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Abstract: This study pioneered a non-destructive testing approach to evaluating the physicochemical
properties of golden passion fruit by developing a platform to analyze the fruit’s electrical character-
istics. By using dielectric properties, the method accurately predicted the soluble solids content (SSC),
Acidity and pulp percentage (PP) in passion fruit. The investigation entailed measuring the relative
dielectric constant (¢') and dielectric loss factor (¢”) for 192 samples across a spectrum of 34 frequen-
cies from 0.05 to 100 kHz. The analysis revealed that with increasing frequency and fruit maturity,
both ¢’ and ¢” showed a declining trend. Moreover, there was a discernible correlation between
the fruit’s physicochemical indicators and dielectric properties. In refining the dataset, 12 outliers
were removed using the Local Outlier Factor (LOF) algorithm. The study employed various ad-
vanced feature extraction techniques, including Recursive Feature Elimination with Cross-Validation
(RFECV), Permutation Importance based on Random Forest Regression (PI-RF), Permutation Im-
portance based on Linear Regression (PI-LR) and Genetic Algorithm (GA). All the variables and the
selected variables after screening were used as inputs to build Extreme Gradient Boosting (XGBoost)
and Categorical Boosting (Cat-Boost) models to predict the SSC, Acidity and PP in passion fruit. The
results indicate that the PI-RF-XGBoost model demonstrated superior performance in predicting
both the SSC (R? = 0.9240, RMSE = 0.2595) and the PP (R? = 0.9092, RMSE = 0.0014) of passion fruit.
Meanwhile, the GA-CatBoost model exhibited the best performance in predicting Acidity (R? = 0.9471,
RMSE = 0.1237). In addition, for the well-performing algorithms, the selected features are mainly
concentrated within the frequency range of 0.05-6 kHz, which is consistent with the frequency range
highly correlated with the dielectric properties and quality indicators. It is feasible to predict the
quality indicators of fruit by detecting their low-frequency dielectric properties. This research offers
significant insights and a valuable reference for non-destructive testing methods in assessing the
quality of golden passion fruit.

Keywords: golden passion fruit; dielectric properties; feature screening; model establishment; non-
destructive testing

1. Introduction

Passion fruit is a perennial climbing vine plant belonging to the Passifloraceae family
and Passiflora genus. There are approximately 50-60 edible species of passion fruit found
worldwide. They are highly cherished for their unique aroma and nutritional value [1,2].
Among them, yellow passion fruit accounts for about 95% of the world’s commercial
Passiflora output [3,4]. As a distinctive fruit in southern China, the yellow passion fruit
industry has rapidly developed in recent years and holds considerable growth potential.
However, passion fruit is primarily harvested manually, leading to issues like inconsistent
quality and mixing of ripe and unripe fruit [5]. With the growing demand for passion fruit
in both domestic and international markets [6], manual quality assessment hinders the
standardized and large-scale development of passion fruit products, making it challenging
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to gain a competitive edge in the market. Therefore, establishing a non-destructive quality
testing method for passion fruit is essential to meet the needs of the industry’s development.

Many scholars, both domestically and internationally, have conducted research on
the quality assessment of passion fruit. The primary detection technologies include spec-
troscopy [7], the electronic nose [8], GC-MS [9,10], the Mechanical Property Test [5,11]
and others. Most of these methods require destructive testing. However, Maniwara et al.
utilized a non-destructive method using visible and short-wave near-infrared spectroscopy
through interacting and transmission measurements to evaluate the physicochemical qual-
ity of ripe passion fruit. It is important to note that passion fruit of different maturities
exhibit significant variations in their physicochemical indicators, and those with lower
maturity tend to have noticeably thicker peels. The peel thickness and internal seeds
can significantly impact the efficiency of spectroscopic non-destructive testing methods.
Compared to these techniques, non-destructive testing based on dielectric properties is
more efficient and reliable and involves lower equipment costs.

Fruit undergoes a series of changes during the ripening process, both at the macro-
and microscopic levels. Macroscopically, these changes are observed in terms of hardness,
soluble solids content, acidity, pulp percentage and color. From a microscopic perspective,
there is a formation of a bioelectric field generated by numerous charged particles within the
fruit. As substances undergo transformation during the growth and ripening process, the
amount of charge carried by various chemical substances within the fruit’s internal tissues,
as well as the spatial distribution of charges, may also change. These microscopic changes
in the electric field have an impact on the fruit’s dielectric properties at the macroscopic
level [12,13].

The study of the relationship between dielectric properties and the quality of fruit,
as well as the exploration of methods for the non-destructive evaluation of fruit quality
based on dielectric properties, has attracted widespread attention. Both domestic and
international research on fruit and vegetables like bananas [14], kiwifruit [15], carrots [16],
Korla pears [17,18] and mangoes [19] involved measuring their electrical properties at low
frequencies to determine the physicochemical qualities. The current research methods have
shifted from early statistical analysis of dielectric properties to establishing multivariate
models based on dielectric properties combined with various algorithms. Fazayeli et al. [15]
developed a model using an Artificial Neural Network with dielectric property features as
input to predict the hardness, soluble solids content and pH value of kiwifruit, achieving
R? values of 0.92, 0.91 and 0.86, respectively. Lan et al. [17] used equivalent parallel capac-
itance, quality factor, loss factor, equivalent parallel resistance, complex impedance and
equivalent parallel inductance as model inputs. And compared the predictive performance
of three models(GRNN, BPNN and ANFIS), in forecasting the soluble solids content of
Korla pear. Ibba et al. [20] measured the bioimpedance data of strawberries at both mature
and immature stages, between frequencies of 20-300 kHz. They utilized six of the most
commonly used supervised machine learning classification techniques to evaluate their
effectiveness in predicting strawberry fruit ripeness. Extensive research indicates that ma-
chine learning algorithms have been widely applied in predicting and classifying fruit and
vegetable quality. Appropriate postharvest treatment methods for fruit and vegetables of
different maturity can ensure quality during the shelf life and increase economic value [21].

This paper focuses on “Bale Huangjinguo” passion fruit [22] as the research subject,
analyzing the trends in dielectric properties under different frequencies and growth degree
days. The relative dielectric constant and dielectric loss factor at 34 frequencies within the
low-frequency range of 0.05-100 kHz are employed as feature representations. Anomaly
values are filtered out using the LOF algorithm, followed by the application of four diverse
feature selection methods: RFECV, PI-RF, PI-LR and GA. Ultimately, XGBoost and CatBoost
models were established to predict the quality indicators of passion fruit, such as SSC,
Acidity and PP, and we compared the predictive performance under various feature selec-
tion methods and different models. This study demonstrates the feasibility of combining
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low-frequency dielectric properties and machine learning for non-destructive testing of
passion fruit quality.

2. Materials and Methods
2.1. Test Samples

From July to October 2021, a total of 192 experimental samples were collected in three
batches from fruit orchards in Pinghe County, Zhangzhou City, Fujian Province. The sam-
ples had growth degree days ranging from 700 to 1400 °C-d. The variety selected for the
passion fruit was “Bale Huangjinguo”, with an average sample weight of 86.7 & 10.15 g,
horizontal diameter of 63.39 £ 3.26 mm and longitudinal diameter of 64.04 & 2.46 mm.
The experimental samples had full fruit shape and showed no obvious external defects
or damage from pests and diseases, as shown in Figure 1. All the samples were cleaned,
air-dried and individually numbered. The samples’ dielectric properties and physicochem-
ical indices were measured in the laboratory at a room temperature of 25 & 1 °C on the
same day.

Figure 1. Passion fruit sample pictures; these samples become more mature from left to right.

2.2. Measurement Equipment and Methods
2.2.1. Dielectric Parameter Measurement

The passion fruit dielectric properties acquisition system, as shown in Figure 2, pri-
marily consists of an LCR digital electric bridge tester (TH2830 type, Tonghui electronics
equipment company, Changzhou, China), a fruit electrical parameter testing platform
(self-made) and a computer. The measurement method involves the placement of the
sample between two parallel plates in direct contact with them to assess the sample’s
dielectric properties, which encompass ¢’ and ¢”. The entire system is housed within a
sealed shielded enclosure to safeguard against external interference.

Figure 2. Electrical characteristics testing platform. Among them are 1. Electrical machinery,
2. Support stand, 3. Force sensor, 4. Lead screw, 5. Sample, 6. Electrodes, 7. Shielding box, 8. Force
display, 9. Motor drive module, 10. Microcontroller, 11. LCR tester.

The LCR tester has a frequency range of 0.05-100 kHz and a measurement accuracy
of 0.05%. Two measurement probes of the LCR tester are connected to the parallel plate
capacitor formed by the upper and lower brass plates. Consistency in applying external
force during different experimental processes is ensured through a pressure sensor. When
the force reaches 1 N, the motor stops running and the dielectric parameters are measured.
Data are acquired using the testing system software (TH2832LCR 2.2.21). Samples are
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placed horizontally along the longitudinal axis, and data are collected every 120° rotation
along the longitudinal axis. The obtained dielectric parameters from three measurements
are averaged to represent the dielectric characteristics of the sample.

After placing the test sample between the parallel plates, the equivalent circuit consists
of a parallel combination of capacitance Cp and conductance G. The capacitance value
Cp and conductance value G at the characteristic frequency are measured using an LCR
tester. According to Formula (1), the real and imaginary parts of the dielectric constant are
calculated as the relative permittivity ¢’ and the dielectric loss factor ¢’/ [23,24], as shown
in Formula (2).

| (C, .G
C,d
el = P~

{ ~ ®
OJCO

where Z is the complex impedance, (); C, is the parallel capacitance of the golden passion
fruit, F; d is the distance between plates during the test, m; Cy is the vacuum capac-
itance when the dielectric is air, F; gg is the dielectric constant of free space, taken as
8.85 x 10712 F/m; S is the area of the plates, m2; G is the conductance value, S; and w = 27tf;
f is the test frequency, Hz.

2.2.2. Measurement of Physicochemical Index Parameters

In accordance with the provisions of the current national standard for passion fruit
quality grading (GB/T 40748-2021) regarding the physicochemical requirements for passion
fruit, this study determined the physicochemical characteristics of the samples, including
PP, SSC and Acidity. A total of 192 fruit samples were analyzed, with the following ranges
observed: PP ranged from 44.1% to 61.8%, SSC ranged from 9.9% to 23.8% and Acidity
ranged from 1.19% to 6.46%.

The following describes the PP measurement process: Using an electronic balance,
weigh the whole passion fruit. Then, cut the passion fruit in half along its longitudinal axis.
Gently scoop out the pulp, thoroughly clean the outer shell of the fruit and then weigh the
passion fruit peel. Record measurements in grams (g).

_W-W,

PP
W

)
where W is the total fruit weight and W), is the peel weight from each fruit.

The following describes the SSC measurement process: A digital refractometer/acid
meter (Model PAL-BX/ACID-F5, ATAGO, Tokyo, Japan) is used. To obtain the juice for
SSC measurement, the passion fruit is manually pressed and filtered through two layers
of cotton-linen cloth. At least 3 mL of this extracted passion fruit juice is placed in the
measurement area of the instrument, and then the SSC value of the juice is measured. This
process is repeated three times for each sample and then the average value is taken.

The following describes the Acidity measurement process: Using a digital refractome-
ter/acid meter (Model PAL-BX/ACID-F5, ATAGO, Japan), to perform the acid measure-
ment, after diluting 1 g of juice 50 times, at least 3 mL of the diluted solution is placed in the
measurement area of the instrument to measure the acid value of the juice. This process is
repeated three times for each sample and then the average value is taken. The effectiveness
of the digital acid measurement has been confirmed in the research conducted by Rivera
et al. [25], as referenced in their study.

2.3. Data Analysis and Model Building
2.3.1. Definition of Fruit Ripeness

Growth degree days can reflect the comprehensive impact of climate conditions on crop
growth and analyze the heat conditions for crops. They can be used to determine the growth
stages and corresponding physiological characteristics of crops under certain climate
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conditions, thus guiding the timely harvesting of crops [26,27]. This study selects growth
degree days (GDD) during the maturation process of passion fruit as the fundamental
reference for fruit ripeness. The formula for calculating GDD for the fruit is as follows [28]:

GDD = N (T — Ty) 4)

where GDD are growth degree days, °C-d; N is the development period in days; T is the
daily average temperature in °C; T is the lower limit temperature in °C, set at 10 °C.

Observations and statistics in orchards reveal that fruit with GDD less than 700 °C-d,
due to their insufficient growth period, are still in the fruit expansion period and unlikely
to be mistakenly harvested. Fruit are considered fully mature when they naturally fall
off the vine after reaching a maximum of 1400 °C-d in GDD. Thus, this paper primarily
investigates fruit with GDD in the range of 700~1400 °C-d. The GDD data are sourced from
meteorological statistics in Zhangzhou, Fujian, where the fruit are grown. The calculation
of GDD for each passion fruit starts from the fruit setting date.

2.3.2. Modeling Methods

The models utilize dielectric parameters from a specified frequency range as input
variables. The LOF algorithm is employed to eliminate anomalies in both the physico-
chemical indicators and dielectric characteristics. A variety of feature selection methods,
including RFECYV, PI-RE, PI-LR and GA, are applied to sift through the dielectric parameters
for relevant feature variables. We built XGBoost and CatBoost prediction models separately
incorporating the feature selection algorithms. The process diagram is shown in Figure 3.
The primary model evaluation metric is the coefficient of determination (R?), with root
mean square error (RMSE) as a secondary metric, to compare and analyze the performance
of each model combination.

Model building

______________________________

Model
optimization and
evaluation

Optimal
model

1 1

Data} Ql{tller : PLRF
collection Elimination \
|

i

Figure 3. Modeling method flow diagram. Through the above process, prediction models for SSC,
Acidity and PP are established, respectively.

2.3.3. Dataset Splitting

In this experiment, the dataset was divided using the train_test_split() function from
sklearn, with a ratio of 9:1 for the training set and the test set. A 10-fold cross-validation
method was employed to evaluate the performance of each model, and the results were
presented as the mean of each fold. Cross-validation is effective in reducing overfitting,
improving generalization and extracting as much useful information as possible from a
limited dataset [29].

2.3.4. Outlier Elimination

In this experiment, the Local Outlier Factor [30] is used to clean the data by removing
invalid and outlier data. This method is based on density-based outlier detection, where
the local group size is set to 20 and the distance calculation method is euclidean_distance.
It involves calculating the LOF for each point in the dataset to determine how close this
value is to 1. In this experiment, outliers were identified and removed separately from the
physicochemical indices and dielectric property parameters. If the LOF value is significantly
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greater than 1, it is determined to be an outlier. The results from both sets were combined,
resulting in the removal of 12 anomalous samples.

2.3.5. Feature Extraction Method

The RFECV technique is as follows: Utilize the Cross-Validation Recursive Feature
Elimination algorithm for feature selection. Establish a linear model using all features,
rate each feature for its importance and eliminate the weakest feature to obtain a subset
of important features. Combine Cross-Validation (CV) with the RFE method to score
different feature subsets and select the best feature subset, completing the feature selection
process [31].

The permutation importance technique is as follows: The algorithm combines Random
Forest Regression and Linear Regression to fit the dataset separately, initially determining
the prediction accuracy for the original data. Then, the algorithm randomly shuffles the
values of a feature while keeping the other characteristics unchanged. After this shuffling,
the change in prediction accuracy is compared. The more significant the decrease in
accuracy, the higher the dependency of the model’s prediction on that particular feature.
This process is repeated to rank the features by their importance, thus facilitating feature
selection [32].

The Genetic Algorithm technique is as follows: The Genetic Algorithm (GA) first
randomly generates initial solutions and evaluates the fitness of each initial solution,
transforming the optimization objective of the problem into a fitness function. Then, it
undergoes selection, crossover, mutation, replacement and iteration operations based on
the theory of biological evolution, continuing until the maximum number of iterations is
reached, thereby obtaining the final result for feature selection [33].

2.3.6. Machine Learning Algorithm

XGBoost [34] and CatBoost [35] are two novel and popular improved algorithms
based on the gradient boosting tree framework. They show significant potential in fields
such as biology and medicine. Both algorithms build robust learners by generating and
iterating multiple weak estimators to fit the residuals of the final tree model. The XGBoost
algorithm incorporates L1 and L2 regularization, effectively controlling model complexity
and preventing overfitting. It also has an optimized and unique data structure, resulting in
efficient training and prediction speed [36,37]. The CatBoost algorithm is based on symmet-
ric decision trees, can rapidly and accurately make predictions with fewer parameters and
is less prone to overfitting. It is particularly efficient and reasonable in handling categorical
features [38,39].

3. Results and Discussion
3.1. Analysis of Dielectric Properties under Different GDD

Figure 4 shows the dielectric parameters of golden passion fruit under different GDD.
With the increase in the frequency of the test signal, the dielectric parameters ¢’ and ¢’ of
the fruit decrease under different GDD. This trend was most significant at low frequencies
(0.05 to 10 kHz), a pattern also observed in studies of the dielectric properties of other fruit
and vegetables such as tomatoes and mangoes [40,41]. Additionally, at the same frequency,
the ¢/ and ¢” values were generally lower for ripe samples compared to unripe ones. The
main reason for this is that as passion fruit ripens, the membrane permeability and free
water content increase. As a result, the ability of the cell membrane in mature fruit to
bind charges weakens, leading to a gradual decrease in ¢’ and ¢’ [42,43]. Overall, in the
frequency range of 0.05-5 kHz, there are significant differences in the dielectric properties
of passion fruit under different GDD.
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Figure 4. Influence of frequency on the dielectric properties of passion fruit: (a) relative dielectric
constant ¢’ and (b) dielectric loss factor ¢”.

3.2. Analysis of the Correlation between Dielectric Properties and Physicochemical Indicators

Pearson correlation analysis between the dielectric parameters and physicochemical
indicators at different frequencies is shown in Figure 5. There is a significant correlation be-
tween the dielectric parameters (¢/ and ¢”) of the summer golden passion fruit and various
physicochemical indicators. The dielectric parameters ¢’ and ¢’ are negatively correlated
with SSC and PP, while they are positively correlated with Acidity. The frequency range
where ¢’ exhibits a higher correlation with the physicochemical indicators is concentrated
between 0.05 and 5 kHz, while the frequency range where ¢’ shows a higher correlation
with the physicochemical indicators is concentrated between 1 and 10 kHz. The correlation
coefficients are all around 0.8 within this frequency range.
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Figure 5. Correlation analysis of dielectric parameters and physicochemical properties at different
frequencies: (a) SSC; (b) Acidity; (c) PP.
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From Figure 4, the dielectric parameters of fruit with different GDD show good dis-
crimination within the frequency range of 0.05-5 kHz. Moreover, as indicated in Figure 5,
there is a high correlation between the dielectric parameters and physicochemical indicators
within the frequency range of 0.05-10 kHz. Based on the above analysis, it can be concluded
that selecting feature frequencies within the range of 0.05-10 kHz may be more appropriate.
However, overall, the absolute values of the correlation coefficients between ¢’ and ¢ at
different frequencies and physicochemical indicators are all between 0.6 and 0.85, indicating
that the correlations are not very strong. This suggests that it is challenging to accurately
predict the physicochemical indicators of golden passion fruit using dielectric parameters
at a single frequency. Therefore, to better predict the physicochemical indicators of golden
passion fruit using dielectric technology, modeling and analysis should be performed at
multiple characteristic frequencies.

3.3. Feature Extraction

After removing 12 outlier samples using the LOF algorithm, a physicochemical indica-
tor prediction model was established using 180 passion fruit samples of different ripeness.
A total of 68 features were used as inputs, including ¢’ and ¢ at 34 different frequency
points within the range of 0.05 to 100 kHz (0.05, 0.06, 0.075, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3, 0.4,
0.5,0.6,0.75,1,1.2,15,2,25,3,4,5,6,7.5,10, 12, 15, 20, 25, 30, 40, 50, 60, 75, 100 kHz). Four
feature selection algorithms (RFECV, PI-RF, PI-LR and GA) were used to select the features,
and the results of the variable feature selection are shown in Table 1.

Table 1. Screening results of characteristic variables.

Feature Physicochemical Number of Features after Filterin
Filtering Methods Indicators Features 8
25¢! 30¢’ 60¢’ 100¢’ 20¢” 25¢” 50¢”
55C 10 60" 75¢/" 100¢”
RFECV Acidity 5 30¢’ 20¢” 25¢" 40¢” 50¢”
pp 1 10¢’ 12¢’ 15¢’ 20¢’ 30¢’ 40¢’ 50¢’
100¢’ 20¢” 25¢" 40¢" 50¢"” 60e” 75¢"
4" 0.5¢’ 0.6¢’ 5¢” 1.2¢/ 0.4¢’ 0.4¢"
SSC 10 18” 35// 65//
PLER Acidit 1 4" 0.5¢’ 7.5¢" 10¢”  0.75¢"  0.6¢’ 0.5¢"
: Y 0.2¢/ 5 0.3¢”  0.05¢"
PP 1 4" 0.6¢’ 0.5¢’ 6e” 3¢ 0.05¢/  7.5¢”
0.1¢” 0.4¢" 5¢” 0.05¢" 2¢
10¢” 75¢" 40" 12¢” 60e” 30e” 25¢"
SSC 9 / "
75¢ 20e
PLLR Acidity 9 10¢” 30¢” 75¢" 12¢” 60e” 75¢’ 15¢’
i 25¢" 40"
pp 9 10¢” 75¢" 12¢” 30¢” 25¢" 40¢" 75¢’
20¢"” 60e”
1€ 20¢’ 0.05¢"  0.15¢”  0.3¢”  0.75¢" 2¢"
SSC 10 1" " "
3e 6¢e 40¢
GA Acidity 7 0.05¢’ 1.2¢/ 0.12¢”  0.75¢"” 1¢” 2¢" 50¢”
PP 9 0.05¢/ 1.2¢/ 12¢’ 0.25¢"  0.75¢" 1" 5¢”
40¢" 100¢”

3.4. Establishment of Prediction Models and Comparison of Results

Using the full variables (FVs) and variables selected by the RFECV, PI-RF, PI-LR and
GA algorithms as inputs, and using passion fruit SSC, Acidity and PP as outputs, XGBoost
prediction models (FV-XGBoost, RFECV-XGBoost, PI-RF-XGBoost, PI-LR-XGBoost, GA-
XGBoost) and CatBoost prediction models (FV-CatBoost, RFECV-CatBoost, PI-RF-CatBoost,
PI-LR-CatBoost, GA-CatBoost) were established. The model parameters were set as shown
in Table 2.
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Table 2. Model parameter settings.

Modeling Method Model Parameters Set Value
n_estimators 50
learning_rate 0.1
eval_metric ‘rmse’
XGBoost max_depth 10
objective ‘reg:squarederror’
booster ‘gbtree’
iterations 1000
learning_rate 0.01
CatBoost eval_metric ‘RMSE’
atboos loss_function ‘RMSE’
depth 4
od_type ‘Tter’

The model results are shown in Table 3. Overall, the prediction performance of the
models after feature selection is not significantly different from the full variable regression
model. Among them, the PI-RF-XGBoost model demonstrates good performance in predict-
ing SSC, achieving a determination coefficient (R?p) of 0.9240 and a root mean square error
(RMSEp) of 0.2595 on the prediction set. For predicting Acidity, the GA-CatBoost model
performs well with an Rzp of 0.9471 and an RMSEp of 0.1237. Similarly, the PI-RF-XGBoost
model shows good performance in predicting PP, with an R?p of 0.9092 and an RMSEp
of 0.0014. Figure 6 shows the prediction results of the three models. It can be clearly seen
that the samples are concentrated near the y = x regression line, and the prediction results
are better.

Table 3. XGBoost and CatBoost modeling results. The results are presented as the mean of each fold.

XGBoost CatBoost
Physicochemical Feature Calibration Set Prediction Set Calibration Set Prediction Set
Indicators Filtering Methods ~ R2c  RMSEc R?p RMSEp R3%  RMSEc R’}p  RMSEp
FV 0.9986 0.2175 0.8992 0.2175 0.9918 0.3605 0.9116 0.3605
RFECV 0.9940 0.3529 0.8950 0.3529 0.9729 0.6611 0.8682 0.6611
ssC PI-RF 09975  0.2595  0.9240  0.2595 0.9822 0.5269 0.9152 0.5269
PI-LR 0.9958 0.3120 0.8958 0.3120 0.9702 0.6879 0.8743 0.6879
GA 0.9980 0.2411 0.9040 0.2411 0.9858 0.4746 0.9031 0.4746
FV 0.9812 0.2410 09171 0.2410 0.9973 0.0875 0.9397 0.0875
RFECV 0.9649 0.3256 0.8960 0.3256 0.9845 0.2137 0.8786 0.2137
Acidity PI-RF 0.9757 0.2712 0.9233 0.2712 0.9949 0.1211 0.9382 0.1211
PI-LR 09687  0.3057  0.9069  0.3057 0.9895 0.1748 0.9226 0.1748
GA 0.9760 0.2680 0.9257 0.2680 0.9947 0.1237 0.9471 0.1237
FV 0.9998 0.0012 0.9016 0.0012 0.9577 0.0117 0.8740 0.0195
RFECV 09986  0.0024 09016  0.0012 0.9188 0.0163 0.8740 0.0195
pp PI-RF 0.9997 0.0014 0.9092 0.0014 0.9483 0.0129 0.8708 0.0199
PI-LR 0.9982 0.0027 0.8859 0.0027 0.9033 0.0176 0.8056 0.0244
GA 09996  0.0015  0.9030  0.0015 0.9464 0.0132 0.8748 0.0194

Furthermore, for the algorithms that performed well, their input features are mainly
concentrated in the frequency range of 0.05-6 kHz, which is consistent with the previous
results. From the perspective of the complexity of the regression models, the RFECV, PI-RF,
PI-LR and GA algorithms have significantly simplified the computational complexity of the
models. The number of variables has been reduced by 85.78%, 83.82%, 86.77% and 87.26%,
respectively. Moreover, by pruning the models and reducing the number of iterations,
the model size has been further reduced. The results indicate that the PI-RF-XGBoost,
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GA-CatBoost and PI-RF-XGBoost models can provide good predictions of passion fruit’s
SSC, Acidity and PP within 1 ms.
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Figure 6. Comparison between measured and predicted results of fruit physicochemical parameters:
(a) SSC; (b) Acidity; (c) PP.
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The differences in R? values between the calibration and prediction sets for the three
predictive models are 0.0735, 0.0476 and 0.0905, respectively. Overall, the robustness
of the three models is good, and there is no issue of overfitting leading to inadequate
generalization ability. However, in general, the prediction performance for SSC and Acidity
is better than that for PP. This difference may be related to the reason for the dielectric

behavior, which is mainly caused by free water propagation and ion migration within the
passion fruit [12].

4. Conclusions

In this study, a detection platform was established using the LCR digital bridge tester,
and the dielectric properties of 192 passion fruit samples were accurately measured at
34 different frequencies ranging from 0.05 to 100 kHz. After removing outliers and con-
ducting feature selection, prediction models based on dielectric properties were established
for quality indicators of passion fruit. The main conclusions are as follows:

1. There are differences in the ¢’ and ¢’ parameters of passion fruit with different
maturities. Moreover, significant correlations exist between the physicochemical
indicators of passion fruit and the ¢’ and ¢” parameters at frequencies ranging from
0.05 to 10 kHz. The correlation coefficients range between 0.6 and 0.85.

2. The Local Outlier Factor (LOF) algorithm is used to filter out 12 outlier samples. Re-
cursive Feature Elimination with Cross-Validation (RFECV), Permutation Importance
based on Random Forest Regression (PI-RF), Permutation Importance based on Linear
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Regression (PI-LR) and Genetic Algorithm (GA) are employed to select 68 dielectric
parameter features. The number of variables has been reduced by 85.78%, 83.82%,
86.77% and 87.26%, respectively.

3. The XGBoost and CatBoost algorithms are used to establish a quality prediction model
for passion fruit and achieved good detection results. The determination coefficients
(R?) for predicting the physicochemical parameters (SSC, Acidity, and PP) are 0.9240,
0.9471 and 0.9092, respectively.

The results of this study prove the effective application of the feature screening meth-
od and the XGBoost and CatBoost algorithms in the field of agricultural science and
tech-nology, especially the prediction of passion fruit quality indicators based on dielectric
properties. In future work, it is possible to predict the quality characteristics of postharvest
fruit, such as maturity, moisture content, hardness and vitamin C content, based on their
dielectric properties. The growth status of fruit can be estimated through physicochemical
indicators. By applying appropriate postharvest treatments to fruit of different maturity, the
quality of the fruit can be ensured during the shelf life, thus enhancing their economic value.

However, the study still has the following limitations: the experimental samples were
of a single variety and from a limited geographical area, the equipment cost was high
and the operation was complex. In order to better apply this technology to agricultural
production practice, future studies could conduct: experiments on fruit of multiple varieties
and from different geographical locations to identify commonalities and differences among
them; fixed-frequency dielectric detection sensors could also be used in the future to create
a more convenient and efficient fruit quality detection device.
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