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Abstract: Aiming at solving the problems of local halo blurring, insufficient edge detail preservation,
and serious noise in traditional image enhancement algorithms, an improved Retinex algorithm for
low-light mine image enhancement is proposed. Firstly, in HSV color space, the hue component
remains unmodified, and the improved multi-scale guided filtering and Retinex algorithm are
combined to estimate the illumination and reflection components from the brightness component.
Secondly, the illumination component is equalized using the Weber–Fechner law, and the contrast
limited adaptive histogram equalization (CLAHE) is fused with the improved guided filtering for the
brightness enhancement and denoising of reflection component. Then, the saturation component is
adaptively stretched. Finally, it is converted back to RGB space to obtain the enhanced image. By
comparing with single-scale Retinex (SSR) algorithm and multi-scale Retinex (MSR) algorithm, the
mean, standard deviation, information entropy, average gradient, peak signal-to-noise ratio (PSNR),
and structural similarity (SSIM) are improved by an average of 50.55%, 19.32%, 3.08%, 28.34%, 29.10%,
and 22.97%. The experimental dates demonstrate that the algorithm improves image brightness,
prevents halo artifacts while retaining edge details, reduces the effect of noise, and provides some
theoretical references for low-light image enhancement.

Keywords: guided filtering; low-light; Retinex; image enhancement; HSV

1. Introduction

Video monitoring is one of the several important means of coal mine safety manage-
ment; however, the quality of the video monitoring images is poor due to the influence
of light, dust, and water mist. Traditional algorithms for enhancement are liable to halo
blurring, unclear edge details, and noise pollution, which reduces the effectiveness of the
information contained in the image [1], thereby affecting the performance of the video mon-
itoring system. Therefore, improving the visibility of mine images in low-light conditions
is essential, which is also a prerequisite for improving the performance of the subsequent
analysis and recognition of video images.

In recent years, many methods have been suggested by researchers to address the
problem of enhancing mine images, which can be roughly divided into two types, those in
the spatial domain and those in the frequency domain. Among them, the introduction of
the Retinex algorithm has significantly enhanced the performance of image enhancement
in coal mines, and researchers have conducted many studies based on this algorithm.
Most of the coal mine image enhancement algorithms are rooted in the theory of Retinex,
predominantly include single-scale Retinex [2], multi-scale Retinex [3], and multi-scale
Retinex with color restoration (MSRCR) [4]. The Retinex algorithm can improve image
contrast and enrich detail in images [5], but it results in excessive enhancement and color
imbalances. Wang et al. [6] introduced a method based on a nonlinear function that is based
on the Retinex algorithm. Using a Gaussian filter to obtain the illumination component
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and constructing a nonlinear function for contrast enhancement, the enhanced image
and the initial image are integrated to improve the contrast and reduce the impact of
uneven lighting. Liu et al. [7] used a linear function to stretch the grayscale range of the
brightness component, which was based on the Retinex algorithm model, and used a
mapping function to perform color correction on the saturation component, avoiding the
problem of low image contrast and achieving global enhancement. Wang et al. [8] proposed
a method that combines Gabor filter with the principles of Retinex theory, which isolates
the intensity component from the HSI space and enhances it with MSRCR, and then the
SSR algorithm is applied using Gabor filter on the image in the RGB space. The weighted
fusion of the images is consequently enhanced by the two different methods, which avoids
an over-enhancement of the image. Lin et al. [9] proposed a Retinex framework that utilizes
bilateral filtering to extract the reflection component in the HSI space, then transfers the
image back to the RGB space to enhance it by combining a modified framework model with
Gaussian pyramid transform, which reduces the blurring phenomenon and improves the
quality of the image. Shang et al. [10] presented an adaptive image enhancement technique
that utilizes the Retinex algorithm along with guided filtering to process the V component
in the HSV space; it performs color compensation for saturation component, histogram
equalization on the initial image to improve the contrast, and a fusion processing of the
two, which is richer in information and increases the details. The above analysis shows
that, although the current algorithms have the capability to improve the image brightness,
they still have problems, such as the blurring of local halos and difficulty in retaining
edge details.

To address the above problems, this paper proposes an improved image enhancement
algorithm. The algorithm processes the different components separately in HSV color space,
and finally converts them back to the RGB space. The above process mainly includes three
parts: (1) an estimation of the illumination and reflection components from the brightness
component; (2) brightness enhancement and denoising on illumination and reflection
components; and (3) color correction is applied to the saturation component. The main
contributions of this paper are as follows:

(1) An improved guided filtering algorithm is proposed to replace the Gaussian filter in
the Retinex algorithm to more accurately estimate the illumination component and
reflection component from the brightness component.

(2) Fusion of the contrast-limited adaptive histogram equalization algorithm and the
improved guided filtering algorithm to process the reflection component to achieve
brightness enhancement and denoising at the same time.

(3) Propose an improved adaptive stretching method to process the saturation component
to avoid color distortion.

The rest of this article is organized as follows. Section 2 introduces the relevant theoret-
ical knowledge of Retinex. Section 3 is the algorithm proposed in this article. Section 4 con-
ducts experimental verification and comparative analysis. Section 5 summarizes this article.

2. Retinex Theory

Retinex is a model based on the vision perception and adjustment of the brightness
of surrounding objects [11], and its basic principle is to divide the image I(x, y) into
illumination component L(x, y) and reflection component R(x, y) [12]. (x, y) represents
the spatial coordinates in the image, that is, the pixel position in the image. x usually
represents the horizontal position, and y represents the vertical position. The illumination
component encompasses the variations in brightness. Object features and color information
are presented in the reflection component, and its principle model is presented in Figure 1.
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Figure 1. Retinex model.

Based on the principles of Retinex theory, the above process can be formulated as

I(x, y) = L(x, y)× R(x, y). (1)

Since the logarithmic form is closest to the process attributes of humans experiencing
brightness, transferring it to the logarithmic domain yields

log(I(x, y)) = log(L(x, y)× R(x, y)) = log(L(x, y)) + log(R(x, y)). (2)

In the Retinex algorithm, the calculation of the illumination component is commonly
achieved through the application of a Gaussian filter as the center-surround mechanism,
which is estimated as

L(x, y) = I(x, y) ∗ G(x, y), (3)

where G(x, y) represents the Gaussian filter and ∗ is the convolution symbol.
Based on Equation (2), Figure 2 depicts the diagram of the Retinex algorithm.

Figure 2. Retinex algorithm.

3. Proposed Method

This paper, firstly, in the HSV space, adopts the improved multi-scale guided filtering
algorithm for the brightness component to extract the illumination component, which can
accurately retain the edge details while avoiding halo artifacts. Secondly, the extracted illu-
mination component adopts the Weber–Fechner algorithm to perform adaptive brightness
correction, and the reflection component is processed using a fusion method of contrast
limited adaptive histogram equalization and improved guided filter to prevent excessive
enhancement and image distortion; then, the principal component analysis is performed
to fuse the two components. Thirdly, to prevent the color distortion, an improved adap-
tive stretching method is used to balance the saturation component. Finally, the three
components are fused and converted back to the RGB space. The framework is presented
in Figure 3.
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Figure 3. The framework of this paper.

3.1. Improved Guided Filtering

Guided image filtering (GIF) was first introduced by Kaiming He et al. [13], and its
process can be regarded as an ordinary linear translation transform filtering model. The
satisfied linear relationship is

qi = ak Ii + bk, ∀i ∈ wk, (4)

where qi is the linear conversion of the guide image Ii in the local window; the linear
coefficients of the corresponding window are represented by ak and bk; and wk is a local
window with a radius, r, and a center pixel, k.

The linear coefficients are fitted using the least squares method [14], and the cost
function is

E(ak, bk) = ∑
i∈wk

(
(ak Ii + bk − pi)

2 + εa 2
k

)
, (5)

where ε refers to a fixed regularization term used to avoid the value ak from becoming
overly large [15]. Weighted guided image filtering (WGIF) introduced an edge weighting
factor ΓI(k) [16] based on GIF to adaptively adjust the regularization parameter. ΓI(k) is
defined as follows:

ΓI(k)=
1
N

N

∑
i=1

σ2
I,1(k)+ψ

σ2
I,1(i)+ψ

, (6)

where N refers to the overall pixel count; σ2
I,1(k) is the variance of the guide image that

denotes the varying scope of values in the input image of 3 × 3 window [17]; ψ is a very
small constant, which in general takes the value of (0.001 × L)2; and L reflects the range of
values presented in the input image.

Although WGIF reduces the halo blurring phenomenon at the boundary, its edge-
aware factor is determined by assessing the variance within local windows at different
areas. However, the areas with larger variance are not always edge areas and are insensitive
to the weak edge areas in the image. Therefore, the gradient information is introduced into
the new edge-aware weight; at the same time, it can enhance the capability to perceive
subtle edges in the image, thus improving the robustness of the algorithm. The proposed
new edge-aware weight is calculated by

Γ̂I(k) =
1
N

N

∑
i=1

φ(k) +ψ

φ(i) +ψ
, (7)

where φ(k) is defined as σ2
I,1(k)σ

2
I,r(k)+ G(g(k)); σ2

I,1(k)and σ2
I,r(k)are the variances of the

pixels in the 3 × 3 window and the (2r + 1) × (2r + 1) window, respectively; G is the

Gaussian filter; g(k) refers to the gradient size of the pixel k, G(k) =
√
(kx)

2 +
(
ky
)2; and

kx and ky are the gradients along the x and y directions.
It can be determined from the linear model of Equation (4) that ∇qi = ak∇Ii. It is

evident that the filtering effect of the image is influenced by ak. If the value of ak is 1, it
implies that the image is situated in the edge region and is well preserved; if ak is 0, it
implies that the image is situated in the flat region and the smoothing effect is better. WGIF
lacks the edge constraints, and the edge cannot be preserved very well. On this basis, a
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new edge protection constraint γ(k) is proposed to preserve the edge while retaining the
slight details in the comparatively smooth regions. The expression of γ(k) is

γ(k) =
1

1 + e−g(k)
, (8)

where g(k) is the gradient size of the pixel k. When it is located in the edge area, the
magnitude of g(k) is larger and γ(k) is closer to 1; when it is located in the smooth area,
the magnitude of g(k) is smaller and γ(k) is closer to 0. Therefore, the new cost function is
changed to

E(ak, bk) = ∑
i∈wk

[
(ak Ii + bk − pi)

2 +
ε

Γ̂I(k)
(ak − γk)

2]. (9)

Thus, the best values for ak and bk are determined as

ak =

1
|w|∑i∈wk

Ik pk − µk pk +
ε

Γ̂I(k)
γ(k)

σ2
k +

ε
Γ̂I(k)

, (10)

bk = pk − akµk, (11)

where µk and pk are the mean values of the guide image and the input image in the window
wk, respectively; σ2

k is the variance of the guide image in the window wk; and |w| is the
amount of pixel k.

Putting the magnitude of ak and bk into Equation (4), the expression for the output
image can be represented as

q(i) = ai I(i) + bi, (12)

where ai and bi are the average values of ak and bk within the window wk, respectively.
To prove that the improved guided filtering algorithm (WWGIF) has a more effective

edge-preserving result, the filtering results are compared with the other three filtering
algorithms GIF, WGIF, and gradient domain guided image filtering (GDGIF) [18], using
the same regularization parameters and filtering radius, ε = 0.22, r = 16. The original
image in Figure 4 is from a publicly available image on the Internet, from which we can
see that the algorithm presented in this paper exhibits superior edge-preserving effects
compared to GDGIF and effectively avoids the local halo blurring phenomenon of GIF,
which can maintain the intricate edges of the image and retain the weak details of the
relatively flat areas.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Results of different filtering algorithms. (a) GIF algorithm; (b) WGIF algorithm; (c) GDGIF
algorithm; (d) WWGIF algorithm.

According to the data provided in Table 1, it is apparent that PSNR and SSIM indexes
of the improved filtering algorithm are significantly improved compared to GIF, WGIF,
and GDGIF. This means that WWGIF improves the quality of the image and shows better
performance in these filters.

Table 1. Performance comparison of different filtering algorithms.

GIF WGIF GDGIF WWGIF

PSNR 23.0908 27.3744 29.2473 34.9946
SSIM 0.9501 0.9529 0.9893 0.9973

3.2. Extraction and Enhancement of Illumination Component

In this article, the improved guided filtering algorithm is combined with the Retinex
algorithm, and at the same time, different scales are used to weigh it for the extraction of
illumination components, which can not only effectively avoid the halo blur phenomenon,
but also retain the edge features and particulars of the initial input image to a greater extent.
The expression can be presented in the following form:

LI(x,y) =
N

∑
n=1

wn(qn(x, y) ∗ I(x, y)), (13)

where qn(x, y) is the improved guided filtering for the nth scale (n = 1, 2, . . . N, N = 3
in this paper), and wn is its weight, for which the three weight values in this article are
w1 = w2 = w3 = 1/3.

The Weber–Fechner Law is a psychophysical expression that illustrates the correlation
between the sensory intensity of human perception and the sensory intensity of external
environmental stimulation [19]. In terms of light intensity changes, it can be used to indi-
cate the logarithmic linear relationship between the way the human eye perceives changes
in light intensity Lout and the initial light intensity Lin. After obtaining the estimated
illumination component, to enhance the visual quality and perceptual impact, the illumina-
tion component is enhanced. Referring to the above principle, a brightness enhancement
method is proposed, which can boost the overall quality of the unevenly illuminated image
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by adaptively adjusting the bright and dark regions and can maintain the details of the
initial image [20]. The expression of its linear relationship is

Lout = λlg(Lin) + λo, (14)

where λ and λo are constants. In order to make the algorithm more applicable and to
reduce the amount of computation, a new function is used to fit the curve of the function of
Equation (14). The expression is as follows:

Lout =
Lin(255 + k)

(max(Lin, Lin_g) + k)
, (15)

where Lin refers to the image for enhancement, Lin_g refers to the estimated reflection
component, and k is the adaptive adjustment parameter.

3.3. Extraction and Enhancement of Illumination Component

CLAHE is based on histogram equalization [21], which introduces interpolation op-
erations to obtain smoother images. The flow of the algorithm is shown in Figure 5.
CLAHE preserves the details and restricts the contrast amplification in the locally smoothed
areas [22], but it cannot completely suppress the noise. The WWGIF filtering algorithm can
restore details and reduces the appearance of noise. Therefore, the CLAHE-WWGIF algo-
rithm is proposed for the reflection component to further diminish the impact of noise while
increasing the image contrast to maintain the details. The formula of CLAHE algorithm is

R′(x, y) = CLAHE(R(x, y)). (16)

For the reason that most of the noise is presented in the reflection component, the noise
still exists after CLAHE processing, so WWGIF is performed on the CLAHE-processed
image to improve the contrast while suppressing the noise to improve the quality of the
image [23]. The formula for denoising is

R̂(i) = aiR′(i) + bi, (17)

where R̂(i) is the contrast-enhanced image after CLAHE processing.

Figure 5. CLAHE algorithm.

In Figure 6, the initial image is a low-light image with Gaussian white noise in the
LIME dataset, while b, c, and d are the images processed by CLAHE, WWGIF, and CLAHE-
WWGIF, respectively. The contrast and brightness of the image after the CLAHE algorithm
are obviously enhanced [24], but there is obvious noise in the background. When com-
paring with b and d, it is obvious that the image has been enhanced by CLAHE-WWGIF,
the regional noise is obviously suppressed, and the image has been enhanced in terms
of quality.
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(a) (b)

(c) (d)

Figure 6. Results of different algorithms. (a) Original image; (b) CLAHE algorithm; (c) WWGIF
algorithm; (d) CLAHE-WWGIF algorithm.

3.4. Enhancement of Saturation Component

In HSV space, the saturation component determines the overall color impression of
the image. When enhancing low-light images, the enhancement of brightness will also
cause the saturation to change accordingly. Processing only the brightness component will
cause the image to be altered and appear desaturated, with color imbalance [25], causing
the image to look overexposed and inconsistent with human visual effects. Therefore,
an adaptive stretching method is put forward to alter the saturation component. The
expression is as follows:

Sout =
Sin − lowvalue

highvalue − lowvalue
, (18)

where Sin is the input saturation component; lowvalue and highvalue are minimum and
maximum boundaries of the saturation component stretching, respectively, which are
calculated based on the percentile of the saturation distribution. The percentile indicates
the percentage of the values in the data that are less than or equal to the initial value and
can be customized by selecting the saturation value of the percentile that you want to
retain. As can be seen in Figure 7, after adaptive stretching, the saturation range is extended
to a wider range, and then the stretched image has richer color variations and light and
dark levels.
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Figure 7. Histogram of initial and stretched S components.

4. Experiment and Analysis

To assess the efficacy of the proposed method in this paper for low-light image en-
hancement in coal mines, MATLAB (Ver. 9.14) was used to conduct simulation experiments.
Three low-light monitoring images of coal mines are selected and compared with SSR, MSR,
and Ref. [6], whereby the first two are from publicly available images of underground coal
mines on the Internet, and the latter is from an image taken from an actual underground
coal mine surveillance video. The outcomes of the experiments are depicted in Figures 8–10.

(a) (b) (c) (d) (e)

Figure 8. Image 1, enhanced by different algorithms. (a) Original image; (b) SSR algorithm; (c) MSR
algorithm; (d) Ref. [6] algorithm; (e) Our’s algorithm.

(a) (b) (c) (d) (e)

Figure 9. Image 2, enhanced by different algorithms. (a) Original image; (b) SSR algorithm; (c) MSR
algorithm; (d) Ref. [6] algorithm; (e) Our’s algorithm.

(a) (b) (c) (d) (e)

Figure 10. Image 3, enhanced by different algorithms. (a) Original image; (b) SSR algorithm; (c) MSR
algorithm; (d) Ref. [6] algorithm; (e) Our’s algorithm.
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As can be seen from the above images, the original images are all images of coal
mines in a low-light situation, and the images are darker overall, making it difficult to
distinguish the details in them. The processing method using the SSR algorithm enhances
the brightness of the images to some degree, but its brightness enhancement effect is limited,
and the images still have distortion problems, resulting in a departure from the true color.
On the other hand, for the processing method using the MSR algorithm, the brightness is
greatly improved, and the details of the images are enriched. But the images are overall
too bright, and halo artifacts are prone to appear in bright areas; moreover, the noise in
the images are also amplified in the process, resulting in overall unclear and fuzzy images.
The method used in Ref. [6] has richer details, but the color of the images shows some bias;
the edges of the images are fuzzy, and the details are not clear. By contrast, the algorithm
utilized in this study obviously improves the brightness of the images, reduces the halo
blur phenomenon while improving the contrast, can better retain the edge details, and
suppresses the influence of noise. Additionally, the color effect with our algorithm is more
in line with human vision and can largely improve the quality of the coal mine images.

To objectively assess the level of image enhancement, the effect of enhancement is
evaluated through six metrics such as mean, standard deviation (SD), information entropy
(IE), and average gradient (AG). The metrics have the following specific definitions:

1. Mean

µ =
1

MN

M

∑
i=1

N

∑
j=1

I(i, j), (19)

where MN refers to the dimensions of the image. Mean is employed to assess the aver-
age pixel value, which indicates the mean brightness; as the value increases, the image
quality improves.

2. Standard deviation

SD =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(I(i, j)− µ)2, (20)

where µ is the mean of the image. SD is employed to assess the spread of grayscale values
among the image pixels, a larger value means a wider distribution of pixel values, that is,
the greater the quality of the image.

3. Information entropy

IE = −
M

∑
i=1

p(i) lg p(i)IE = −
M

∑
i=1

p(i) lg p(i)IE = −
M

∑
i=1

p(i) lg p(i), (21)

where p(i) denotes the probability of a pixel appearing within the image. IE is utilized
to assess the quantity of information presented within the image; a higher entropy value
equals a more uniform distribution of pixel values in the image, and the image has higher
levels of texture and detail.

4. Average gradient

AG =

M

∑
i=1

N

∑
j=1

√
( ∂ f

∂x )
2 + ( ∂ f

∂y )
2

2

MN
, (22)

where ∂ f
∂x and ∂ f

∂y are the gradients of the image in both the horizontal and vertical directions.
AG assesses the level of fluctuation in pixel values across the image, and a higher AG
indicates the presence of more edges and details.
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5. Peak signal-to-noise ratio

PSNR = 10 log
MN × 2552

N

∑
i=1

N

∑
j=1

[I(x, y)− I′(x, y)]2
, (23)

where I(x, y) and I′(x, y) are the images before and after enhancement, respectively. PSNR
is a metric employed to quantify the similarity between the original and reconstructed
images. A larger PSNR value means less distortion and higher quality between the recon-
structed image and the initial image.

6. Structural similarity

SSIM(x, y)=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (24)

where µx is the mean of x; σ2
x is the variance of x; σxy is the covariance of x and y; and c1 and

c2 are two constants. SSIM is used to evaluate the structural similarity between the images,
and a higher value of SSIM denotes that the two images are more structurally similar.

Tables 2–4 demonstrate the comparison of the algorithm presented in this paper with
the SSR and MSR algorithms. The values of various metrics of the images are greatly
improved compared to the algorithm in Ref. [6]. Furthermore, the metrics are also im-
proved, which means that the method introduced in this paper demonstrates a substantial
advancement in enhancing low-light images, which can obviously improve the brightness
and effectively reduce the halo blurring phenomenon as well as retain the improved edge
details, and to a certain extent, reduce the impact of noise.

Table 2. Evaluation results of different algorithms for Image 1.

Image 1 Mean SD IE AG PSNR SSIM

Original 39.1851 47.3219 6.5405 9.8552 - -
SSR 54.7889 55.1060 7.2588 11.9823 10.2724 0.6128
MSR 62.5176 58.3479 7.2629 15.1629 10.6629 0.6515

Ref. [6] 67.3683 60.4638 7.2838 15.9618 12.1916 0.6587
Ours 98.7722 73.1727 7.6195 19.6732 14.4768 0.7539

Table 3. Evaluation results of different algorithms for Image 2.

Image 2 Mean SD IE AG PSNR SSIM

Original 34.6971 35.0741 6.2112 6.4716 - -
SSR 73.5088 36.0588 7.2658 9.6218 10.6560 0.6096
MSR 86.5889 38.3281 7.2851 10.7908 11.4824 0.6263

Ref. [6] 89.7056 40.1476 7.3253 11.7218 11.4985 0.6463
Ours 110.5771 44.4188 7.4199 12.9321 13.0189 0.7835

Table 4. Evaluation results of different algorithms for Image 3.

Image 3 Mean SD IE AG PSNR SSIM

Original 76.8960 34.8910 7.2031 9.7077 - -
SSR 98.9119 43.6048 7.2848 10.9226 12.0918 0.6156
MSR 117.0049 44.2004 7.3035 11.5720 12.2162 0.6397

Ref. [6] 124.9763 45.6719 7.3149 11.1557 14.8119 0.7322
Ours 161.9878 46.8571 7.4639 12.3482 15.9980 0.7718
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5. Conclusions

To address the issues of halo blurring, poor edge preservation, and serious noise
in the traditional coal mine image enhancement methods, a new image enhancement
algorithm is proposed. Firstly, the initial image is transferred to the HSV space, where
the improved multi-scale guided filtering and Retinex algorithm are fused to effectively
extract the illumination component for the brightness component, avoiding halo artifacts
while retaining the edge details. Secondly, the extracted illumination component uses the
Weber–Fechner algorithm for adaptive brightness correction, and the reflection component
uses a fusion method for contrast enhancement and denoising, which suppresses noise
while avoiding excessive enhancement. Thirdly, the saturation component is enhanced with
the improved adaptive stretching method, and the color component is adjusted to prevent
color distortion. Lastly, the image is converted back to the RGB space. The algorithm
in this study proves that it can enhance the brightness of low-light images in coal mines
while reducing the appearance of noise and halo artifacts, and also preserve edge details.
Through this comprehensive processing, the enhanced image is better in terms of visual
aspects and detail retention, which can better meet the needs of mine monitoring videos.
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