model

With the direct stiffness method, the main cable subsystem model of the cable hoisting
system is established. According to what was assumed earlier, when the crane passes
through the main cable with speed V, the main cable is subjected to the force of gravity Fg =
(m1 + m2 + m3 + I3)g and hoisting cable elastic force P′S = kv(uv − ub)|x=Vt. The damping
force of the hoisting cables is P′D = cv

( .
uv −

.
ub

)∣∣
x=Vt.

So, Fb = δ(x − Vt)
[
mvg + kv(uv − ub) + cv(

.
uv −

.
ub)

]
. The equation of motion of the

main cable under a uniformly moving load can be expressed as

[Mb]
{ ..

ub
}
+ [Cb]

{ .
ub

}
+ [Kb]{ub} = {Fb} (2)

where Mb is the mass matrix of the main cable subsystem model, Cb is the damping matrix
of the main cable subsystem model, Kb is the stiffness matrix of the main cable subsystem
model, Fb is the external load vector.

In order to consider the nonlinearity and slip effects of the main cable of the cable
hoisting system, the whole main cable is now discretized into two three–node catenary
slip cable elements (i.e., span anchorage node, slip node at the top of the cable tower and
node of the mid–span cable closest to the cable tower) and m−2 two–node catenary cable
elements. The tangent stiffness matrices and damping matrices of the two types of elements
are briefly described in the following subsections.

2.2.1. Two−Node Catenary Cable Element

Figure 5 shows a two–node planar catenary cable element; A and B are the two nodes
of the element, and the curve equation of the element is [28] l = − F1s

EA − F1
q ln

(
TA+F2
TB−F4

)
h = − F2s

EA + qs2

2EA + TB−TA
q

(3)
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where q, E, A and s are the load set, modulus of elasticity, area and unstressed length of the
cable, respectively. F1~F4 are the nodal component forces of the cable. F3 = −F1; F4 = qs −
F2. TA and TB are the cable forces at nodes A and B, respectively. TA =

√
F2

1 + F2
2

TB =
√

F2
3 + F2

4

(4)
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Figure 5. Two–node plane cable element.

Differentiating Equation (3) results in(
dl
dh

)
=

[
f11 f12
f21 f22

](
dF1
dF2

)
= F

(
dF1
dF2

)
(5)

where f11 = −
[

s
EA + 1

q ln
(

TA+F2
TB−F4

)]
+

F2
1
q

[
1

TB(TB−F4)
− 1

TA(TA+F2)

]
, f12 = f21 = F1

q

(
1

TB
− 1

TA

)
,

f33 = − s
EA − 1

q

(
F4
TB

+ F2
TA

)
.

The stiffness matrix of a cable element can be solved by the inverse matrix of its
flexibility matrix:

[K] = [F]−1 =

[
f11 f12
f21 f22

]−1

(6)

The nodal force vectors of the elements can also be obtained as

{Fint} =
{

F1 F2 F3 F4
}T (7)

The tangent stiffness matrix of the element can be solved by Newton–Raphson it-
eration; the initial value of the iteration and the iteration procedure can be found in the
literature [28].

The damping matrix of the element is

C = c


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 =

[
c11 c12
c21 c22

]
(8)

where c is the viscous damping coefficient of the element in units of force × time × length.

2.2.2. Three−Node Sliding Cable Element

The main cables are often capable of sliding at the saddle at the top of the cable tower
during the operation of the cable hoisting system under load. In the main cable design, the
total stress–free length of the three–span continuous cable is usually given. The three–node
sliding cable unit is shown in Figure 6, with I, O and J as the three nodes of the element,
where point O is the sliding node. A pulley is usually designed to realize the sliding. The
element is composed of the left IO cable section and the right OJ cable section. The element
considers sliding friction.
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Figure 6. Three–node sliding cable element.

The three–node catenary cable element shown in Figure 6 is analyzed separately as
shown in Figure 7, which is shown by the curve equations of the cable segments [7]: lx1 = − F1s1

EA − F1
q ln

(
TA+F2
TB−F4

)
ly1 = − F2s1

EA +
qs2

1
2EA + TB−TA

q

,

 lx2 = − F′
1s2

EA − F′
1

q ln
(

T′
A+F′

2
T′

B−F′
4

)
ly2 = − F′

3s2
EA +

qs2
2

2EA +
T′

B−T′
A

q

(9)

where s1 and s2 are the unstressed cable lengths of the IO and OJ sections, respectively. q is
the load set of the cable. f 3 = −F1, F4 = qs1 − F2; F′

3 = −F′
1, F′

4 = qs2 − F′
2. TA =

√
F2

1 + F2
2

TB =
√

F2
3 + F2

4

,

 T′
A =

√
F′2

1 + F′2
2

T′
B =

√
F′2

3 + F′2
4
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Figure 7. Force decomposition of three–node sliding cable element.

It follows from the constant length of unstressed cords on either side of node O that

s1 + s2 = s0 (11)

where s0 is the unstressed cable length of the cable element, which is given as a known
quantity during the division of the element.

The tension equilibrium of the two cable segments at the slip node O can be obtained
by considering the dynamic friction:

T′
A = TBe−ψµθ (12)

where θ is the angle between the cable end forces on both sides of the slip node.

θ = arccos
(

F1F′
1 + F2F′

2 + (F3 − q1s1)F′
3

TBT′
A

)
(13)
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The direction function ψ is

ρ =


1, TB > T′

A
0, TB = T′

A
−1, TB < T′

A

(14)

From Equations (10)–(14), the basic set of equations for the sliding cable element can
be formed: 

G1 = xI − xO + lx1
G2 = yI − yO + ly1
G3 = xO − xJ + lx2
G4 = yO − yJ + ly2
G5 = s1 + s2 − s0
G6 = TB − T′

A

(15)

Here, Z =
[
F1, F2, F′

1, F′
2, s1, s2

]T , G = [G1, G2, G3, G4, G5, G6]
T .

Equation (15) can be solved by Newton–Raphson iteration, where the initial value of
the iteration in F1 = ql1

2λ , F2 = q
2 [s1 − h1cothλ], F′

2 = q
2 [s2 − h2cothλ], F′

1 = ql2
2λ , s2 = s0 − s1,

s1 =

{
L1ζs0/(L1 + L2), L1 ≥ L2
s0 − L2ζs0/(L1 + L2), L1 < L2

.

Here, λ0 =


0.2 i f si ≤ Li, i = 1, 2√

3
(

s2
i −h2

i
li

− 1
)

i f si > Li, i = 1, 2
.

L1 and L2 are the chord lengths of the cable segments IO and OJ, respectively.

ζ =

{
0.1γ−0.5 + 0.9, 1/9 ≤ γ ≤ 1
1.2, 0 < γ < 1/9

, for L1 ≥ L2, γ = L1/L2 and vice versa.

{
Zn+1 = Zn + ∆Zn

∆Zn = −(An)
−1Gn

(16)

where A = ∂G
∂Z and n is the number of iterations.

A =



−
[

s1
EA + 1

q ln
(

TA+F2
TB−F4

)]
F1
q

(
1

TB
− 1

TA

)
0 0 −F1

(
1

EA + 1
TB

)
0

F1
q

(
1

TB
− 1

TA

)
−
[

s1
EA + 1

q ln
(

F4
TB

+
F2
TA

)]
0 0 F4

(
1

EA + 1
TB

)
0

0 0 −
[

s2
EA + 1

q ln
(

T′A+F′2
T′B−F′4

)]
F′1
q

(
1

T′B
− 1

T′A

)
0 −F′

1

(
1

EA + 1
T′B

)
0 0

F′1
q

(
1

T′B
− 1

T′A

)
−
[

s2
EA + 1

q ln
(

F′4
T′B

+
F′2
T′A

)]
0 F′

4

(
1

EA + 1
T′B

)
0 0 0 0 1 1

F1/TB −F4/TB −F′
1/T′

A −F′
2/T′

A qF4/TB 0


The node coordinates of the element are X = {x1, y1, x2, y2, x3, y3}T, F = {F1, F2, F3 + F′

1, F4 + F′
2,F′

3, F′
4}

T.
Therefore, the tangent stiffness matrix k of the three–node sliding catenary cable

element is expressed as

k = − ∂Fi
∂Xj

= − ∂Fi
∂Zm

∂Zm

∂Gn

∂Gn

∂Xj
= −BA−1D (17)

where B =



1 0 0 0 0 0
0 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 q 0
0 0 −1 0 0 0
0 0 0 −1 0 q

, D =



1 0 0 0 0 0
0 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0

,

k =

k11 k12 02×2
k21 k22 02×2
k31 k32 02×2

.
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The tangent stiffness matrix of the above three–node catenary cable element can be
solved by iteratively solving Equation (17). The nodal force vector {F} can be solved by
iteratively solving Equation (16), so the displacement increment {∆x} of the element can be
solved according to the finite element balance equation.

The damping matrix of the three–node catenary cable element can be expressed as

C =

−cs1 cs1 02×2
cs1 −cs1 − cs2 cs2

02×2 cs2 −cs2

 (18)

2.3. Establishment of Coupled Vibration Equations

Coupling the equations of motion of the crane and the main cables together yields[
Mv 0
0 Mb

]
·
{ ..

uv..
ub

}
+

[
Cv Cvb
Cbv Cb

]
·
{ .

uv.
ub

}
+

[
Kv Kvb
Kbv Kb

]
·
{

uv
ub

}
=

{
0
−Fg

}
(19)

where
[

Mv 0
0 Mb

]
=



mv 0 0 · · · 0 0
0 m 0 · · · 0 0
0 0 m · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · m 0
0 0 0 · · · 0 m


,

[
Cv Cvb
Cbv Cb

]
=



cv 0 · · · −cv · · · 0
0 c1,1 · · · c1,i · · · c1,n
...

...
. . .

...
. . .

...
−cv ci,1 · · · ci,i · · · ci,n

...
...

. . .
...

. . .
...

0 cn,1 · · · cn,i · · · cn,n


,

[
Kv Kvb
Kbv Kb

]
=



kv 0 · · · −kv · · · 0
0 k1,1 · · · k1,i · · · k1,n
...

...
. . .

...
. . .

...
−kv ki,1 · · · ki,i · · · ki,n

...
...

. . .
...

. . .
...

0 kn,1 · · · kn,i · · · kn,n


.

[
Kv Kvb
Kbv Kb

]
are explained in Figure 8.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 22 
 

The tangent stiffness matrix of the above three–node catenary cable element can be 
solved by iteratively solving Equation (17). The nodal force vector {F} can be solved by 
iteratively solving Equation (16), so the displacement increment {Δx} of the element can 
be solved according to the finite element balance equation. 

The damping matrix of the three–node catenary cable element can be expressed as 

















−
−−

−
=

×

×

2222

2211

2211

ss

ssss

ss

cc0
cccc
0cc

C  (18)

2.3. Establishment of Coupled Vibration Equations 
Coupling the equations of motion of the crane and the main cables together yields 








−

=








⋅







+









⋅







+









⋅








gb

v

bbv

vbv

b

v

bbv

vbv

b

v

b

v

Fu
u

KK
KK

u
u

CC
CC

u
u

M
M 0
0

0






 (19)

where 



























=








m
m

m
m

m

M
M

v

b

v

0000
0000

0000
0000
0000

0
0









 ,



























−

−

=








nninn

niiiiv

ni

vv

bbv

vbv

ccc

cccc

ccc
cc

CC
CC

,,1,

,,1,

,1,11,1

0

0
00










 ,



























−

−

=








nninn

niiiiv

ni

vv

bbv

vbv

kkk

kkkk

kkk
kk

KK
KK

,,1,

,,1,

,1,11,1

0

0
00










. 










bbv

vbv

KK
KK

 are explained in Figure 8.  

 
Figure 8. Decomposition diagram of the total stiffness matrix.

The basic steps for solving the forced vibration response of a multi–degree –of–freedom
system are firstly, to determine the intrinsic properties of the system, then to establish the
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decoupled modal equations of motion of the system and then to solve the equations ac-
cording to the single–degree–of–freedom theory. If the system is subjected to a general
excitation, the forced vibration response is attributed to the calculation of Duhamel con-
volution integrals, which not only is a cumbersome and lengthy process, but also often
fails to find an analytical solution for the Duhamel integrals. Therefore, for this type of
system of equations, the numerical method of stepwise integration can be used to solve the
system [29].

3. Algorithms for Solving Nonlinear Systems of Time−Varying Equations

In a cable system with a single hoisting span of twin towers, the crane with a load only
operates in the middle hoisting span. So, only the nonlinear coupled vibration response
between the mid-span cables and the crane is analyzed. It is assumed that the main
cables are able to slide in the position of the cable tower. Based on the Newmark-β direct
integration method combined with the dynamic stiffness method, the nonlinear system of
equations of motion is solved. The solution method and steps, for which the flow chart of
crane–cable coupled vibration refinement analysis is shown in Figure 9, are as follows:
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Figure 9. Flow chart of refined analysis of crane–cable coupling vibration. Figure 9. Flow chart of refined analysis of crane–cable coupling vibration.

(1) Firstly, select the Newmark parameters: β and γ. It is important to select the two
parameters correctly, and the analysis shows that when γ ≥ 1/2 and β ≥ γ/2 are taken,
the Newmark−β method is not able to be conditionally stabilized. Usually, γ = 1/2
is selected, and then β is adjusted to achieve the purpose of different corrections to
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the acceleration. When γ = 1/2 and β = γ/2, it is linear acceleration method; when
γ = 1/2 and β = 1/6, it is average acceleration method.

(2) Time discretization: The studied motion time n is divided into equal parts with time
step ∆t; the discrete points are 0, 1, 2, . . ., n − 1, n. The time corresponding to the
discrete points is tj = j∆t (j = 0, 1, 2, . . ., n − 1, n), with a start time t0 = 0 and a
termination time tm = n∆t.

(3) Each material parameter of the cable structure and the crane model (including the
unstressed cable length s0 of the cables) is entered and stored.

(4) The whole cable sling is divided into n nodes and m elements, in which the mid–span
cable is divided into m−2 two–node catenary cable elements. The anchorage point
of the side span, the top node of the cable tower and the node of the mid–span cable
closest to the cable tower are divided into three-node catenary cable elements, with a
total of two for the left and right side spans.

(5) Call the model cell of the crane with a load and calculate its mass matrix Mv, stiffness
matrix Kv and damping matrix Cv.

(6) Call the two–node catenary cable element and the three–node catenary cable element
and calculate their mass matrix, stiffness matrix and damping matrix, and then
assemble them into the total mass matrix Mb, total stiffness matrix Kb and damping
matrix Cb of the cable structure.

(7) The main cable model is coupled and assembled with the crane model to form the
total mass matrix M, the total stiffness matrix K and the damping matrix C.

(8) Calculate the total nodal force vector Fint and the total external load vector (weight
carried by the crane) Fg for the cable structure.

(9) Process the boundary conditions to solve for the nodal displacements {ub} of the
cable structure and the displacements {uv} of the crane model, and compose the total
displacement vector {x}j.

(10) Calculate the initial motion parameters for the time step obtained from the previous
time step: {x}j,

{ .
x
}

j,
{ ..

x
}

j. When j = 0, the time step is obtained from the initial

conditions: {x}0,
{ .

x
}

0,
{ ..

x
}

0 = [m]−1[{ f }0 − [c]
{ .

x
}

0 − [k]{x}0
]
.

(11) Calculate the time step termination motion parameters: 1⃝ Calculate the equivalent
stiffness matrix and the equivalent load increment vector using Equation (20):[

K
]
= [K] + γ

β∆t [C] +
1

β∆t2 [M]{
∆F

}
j = [M]

(
1

β∆t
{ .

x
}

j +
1

2β

{ ..
x
}

j

)
+ [C]

(
γ
β

{ .
x
}

j +
(

γ
2β − 1

)
∆t

{ ..
x
}

j

)
+ {∆ f }j

(20)

2⃝ Calculate the displacement increment vector from Equation (21):[
K
]
{∆x(t)} =

{
∆F(t)

}
(21)

3⃝ Calculate the displacement increment vector
{

∆
.
x
}

j from Equation (22):

{
∆

.
x
}

j =
γ

β∆t
{∆x}j −

γ

β

{ .
x
}

j −
(

γ

2β
− 1

)
∆t

{ ..
x
}

j (22)

4⃝ Calculate the displacement and velocity at the end of the current time step: {x}j+1 =

{x}j + {∆x}j,
{ .

x
}

j+1 =
{ .

x
}

j +
{

∆
.
x
}

j.
5⃝ Calculate the acceleration at the end of the current time step using Equation (23):

[M]
{ ..

x
}

j+1 + [C]
{ .

x
}

j+1[K]{x}j+1 = { f }j+1 (23)

(12) Update the nodal coordinates and internal forces of the cable element and calculate
the nodal unbalanced force vector {∆R}.

(13) Determine whether the unbalanced forces converge or not, i.e., whether ∥∆R∥
∥Fg∥ ≤

TOLER. If ‘Yes’, update the displacement, velocity and acceleration of the cable
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structure {ub},
{ .

ub
}

,
{ ..

ub
}

. If ‘No’, repeat steps (6) to (12) above until the unbalanced
force converges.

(14) Update time t = t + ∆t and update the overhead crane position Vt.
(15) Repeat steps (5) through (14) above until all time steps have been calculated.

4. Engineering Examples

A double–tower, three-span cable hoisting system is taken as an engineering example,
as shown in Figure 10. There is a fixed pulley on the top of each of the two towers, and the
pulley can slide on the main cable during construction with considering sliding friction. The
coordinates of the nodes are I(0, 43.038), J(96.1, 0), KL(96.1, 95.6), K(589.05, 3), KR(589.05,
95.6), L(712.2, 29.516). The main cable adopts nine φ62 steel cables with a tensile strength of
1870 MPa, an area of 0.016272 m2, a weight per unit length of 1.497 kN/m and a modulus
of elasticity of 110 GPa. The cable tower is made of Q345b steel, with a modulus of elasticity
of 206 GPa. The designed maximum hoisting weight is 150 tons, and the crane weighs 8
tons. The original length of the middle–span cable is 494.8918 m, and the horizontal force
is 2105.3 kN. The original length of the left–span cable is 109.4220 m. The original length of
the right–span cable is 139.6430 m. According to the wire cable manufacturer’s test, the
damping coefficient of the wire cable is 0.3. The design speed of the traveling crane with a
load is 0.16 m/s. The friction coefficient µ of the cable at the saddle is 0.3.
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4.1. Dynamic Load Test for Cable Suspension

Test process:

(1) First, consider the crane under the weight of 150 tons (100% of the rated hoisting
weight).

(2) Hoist the weight off the ground 10~20 cm and suspend it statically for 30 min. Con-
sider all kinds of structures for visual inspection, the observation of all kinds of cable
system connection statuses, etc. If there is no anomaly, you can carry out the next test.

(3) Continue to lift the weight from the ground 3~5 m, for up and down movement.
Detect the braking performance of the hoisting winch and hoisting speed.

(4) Continue to lift the weight 2~3 m, for horizontal back–and–forth traction movement.
With a traction range of 10~20 m, test the traction capacity and braking performance
of traction winches and the traction speed of the crane.

(5) Pull the weight to the L/2 span position and stop; measure the verticality at the main
cable hoisting point, tower top offset, anchor displacement, cable force, etc.

4.1.1. Main Cable Sag Monitoring

The steel wire cable presents a catenary shape under the action of heavy loads, and
the total station is used to measure and collect the sag of the main cable under various
test load conditions. The total station is set up in prism–free test mode for prism–free
measurement. The total station for plumbness monitoring is placed in the mid–span
position of the existing highway bridge, which is the closest to the span of the main cable
and convenient for measurement. With a single set of systems on both sides of the main
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cable as the measurement of the reference cable, the main cable plumbing arrangement of
the measurement point layout is shown in Figure 11.
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4.1.2. Cable Force Monitoring

The main cable force is measured by the dynamic measurement method, and the moni-
toring instrument is the clueless force dynamic measurement module (JMCZ−2098AD/WD,
Kingmach Measurement & Monitoring Technology Co., Ltd., Changsha, China), which is
used to monitor the real–time cable force of the main cable under various loading conditions.
The main cable force measurement points are arranged as shown in Figure 12.
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4.2. Finite Element Modeling

In order to verify the correctness of the coupled crane–cable vibration equation, a finite
element model is established by ANSYS (Canonsburg, PA, USA) for the double–tower,
three–span cable hoisting system (shown in Figure 13). The main cable is modeled by the
link10 cable element; the cable tower is modeled by the Beam188 element. The top of the
cable tower is modeled only by using the vertically pressurized spring element COMBIN14
to connect the main cable node with the cable tower; the crane and the heavy loads to be
transported are modeled by the 2D mass element MASS21 without a rotational degree of
freedom. The hoisting cable is modeled by the spring damping element COMBIN14. The
movement of the mass spring is realized by means of the displacement coupling method,
and the contact between the crane and the main cable is realized by means of a point–line
contact element for the contact between the moving part and the cable.
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The boundary conditions are as follows: the bottom of the cable tower is cemented, the
main cables are cemented at the side spans, and the main cables are simulated with springs
that are only vertically pressurized between the main cables and the cable tower. The speed
of the moving load is 0.16 m/s, so the whole section of the main cable is encrypted, and the
length of a single main cable element is 0.08 m. In order to simulate the slip state of the
main cable at the support point, the cable element at the support point is also encrypted. In
order to prevent the distortion of the cable tower members from stress concentration at the
connection point, encryption treatment is also carried out. The whole cable hoisting system
is discretized into 245,146 elements and 563,463 nodes.

4.3. Analysis of Results

In order to verify the correctness of the obtained coupled crane–cable vibration equa-
tions, the time–varying response of the whole process of the crane traveling with the load
on the main cable at the mid–span is selected for analysis in this section. The total time
spent by the crane from the left bank to the right bank under the design speed is 3080.94 s.
In order to react to the vibration response when the lifted beam section is detached from
the crane, a total time of 3600 s is taken for the analysis in this section, and the time step is
taken to be 0.001 s. The dynamic load test value is based on the data measured when the
crane is traveling to the L/4, 3L/8, 2/L, 3L/4 positions of the mid–span cable with a load.

4.3.1. Comparative Validation of Test Results

In order to analyze the coupled vibration response of a multi–span continuous cable
structure under moving load, the mid–span vertical displacement and cable force of the
main cable are selected as parameters for comparison in this section. Since the main
cable is supported by pulleys at the top of the cable tower, when the crane is traveling,
the main cable will produce relative friction slip at the saddle, and under the action of
friction and unbalanced force at both ends of the saddle, the cable tower will be deformed.
Therefore, in this section, the deflection of the cable tower is again selected as a parameter
for comparative analysis. The data obtained by calculating each datum from the moment
when the crane travels to the middle of the span are taken to be analyzed for the error, as
shown in Table 1 and Figure 14.

Table 1. Comparison of errors of calculation methods.

Number Calculation Parameters

Finite Element
Calculated Values Programmed Values Static Values Dynamic Load

Test Values
Values Errors Values Errors Values Errors

1 Vertical displacement/m −9.631 −4.40% * −10.161 0.86% * −8.674 −13.90% * −10.074
2 Mid–span forces/kN 4968.64 −2.77% * 5218.57 2.12% * 4646.25 −9.08% * 5110.12
3 Left–bank cable tower deviation/m 0.029 −4.29% * 0.0311 2.64% * 0.027 −10.89% * 0.0303
4 Right–bank cable tower deviation/m −0.0386 −3.02% * −0.0412 3.52% * −0.0369 −7.29% * −0.0398

* Error = (calculated value − dynamic load test value)/dynamic load test value.

From Figure 14 and Table 1, it can be seen that the simulation results and the program
calculation results have the same trend. The calculation results of the self–programming
program are more similar to the measured value, and the finite element calculation value
results are large. Taking the maximum vertical displacement in the span as an example,
the simulation calculation result is −9.631 m, and the measured value is −10.074 m. The
program calculation result is −10.161 m, and the static calculation result is −8.674 m, and it
can be seen that the simulation result and the program calculation result errors are −4.40%
and 0.86%, while the static calculation result error reaches −13.90%, which causes this
phenomenon. The reason for this phenomenon is that the coupled vibration caused by
the non–uniform excitation of the main cable by the crane increases the vertical deflection,
which also proves the correctness and feasibility of the deduced coupled vibration equations
and the program calculation.
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Figure 14. Comparison of results under the action of crane–cable coupled vibration at the design
speed: (a) time course diagram of the vertical displacement in the span, (b) time course diagram of
the cable force in the span, (c) time course diagram of the deflection of the left–bank cable tower,
(d) time course diagram of the deflection of the right–bank cable tower.

4.3.2. Analysis of Impact Effect after Hoisting Weight Detachment

In order to investigate the impact effect generated by the cable hoist loading system
when hoisting heavy loads out of the lifting cable, this section takes the hoisting of heavy
loads from the left bank to the mid–span stage of detachment for analysis and obtains the
mid–span displacement of the main cable, as shown in Figure 15.
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of the right–bank cable tower.

As can be seen from Figure 15, the moment of hoisting the weight detached from
the impact effect is very obvious. In order to describe the dynamic effect produced at
the moment when the weight is detached from the pulling cable, this paper expresses it
by calculating the impact coefficient µ. The ratio of the deflection or force added to the
suspension structure at the moment the weight breaks away from the pulling cable to
the deflection or force generated when the load is at rest is called the impact coefficient.
The vertical maximum dynamic deflection generated in the span is up to 13.6 m, while
the vertical static deflection generated only no–load action is only 4.78 m, with an impact
coefficient of up to 2.0. The mid–span cable force generated by the maximum dynamic cable
force is up to 4123 kN, and the no–load action generated by the static cable force is 1912 kN.
The impact coefficient is 2.16. The left–bank cable tower maximum dynamic deflection
is 0.031 m, and the no–load action generates a static deflection of 0.011 m. The impact
coefficient is 2.82, and that on the left–bank cable tower is 2.16. The right–bank cable tower
maximum dynamic deflection is 0.031 m, and no–load action produces a static deflection
of 0.011 m; the impact coefficient of the left–bank cable tower is 2.82. The right–bank
cable tower maximum dynamic deflection is 0.048 m, and no–load action produces a static
deflection of 0.012 m; the impact coefficient of the left–bank cable tower is 4.00.

4.3.3. Vertical Displacement Analysis of Three−Span Continuous Main Cable

In order to explore the vertical displacement response of each span of the mid–span
main cables under the non–uniform excitation of the crane, the displacement–time–span
three–dimensional surface relationship is established in this section as shown in Figure 16.



Appl. Sci. 2024, 14, 2215 17 of 21

From Figure 16, it can be seen that (1) during the traveling process of the crane with
a load from the left bank to the right bank, the vertical downward deflection of the main
cable at each moment of the crane’s action point is the largest. But the other parts of the
crane will show an upward deflection area, which mainly concentrates in the interval from
the action point of 0.2~0.8L. The closer the point of action is to the center of the span, the
smaller the upward deflection region will be. (2) When the crane is located in the middle of
the span, the side–span cables are all in the upward deflection state and concentrate in the
region of 0.2~0.8L. The side–span cables are the first ones that vibrate downward and reach
the peak when the crane is driving away from the middle of the span main cables.
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4.3.4. Design Parameter Analysis

In order to analyze the influence of the traveling speed and load of the crane on the
vibration, this section takes α = Vn/V0 and β = Gn/G0, where Vn is the different speeds
and V0 is the design speed. When α = 0, there is a static effect. Gn is the different loads,
and G0 is the design load. When β = 0, only the crane is acting on the main cables. The top
view of the relationship between the design parameters is shown in Figure 17, in which
y(L/2,t) indicates the vertical displacement in the span at different moments. y0 indicates
the maximum vertical displacement in the span in the design state. F(L/2,t) indicates the
cable force in the span at different moments, and F0 indicates the maximum cable force in
the span in the design state, as shown in Figure 18.
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From Figures 17 and 18, it can be seen that (1) the traveling speed of the crane is
proportional to the vertical displacement in the span, but when the speed exceeds 2 times
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the design speed, there is an obvious decreasing trend. The cable force in the span will
have an obvious sharp increase when it exceeds the design speed, but there will also
be an obvious decreasing trend when it exceeds 2 times the design speed. (2) The load
capacity presents an obvious proportionality with the span displacement and cable force,
and the vertical displacement will increase sharply when it exceeds 0.7 times the design
load capacity. The cable force in the span will increase obviously and reach its peak moment
much faster when it exceeds 1.5 times the design load capacity. When the load exceeds
0.7 times the design load, the vertical displacement will increase rapidly.
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Figure 18. Relative values of mid–span displacement and cable force versus time and load parameters:
(a) top view of relative values of mid–span displacements, (b) top view of relative values of mid–span
cable forces.

5. Conclusions

To study the nonlinear vibration response of a multi–span continuous cable structure
under moving loads considering friction slip, this paper proposes using the direct stiffness
method to establish the main cable subsystem model and the moving load model. The
coupled vibration control equations are derived through the equilibrium relationship
between the moving load and the main cables, and then the dynamics equations are
solved based on the Newmark−β direct integration method, so as to obtain the dynamic
response of the two. Simulation results were considered for comparison, and the following
conclusions were obtained:

(1) Comparing the calculation results of the self–programmed program, the simulation
model results and the dynamic load test values, it can be seen that the calculated
results of the first two are in good agreement with the measured values. The errors
of the vertical displacement in the span calculated by both of them are 0.86% and
−4.40%, but the error reaches −13.90% when the coupled vibration response is not
taken into account. This can prove the correctness and rationality of the deduced
coupled vibration control equations and programming. It is necessary to consider the
coupled vibration of the moving loads and the main cable during the design of the
main cable.

(2) Through the analysis of the impact effect of the cable hoisting system when hoisting
weights out of the lifting cable, it can be seen that the instantaneous hoisting of weights
out of the coupling vibration generated by the impact effect is very obvious. The
impact coefficient of the deflection of the main cable is 2.0. The impact coefficient of
the force of the main cable is 2.16. The impact coefficient of the cable tower deflection
can be up to 4.0.

(3) By establishing the vertical displacement–time–span three–dimensional surface dia-
gram of the main cable, it can be seen that during the traveling process of the overhead
crane with a load, the vertical downward deflection of the main cable at the point of
action is the largest. But the other parts of the cable will show an upward deflection
region; the upward deflection region is mainly concentrated in the interval from the
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point of action of 0.5L~0.8L. The closer to the middle of the span, the smaller the
upward deflection region. When the crane is traveling away from the main cable
of the middle span, the side–span cable is the first one that vibrates downward and
reaches the peak value.

(4) By comparing the relative values of span displacement and cable force with time,
crane speed and load parameters, it can be seen that the crane speed is proportional
to the vertical displacement in the span. The cable force in the span will show an
obvious rapid increase when it exceeds the design speed. When the load exceeds
0.7 times the design load, the vertical displacement will increase rapidly. The cable
force in the span will increase rapidly when the load exceeds 1.5 times the design
load, and the moment of reaching the peak value will be faster.
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