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Abstract: There is a very thick water-bearing key strata above the coal seam in the Binchang mining
area. When the mining scale is large, it easily breaks and leads to rockburst with a surge of water
gushing in the panel. Adopting the layout pattern of a small panel and a large coal pillar can improve
the stability of the main key strata, but at present, the research on the layout pattern of a small panel
and a large coal pillar under extra-thick water-bearing key strata is still not perfect. Therefore, taking
the second and third panels of a mine in Binchang as the engineering background, the width of the
coal pillar and the mining scale of the panel are optimized by means of theoretical analysis, field
measurement, and numerical simulation to prevent rockburst and control water inflow. The results
show: (1) through theoretical calculation, it is deduced that the critical width of instability of the
isolated coal pillar in the current mining scale is 257 m, and the critical mining scale of breaking and
instability of the main key strata in the third panel is 537 m; (2) considering the bearing capacity of
the isolated coal pillar and the recovery rate of coal resources, the reasonable width of the isolated
coal pillar is 210~270 m, and when the width is 200 m and 250 m, the reasonable mining scale of the
third panel is 490~550 m and 640~700 m, respectively; (3) the field practice shows that the actual
width of the coal pillar between the second and third panels is less than the reasonable width, and
the stress concentration in the isolated coal pillar area is relatively high, so the roof deep hole blasting
and large-diameter drilling in coal seam are adopted to relieve pressure. After taking pressure relief
measures, the stress concentration in the isolated coal pillar area is effectively reduced, and the
pressure relief effect is remarkable.

Keywords: rockburst; extra thick; water-bearing key strata; width of panel-isolated coal pillar; mining
scale of panel

1. Introduction

Rockburst is a phenomenon in coal mining where the coal rock mass suddenly fails,
releasing a substantial amount of energy, which can lead to the deformation of the roadway
surrounding the rock, equipment damage, and potential disasters such as coal and gas
outburst and water inrush [1–8]. The Binchang mining area is one of the major Chinese
coal-producing regions, which is generally faced with the situation that the mining depth is
large and there is an extra-thick water-bearing sandstone layer above it. With the increase
in the panel mining scale, the extra-thick water-bearing sandstone strata is broken and
unstable, which leads to rockburst. At the same time, it is accompanied by a certain degree
of water gushing [9–11]. Therefore, the adoption of the layout pattern of a small panel and
a large coal pillar is of great significance to ensure the safe and efficient production of coal
resources in the Binchang mining area.
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The movement and rupture of the overlying strata is one of the crucial factors con-
tributing to rockburst, and extensive research has been conducted by experts globally on
the connection between overlying strata movement and rockburst. WANG Jiachen et al.
put forward the masonry beam theory, gave the occlusal mode of broken rock mass and the
mechanical conditions of instability, further developed the key layer theory, and explained
the law of integral migration of overlying rock from the underground mining space to
the surface [12]. Xu Xuefeng et al. studied the stress distribution characteristics of rocks
surrounding the roadway under the super-thick conglomerate stratum. After the mining of
several working faces, the extra-thick conglomerate has a large-scale hanging roof, resulting
in an “O” type abutment pressure circle in the coal body around the goaf. The rockburst
risk is high in the middle of the roadway [13]. Jiang Fuxing et al. investigated the impact
of the overlying main key strata on the risk of rockburst in the mining face, and revealed
the mechanism of rockburst induced by the breaking of super-thick main key strata [14].
Yang Weili et al. studied the impact mechanism of isolated island working faces under
extra-thick magmatic rock, proposing criteria for judging the impact of isolated island
working face under extra-thick magmatic rock instability [15]. Cao Anye et al. studied the
effect of spatial structure and fracture migration characteristics of thick hard overburden
on mine earthquake activity, and obtained the evolution characteristics of mine earthquake
distribution in the process of mining in the isolated island working face [16]. Bai Xianqi
et al. investigated the mechanism of thick overlying strata structure rupture inducing mine
tremor events, proposing that the increase in goaf area causes vertical ‘O-X’ type fractures
in the thick sandstone layer above the coal seam, triggering mine tremor events [17]. Zhai
Minghua et al. studied the regularities of the dynamic impact induced by the movement of
thick and hard strata, proposing that mining in critical working faces leads to the rupture
of thick and hard strata, thereby inducing strong mine tremors or rockburst [18].

Regarding the mechanism of rockburst in the isolated coal pillar area, Wang Bo
et al. studied the mechanism of rockburst in the isolated coal pillar area and developed
a rational design method for the width of isolated coal pillars to control rockburst [19].
Xue Chengchun et al. investigated the mechanism of rockburst in irregular the isolated
island coal pillar area, revealing that as the working face advances, the stress distribution
inside the coal pillar shows an asymmetric ‘saddle-shaped’ pattern, and the stress peak
continually increases, leading to coal pillar instability [20]. Feng Feilong et al. concluded
that the transfer load of the overlying strata in the goaf increases the static load stress in the
goaf side of the fully mechanized top coal caving pillar, which is superimposed with a hard
roof breaking dynamic load to induce rockburst [21]. Li Dong et al. studied the mechanism
of rockburst during the mining process of the working face with a large coal pillar on one
side of the fold structure area [22]. Xu Xuhui et al. researched the mechanism of rockburst
in the roadway under the disturbance of remaining coal pillars in large mining height
mining faces, determining the reasonable layout positions for the roadway [23]. Zhang
Shuai et al. optimized the pillar size of isolated island panel gob-side entry driving in deep
inclined coal seams [24]. Li Xiaobin et al. studied the coal pillar width and surrounding
rock control of gob-side entry in extra-thick coal seams [25]. Yang Kai et al. studied the
reasonable width of coal pillars in high-strength mining roadways [26].

The mining depth of a mine in Binchang is nearly 1000 m, and the sandstone aquifer
of the Luohe formation is overlying it. The inclined mining scale of the second panel of
the mine is 900 m, which leads to the rockburst caused by the fracture and instability of
the upper super-thick main key strata, accompanied by water inflow. To prevent rockburst
and control water inflow, the third panel adopts the small panel and large coal pillar layout
pattern. However, at present, there is limited research on the layout pattern of the panels
beneath the thick water-bearing key strata. Therefore, through the methods of theoretical
analysis, field measurement, and numerical simulation, from the stability of the isolated
coal pillar and the main key strata above the goaf, this paper studies the overlying rock
breaking rule and the stress evolution characteristics of the isolated coal pillar under the
different layout pattern of a small panel and a large coal pillar, and optimizes the width
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of the isolated coal pillar and the mining scale of the panel. It provides a reference for the
prevention and control of rockburst in mines with similar conditions.

2. Engineering Background
2.1. Mining Geological Conditions

The mine is located in the northwest part of the Binchang mining area in Shanxi
Province, with a depth of nearly one kilometer. It primarily extracts coal from the 4# coal
seam, the dip angle of the 4# coal seam is 2◦~11◦, the average dip angle is 6.5◦, and the 4#
coal seam has strong bursting liability. The second panel is positioned to the east of the
west-wing main roadway. The length on strike is approximately 1050–1450 m, the inclined
width is about 900 m, and the area is about 1.35 km2. The thickness of the 4# coal seam in
the second panel is 0.8–15.7 m, with an average of 10.5 m, and the buried depth is 850 m
to 1000 m. Five working faces are arranged in the second panel, each separated by small
coal pillars measuring 5.0–7.0 m, and all adopting the fully mechanized top coal caving
method. Among them, the mining height of LW205 is 3.5 m and the coal caving height is
5.5 m, which ends in September 2021. The third panel is arranged as a small-panel layout,
situated to the northwest of the second panel. There is a panel isolation coal pillar with a
width of 200 m between the second and third panels. The inclined width of the third panel
is approximately 550 m. The layout of the second and third panels is illustrated in Figure 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 18 
 

isolated coal pillar and the main key strata above the goaf, this paper studies the overlying 
rock breaking rule and the stress evolution characteristics of the isolated coal pillar under 
the different layout pattern of a small panel and a large coal pillar, and optimizes the 
width of the isolated coal pillar and the mining scale of the panel. It provides a reference 
for the prevention and control of rockburst in mines with similar conditions. 

2. Engineering Background 
2.1. Mining Geological Conditions 

The mine is located in the northwest part of the Binchang mining area in Shanxi Prov-
ince, with a depth of nearly one kilometer. It primarily extracts coal from the 4# coal seam, 
the dip angle of the 4# coal seam is 2°~11°, the average dip angle is 6.5°, and the 4# coal 
seam has strong bursting liability. The second panel is positioned to the east of the west-
wing main roadway. The length on strike is approximately 1050–1450 m, the inclined 
width is about 900 m, and the area is about 1.35 km2. The thickness of the 4# coal seam in 
the second panel is 0.8–15.7 m, with an average of 10.5 m, and the buried depth is 850 m 
to 1000 m. Five working faces are arranged in the second panel, each separated by small 
coal pillars measuring 5.0–7.0 m, and all adopting the fully mechanized top coal caving 
method. Among them, the mining height of LW205 is 3.5 m and the coal caving height is 
5.5 m, which ends in September 2021. The third panel is arranged as a small-panel layout, 
situated to the northwest of the second panel. There is a panel isolation coal pillar with a 
width of 200 m between the second and third panels. The inclined width of the third panel 
is approximately 550 m. The layout of the second and third panels is illustrated in Figure 
1. 

 
Figure 1. Schematic diagram of the working faces layout of the 2nd and 3rd panels. 

According to the drilling holes 31-2, 27-2, and 30-3 near the second and third panels 
(see Figure 1 for the borehole locations), combined with the theory of key strata, the me-
dium-coarse sand strata in the middle and upper part of the Luohe formation are the main 
key strata, with a thickness of 184–400 m and a distance of 113–294 m from the 4# coal 
seam. In the second panel, the thickness of the main key strata on the side of the 201 goaf 
is larger, while that on the side of working face 205 (LW205) is smaller. Additionally, based 
on in situ logging data, the water-rich aquifer is entirely present in the Luohe formation, 
with the middle section of the Luohe formation containing 75% of the water-rich aquifer. 

LW 205

 204 Goaf

 203 Goaf

302 Goaf

LW 301

LW 303

Panel isolated coal pillar

6# 9#
5#

7#

22#

18#

14# 11#

10#

31-2

2nd
 p

an
el 

 
3rd

 p
an

el 

200m

Coal Goaf Panel isolated coal pillar GeophoneDrillhole

27-2

30-3
 201 Goaf

 202 Goaf

55
0m

90
0m

Figure 1. Schematic diagram of the working faces layout of the 2nd and 3rd panels.

According to the drilling holes 31-2, 27-2, and 30-3 near the second and third panels
(see Figure 1 for the borehole locations), combined with the theory of key strata, the
medium-coarse sand strata in the middle and upper part of the Luohe formation are the
main key strata, with a thickness of 184–400 m and a distance of 113–294 m from the 4# coal
seam. In the second panel, the thickness of the main key strata on the side of the 201 goaf is
larger, while that on the side of working face 205 (LW205) is smaller. Additionally, based
on in situ logging data, the water-rich aquifer is entirely present in the Luohe formation,
with the middle section of the Luohe formation containing 75% of the water-rich aquifer.
This aquifer has a thickness ranging from 90 to 110 m, its average porosity is 15.44%, its
average unit water inflow is 1.305 to 2.248 L/(s·m), and the permeability coefficient of it
is 0.06~1.552 m/d. It is recharged by the lateral runoff of groundwater, so it is difficult to
drain [27]. The stratigraphic relationship between the water-rich aquifer and the main key
strata is shown in Figure 2.
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2.2. Analysis of the Spatial Distribution Characteristics of Large-Energy Microseismic Events and
Water Inrush Situations

The second panel consists of five working faces, and the varying maximum water
inflows of different working faces at the initial mining stage is illustrated in Figure 3. The
maximum value of water inflow in the initial mining stage of different working faces has
opposite characteristics with the corresponding mining distance. When mining to working
face 202, the maximum value of water inflow increases slightly. As mining progresses
to the working faces 203 and 204, it is basically stable, which is around 600–700 m3/h.
However, when mining reaches working face 205 (LW205), it sharply rises to 1500 m3/h.
In the initial mining stage of the working faces 202, 203, and 204, the water-conducting
fractures develops to the lower part of the Luohe formation. At this point, the maximum
water inflow in the initial mining stage of the three working faces is basically stable.
However, in the mining of working face 205 (LW205), the water-conducting fractures
from the working face extend to the lower part of the main key strata, which is in the
middle part of the Luohe formation, communicating with a highly water-bearing layer.
This leads to a sudden increase in the maximum water inflow in the initial mining stage of
working face 205 (LW205). This shows that with the increase in the inclined mining scale,
the development height of water-conducting fractures also increases, and the extra-thick
key strata have a certain control effect on the overlying strata movement failure and the
development of water-conducting fractures.

Figure 4 shows the large-energy (larger than 1 × 104 J) microseismic events location
profile of working face 205 (LW205) from January 2020 to September 2021. The main
key strata near the open-off cut of working face 205 (LW205) are higher, and along the
mining direction of the working face, the thickness of the main key layer increases and
the distance to the coal seam decreases. From January 2020 to September 2021 in working
face 205, there are large-energy microseismic events in the main key strata above the coal
seam, particularly in the middle part of the working face and on the side of the roadway
for removing face. This indicates that with the increase in the inclined mining scale of
the second panel, fractures develop into the thick main key strata, resulting in frequent
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occurrences of large-energy microseismic events, and there is a risk of failure and instability
in the extra-thick main key strata.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18 
 

 
Figure 3. The maximum water inflow and corresponding advancing distance in initial mining stage 
of multi-working faces in the 2nd panel. 

Figure 4 shows the large-energy (larger than 1 × 104 J) microseismic events location 
profile of working face 205 (LW205) from January 2020 to September 2021. The main key 
strata near the open-off cut of working face 205 (LW205) are higher, and along the mining 
direction of the working face, the thickness of the main key layer increases and the dis-
tance to the coal seam decreases. From January 2020 to September 2021 in working face 
205, there are large-energy microseismic events in the main key strata above the coal seam, 
particularly in the middle part of the working face and on the side of the roadway for 
removing face. This indicates that with the increase in the inclined mining scale of the 
second panel, fractures develop into the thick main key strata, resulting in frequent occur-
rences of large-energy microseismic events, and there is a risk of failure and instability in 
the extra-thick main key strata. 

 
Figure 4. Positioning section of large-energy microseismic event of working face 205 (LW205). 

Based on the spatial distribution of large-energy microseismic events and the water 
inflow situation in working face 205, it is evident that large-energy microseismic events 
have occurred in the main key strata, and the water inflow in working face 205 is substan-
tial. This shows that after the mining of working face 205, the overlying strata above the 
coal seam are active violently, and the water-conducting fractures extend to the water-rich 
aquifer in the middle section of the Luohe formation. The main key strata above the sec-
ond panel had reached their deflection limit, and there is a risk of breaking and destabi-
lizing. In order to reduce the risk of rockburst and control water inflow, it is necessary to 
optimize the width of the isolated coal pillar and the mining scale of the panel, which can 
avoid the influence of rock stratum movement above the goaf in the second panel on the 
mining of the third panel. Therefore, it is necessary to make an in-depth study on the 
layout pattern of a small panel and a large coal pillar under the extra-thick water-bearing 
key strata, so as to provide theoretical support for rockburst prevention and water control 
under these kinds of geological conditions. 

Figure 3. The maximum water inflow and corresponding advancing distance in initial mining stage
of multi-working faces in the 2nd panel.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18 
 

 
Figure 3. The maximum water inflow and corresponding advancing distance in initial mining stage 
of multi-working faces in the 2nd panel. 

Figure 4 shows the large-energy (larger than 1 × 104 J) microseismic events location 
profile of working face 205 (LW205) from January 2020 to September 2021. The main key 
strata near the open-off cut of working face 205 (LW205) are higher, and along the mining 
direction of the working face, the thickness of the main key layer increases and the dis-
tance to the coal seam decreases. From January 2020 to September 2021 in working face 
205, there are large-energy microseismic events in the main key strata above the coal seam, 
particularly in the middle part of the working face and on the side of the roadway for 
removing face. This indicates that with the increase in the inclined mining scale of the 
second panel, fractures develop into the thick main key strata, resulting in frequent occur-
rences of large-energy microseismic events, and there is a risk of failure and instability in 
the extra-thick main key strata. 

 
Figure 4. Positioning section of large-energy microseismic event of working face 205 (LW205). 

Based on the spatial distribution of large-energy microseismic events and the water 
inflow situation in working face 205, it is evident that large-energy microseismic events 
have occurred in the main key strata, and the water inflow in working face 205 is substan-
tial. This shows that after the mining of working face 205, the overlying strata above the 
coal seam are active violently, and the water-conducting fractures extend to the water-rich 
aquifer in the middle section of the Luohe formation. The main key strata above the sec-
ond panel had reached their deflection limit, and there is a risk of breaking and destabi-
lizing. In order to reduce the risk of rockburst and control water inflow, it is necessary to 
optimize the width of the isolated coal pillar and the mining scale of the panel, which can 
avoid the influence of rock stratum movement above the goaf in the second panel on the 
mining of the third panel. Therefore, it is necessary to make an in-depth study on the 
layout pattern of a small panel and a large coal pillar under the extra-thick water-bearing 
key strata, so as to provide theoretical support for rockburst prevention and water control 
under these kinds of geological conditions. 
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Based on the spatial distribution of large-energy microseismic events and the water
inflow situation in working face 205, it is evident that large-energy microseismic events
have occurred in the main key strata, and the water inflow in working face 205 is substantial.
This shows that after the mining of working face 205, the overlying strata above the coal
seam are active violently, and the water-conducting fractures extend to the water-rich
aquifer in the middle section of the Luohe formation. The main key strata above the second
panel had reached their deflection limit, and there is a risk of breaking and destabilizing.
In order to reduce the risk of rockburst and control water inflow, it is necessary to optimize
the width of the isolated coal pillar and the mining scale of the panel, which can avoid the
influence of rock stratum movement above the goaf in the second panel on the mining of
the third panel. Therefore, it is necessary to make an in-depth study on the layout pattern
of a small panel and a large coal pillar under the extra-thick water-bearing key strata, so
as to provide theoretical support for rockburst prevention and water control under these
kinds of geological conditions.

3. Theoretical Analysis of Rational Layout Pattern of Small Panel and Large Coal Pillar

Based on the key strata theory, the stability of the extra-thick sandstone key strata
overlying the coal seam determines the characteristics of the movement and rupture of the
overlying strata above the goaf, thereby influencing the stress distribution and stability of
the coal pillar. According to the surface subsidence measurements in October 2021, the
subsidence depth of the second panel is 637 mm, with a subsidence coefficient of 0.06. In
the third panel, the subsidence depth is 233 mm, with a subsidence coefficient of 0.02. This
indicates that the overlying strata have not fully subsided, and the extra-thick sandstone
key strata have a certain flexural deformation, but still maintain relative stability.
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With the increase in mining scale, there is a risk of coal pillar instability-induced
rockburst and thick hard roof breakage-induced rockburst in the stope. Therefore, it is
necessary to adopt the layout pattern of a small panel and a large coal pillar. Analyzing
the stability of the panel-isolated coal pillar and the main key strata above the goaf, the
critical width of the panel-isolated coal pillar and the critical mining scale of the small panel
are determined.

3.1. Analysis of the Width of Panel Isolation Coal Pillar

The load borne by the isolated coal pillar comes from two sources. One is the self-
weight of the overlying rock layer above the coal pillar, and the other is the transfer stress
of the overlying rock layer on both sides of the goaf. Based on this, an analysis model for
the force on the panel-isolated coal pillar is established, as shown in Figure 5. In Figure 5,
L1 represents the goaf width of the third panel, L2 represents the goaf width of the second
panel, D represents the width of the panel-isolated coal pillar, and H represents the burial
depth of the two panels.
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Figure 5. Stress analysis model of panel-isolated coal pillar.

From Figure 5, it can be observed that the load borne by the panel-isolated coal pillar
Qt includes the self-weight of the coal pillar Qm, the load transmitted by the overlying rock
layer of the goaf in the third panel Q1, and the load transmitted by the overlying rock layer
of the goaf in the second panel Q2, namely

Qt = Qm + Q1 + Q2 (1)

Based on the geometric relationship, Qt, Q1, and Q2 can be expressed as follows:

Qm = γHD (2)

Q1 =
γ

2

(
HL1 −

πL1
2

8

)
(3)

Q2 =
γ

2

(
HL2 −

πL2
2

8

)
(4)

In the equation, γ represents the bulk density of overlying rock strata.
As shown in Figure 6, in the layout pattern of a small panel and a large coal pillar,

the stress distribution in the elastic area of the panel-isolated coal pillar is uniform. When
the bearing stress of the panel-isolated coal pillar approaches bearing capacity, the coal
pillars tend to reach a critical state of high stress instability. Under mining disturbance, this
can easily induce rockburst. The calculation of the bearing stress in the elastic zone of the
panel-isolated coal pillars is as follows:

σa =
Qt − 2Qsσs

Dt
(5)



Appl. Sci. 2024, 14, 2195 7 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18 
 

As shown in Figure 6, in the layout pattern of a small panel and a large coal pillar, 
the stress distribution in the elastic area of the panel-isolated coal pillar is uniform. When 
the bearing stress of the panel-isolated coal pillar approaches bearing capacity, the coal 
pillars tend to reach a critical state of high stress instability. Under mining disturbance, 
this can easily induce rockburst. The calculation of the bearing stress in the elastic zone of 
the panel-isolated coal pillars is as follows: 

t s

t

2 s
a

Q Q
D

σσ =
-

 (5) 

In the equation, aσ represents the bearing stress in the elastic area; tD  represents 
the width of the elastic area, t s2D DD= − ; sD  represents the width of the plastic area; 

sσ  represents the bearing stress in the plastic area, which is equal to the uniaxial com-
pressive strength of coal. 

 
Figure 6. Analysis model of bearing stress in elastic zone of panel-isolated coal pillar. 

The ratio of the bearing stress in the elastic area of the panel-isolated coal pillar to its 
bearing capacity is given by: 

3c

aσμ
σ

=  (6) 

In the equation, 3cσ  represents the bearing capacity of the coal, taken as three times 
the uniaxial compressive strength of coal. 

Based on the actual conditions of the mine, γ  = 25 kN/m3, H  = 950 m, 1L  = 550 m, 

2L  = 900 m, D  = 200 m, sD  = 20 m, the uniaxial compressive strength of coal cσ  = 18 
MPa. Substituting these parameters into Equations (1) to (6), μ  = 1.77 > 1. If μ  = 1, D  
= 257 m can be obtained under the condition that the inclined width of the goaf on both 
sides of the panel-isolated coal pillar is constant. Therefore, under the current layout pat-
tern, there is a risk of rockburst induced by instability of the panel-isolated coal pillar, and 
the critical width of instability is 257 m. 

3.2. Analysis of Mining Scale in Panel 
Under the action of the self-weight of the overlying rock strata and the stress trans-

mitted from the overlying rock strata to both sides of the goaf, the panel-isolated coal pillar 
is compressed. The main key strata were flexed under the load of the overlying strata. As 
the scale of the goaf on both sides of the panel-isolated coal pillar increases, the transmit-
ted stress from the goaf on both sides also increases, leading to an increase in the com-
pression of the panel-isolated coal pillar. When the compression of the coal pillar exceeds 
the deflection limit of the main key strata, the main key strata and the lower strata are 
separated. At this point, the central part of the main key strata is unsupported, and the 
thick hard sandstone main key layer is prone to fracturing, triggering large-energy micro-
seismic events and rockburst. 

Based on the mechanical characteristics of the key strata, the main key strata after 
delamination from the lower rock strata can be considered as a suspended beam fixed at 
both ends. The stress from the overlying rock layer can be simplified as a uniformly dis-
tributed load, with a concentrated reaction force acting on both sides of the beam. Taking 

Goaf

DtDs Ds

σsσs
σa

Goaf

Figure 6. Analysis model of bearing stress in elastic zone of panel-isolated coal pillar.

In the equation, σa represents the bearing stress in the elastic area; Dt represents the
width of the elastic area, Dt = D − 2Ds; Ds represents the width of the plastic area; σs
represents the bearing stress in the plastic area, which is equal to the uniaxial compressive
strength of coal.

The ratio of the bearing stress in the elastic area of the panel-isolated coal pillar to its
bearing capacity is given by:

µ =
σa

σ3c
(6)

In the equation, σ3c represents the bearing capacity of the coal, taken as three times
the uniaxial compressive strength of coal.

Based on the actual conditions of the mine, γ = 25 kN/m3, H = 950 m, L1 = 550 m,
L2 = 900 m, D = 200 m, Ds = 20 m, the uniaxial compressive strength of coal σc = 18 MPa.
Substituting these parameters into Equations (1) to (6), µ = 1.77 > 1. If µ = 1, D = 257 m can
be obtained under the condition that the inclined width of the goaf on both sides of the
panel-isolated coal pillar is constant. Therefore, under the current layout pattern, there is
a risk of rockburst induced by instability of the panel-isolated coal pillar, and the critical
width of instability is 257 m.

3.2. Analysis of Mining Scale in Panel

Under the action of the self-weight of the overlying rock strata and the stress trans-
mitted from the overlying rock strata to both sides of the goaf, the panel-isolated coal
pillar is compressed. The main key strata were flexed under the load of the overlying
strata. As the scale of the goaf on both sides of the panel-isolated coal pillar increases,
the transmitted stress from the goaf on both sides also increases, leading to an increase in
the compression of the panel-isolated coal pillar. When the compression of the coal pillar
exceeds the deflection limit of the main key strata, the main key strata and the lower strata
are separated. At this point, the central part of the main key strata is unsupported, and
the thick hard sandstone main key layer is prone to fracturing, triggering large-energy
microseismic events and rockburst.

Based on the mechanical characteristics of the key strata, the main key strata after
delamination from the lower rock strata can be considered as a suspended beam fixed
at both ends. The stress from the overlying rock layer can be simplified as a uniformly
distributed load, with a concentrated reaction force acting on both sides of the beam. Taking
the center of the left end of the suspended beam as the origin, the direction along the axis of
the suspended beam as the x-axis, and the direction along the thickness of the suspended
beam as the y-axis, an analysis model of the flexural deformation of the main key strata is
established, as shown in Figure 7.

In Figure 7, q0 is the uniformly distributed load of the overlying rock above the main
key strata (including the self-weight of the main key strata), h is the thickness of the main
key strata, l1 is the width of the third panel, l2 is the width of the second panel, d is the
width of the panel-isolated coal pillar, F is the reaction force at the fixed support end of the
main key strata, and M is the bending moment at the fixed support ends of the main key
strata. The ultimate span l of the key strata can be expressed as follows:

l = h

√
δ

q0
+ 1 +

5
4

µ (7)
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In the equation, δ is the uniaxial tensile strength of the main key strata, µ is the
Poisson’s ratio of the main key strata.
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Figure 7. Deflection deformation analysis model of the main key strata.

Simultaneously, after the separation of the main key strata and the lower rock layer,
the deflection equation of the beam axis is given by:

z =
q0x3

2Eh3 (2l + x) (8)

Under the condition of fixed support at both ends, the maximum deflection occurs at
the midpoint of the beam, that is, x = l/2. Therefore, the maximum deflection of the beam
is given by:

ωmax= z(x=l/2) =
5q0l4

32Eh3 (9)

Before mining the second and third panels, the panel-isolated coal pillar was only
affected by the original overlying rock stress. Based on the stress analysis model of the coal
pillar in Figure 4, the compression amount ν of the isolated coal pillar during mining can
be calculated as follows:

v = εm =
Qt − Q0

E0d0
m (10)

In the equations, m represents the mining height, ε represents the strain of the isolated
coal pillar, E0 is the elastic modulus of the coal, d0 is the elastic area width of the panel-
isolated coal pillar.

According to the actual conditions of the mine, h = 200 m, δ = 2.01 MPa, µ = 0.24,
E = 8 × 103 MPa, E0 = 2.67 × 103 MPa, d0 = 160 m, the uniformly distributed load above the
key strata q0 = 12.50 MPa. Substituting these values into the calculations, the limit span l of
the key strata is determined to be 241 m, which is greater than D. The maximum deflection
of the main key layer ωmax is 0.104, before mining in the second and third panels, the initial
load on the isolated coal pillar Q0 = γHd. The compression amount of the isolated coal
pillar v = 0.247. If v = ωmax, keeping the width of the panel-isolated coal pillar and the
mining scale of the second panel unchanged, l1 = 537 m is calculated. Therefore, in the
current layout pattern of a small panel and a large coal pillar, the compression amount
of the isolated coal pillar is greater than the limit deflection of the main key strata. There
is a risk of breaking and instability in the extra thick key strata, inducing the danger of
rockburst. The critical mining scale for the small panel is determined to be 537 m.

4. Study on Mining Layout Pattern Based on Numerical Simulation

Through the finite element numerical simulation software FLAC3D 6.00.69, we investi-
gate the stress and elastic strain energy distribution and evolution pattern of panel-isolated
coal pillars under various isolation pillar widths and different small panel mining scales.
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The analysis aims to analyze the stability of panel-isolated coal pillars, ultimately determin-
ing a reasonable width for the isolation coal pillar and the small panel mining scale.

4.1. Establishment of Numerical Model and Design of Simulation Scheme

Based on the geological conditions and mining layout of the second and third panels
of the mine, a numerical simulation computational model is established for the layout
pattern of a small panel and a large coal pillar beneath the extra-thick water-bearing key
strata. The size of the numerical simulation model is 4300 m × 3300 m × 1280 m, and the
model is divided into 2,898,252 zones. The model employs the Mohr–Coulomb constitutive
model, fixes the bottom boundary of the model, applies a displacement constraint to the
surrounding boundaries, and has a free boundary at the top, with the top representing the
ground surface. Combining with field measurement and the rock mechanics test, the rock’s
physical and mechanical parameters used in the model are listed in Table 1. The schematic
diagram of the model is shown in Figure 8.

Table 1. Physical and mechanical parameters of model.

Lithology Density (kg/m3)
Bulk Modulus

(GPa)
Shear Modulus

(GPa) Friction Angle (◦) Cohesion
(MPa)

Loess 1640 2.21 0.37 25 0.01
Sandy mudstone 2480 1.13 0.67 39 2.92

Medium grain sandstone 2400 7.32 4.57 41 1.91
Coarse grain sandstone 2510 9.68 6.37 41 2.32

Coal seam 1400 3.49 2.01 36 1.18
Mudstone 2550 0.98 0.70 37 2.61
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Figure 8. Numerical model of panel excavation.

The orthogonal experimental method is employed to investigate the influence of the
width of the panel-isolated coal pillar and the mining scale of the small panel on the stability
of the panel-isolated coal pillar. The width of the panel-isolated coal pillar is varied from
150 m to 300 m. When the width of the panel-isolated coal pillar is 200 m, the mining
scale of the third panel is set between 400 m and 580 m. Similarly, when the width of
the panel-isolated coal pillar is 250 m, the mining scale of the third panel ranges from
580 m to 760 m. The interval between values is set at 30 m.

4.2. Effect of Coal Pillar Width on Stability of Panel-Isolated Coal Pillar

Under the condition of different widths of the panel-isolated coal pillar, the vertical
stress tendency slice contour and elastic strain energy plane distribution contour of the
panel-isolated coal pillar area after excavation in the second and third panels are shown in
Figures 9 and 10. When the width of the panel-isolated coal pillar is less than 200 m, there is
a higher degree of stress concentration and energy accumulation in the panel-isolated coal
pillar area. When the coal pillar width exceeds 210 m, the stress and energy accumulation
in the panel isolated coal pillar area are higher only near the areas adjacent to the two sides
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of the goaf, while the stress concentration and energy accumulation in the elastic core zone
of the isolation coal pillar are relatively low.
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Figure 10. Plane distribution contour of elastic strain energy in the panel-isolated coal pillar with
different widths.

The variation curve of stress along the inclination of the panel-isolated coal pillar is
shown in Figure 11. With the increase in the width of the panel-isolated coal pillar, the
degree of stress concentration in the panel-isolated coal pillar weakens. The stress peak
decreases from 57.34 MPa to 49.20 Mpa, and the stress concentration factor decreases from
2.07 to 2.41. When the width of the panel-isolated coal pillars is 150 m and 180 m, the stress
peaks are 57.34 MPa and 55.80 MPa, respectively, both exceeding the uniaxial compressive
strength of three times the coal, which is 54 MPa. At this point, the panel-isolated coal
pillar is in a critical and unstable state.
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The analysis of the above simulation results shows that under the condition that the
goaf area on both sides of the panel-isolated coal pillar is unchanged, the stress transferred
from the goaf on both sides of the panel-isolated coal pillar remains unchanged, but the
width of the panel-isolated coal pillar increases, leading to a gradual reduction in stress
concentration and energy accumulation in the panel-isolated coal pillar area. Considering
the stability of the panel-isolated coal pillar and resource recovery rate, combined with the
simulation results mentioned above, under the current small panel mining scale of 550 m,
the reasonable range for the width of the panel-isolated coal pillar is 210 m to 270 m, and
the mining district recovery ratio is between 75% and 77%.

4.3. Influence of Panel Mining Scale on the Stability of Panel-Isolated Coal Pillar

When the width of the panel-isolated coal pillar is 200 m and 250 m, the vertical stress
tendency slice contour and elastic strain energy plane distribution contour of the panel-
isolated coal pillar area after excavation in the second and third panels under different
panel mining scales are shown in Figures 12 and 13. With the increase in the mining scale
in the third panel, the degree of stress concentration and energy accumulation in the panel-
isolated coal pillar area intensifies. Under the condition of a 200 m-wide panel-isolated
coal pillar, when the mining scale in the third panel is less than 400 m, the degree of stress
concentration and elastic strain energy accumulation in the panel-isolated coal pillar area is
relatively low. There is only a stress concentration area near the goaf on both sides. When
the mining scale in the third panel exceeds 520 m, the degree of stress concentration and
elastic strain energy accumulation in the elastic core area in the middle of the isolated coal
pillar area becomes higher, and the stress concentration area gradually develops to the top
of the coal seam. Under the condition of a 250 m-wide panel-isolated coal pillar, when the
mining scale in the third panel reaches 700 m and 730 m, the stress and energy accumulation
area gradually evolve towards the elastic core area in the middle of the coal pillar. When the
mining scale in the third panel reaches 760 m, the degree of stress concentration and elastic
strain energy accumulation in the elastic core area in the middle of the panel-isolated coal
pillar area becomes higher, and a stress concentration area appears in the roof rock layer.
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Draw the stress variation curve along the inclination of the isolated coal pillar area
under different panel mining scale, as shown in Figure 14. With the increase in the panel
mining scale, the degree of stress concentration in the panel-isolated coal pillar area in-
creases. Under the condition of a 200 m-wide panel-isolated coal pillar, the stress peak
increases from 51.55 MPa to 54.98 MPa, and the stress concentration factor increases from
2.17 to 2.31. When the width of the mining scale of the panel is 550 m, the vertical stress
peak in the panel-isolated coal pillar area is 54.08 MPa, exceeding the uniaxial compressive
strength of three times the coal, which is 54 MPa. At this point, the isolated coal pillar in
the panel area was in a critical and unstable state. Under the condition of a 250 m-wide
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isolated coal pillar, the stress peak increases from 49.78 MPa to 55.83 MPa, and the stress
concentration factor increases from 2.10 to 2.35. When the width of the mining scale of the
panel is 700 m, the vertical stress peak in the panel-isolated coal pillar area is 54.75 MPa,
exceeding the uniaxial compressive strength of three times the coal, which is 54 MPa. At
this point, the panel-isolated coal pillar was in a critical and unstable state.
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Analyzing the above simulation results reveals that with the increase in the mining
scale of the small panel, the transferred stress from the goaf on both sides of the panel-
isolated coal pillar increases. However, with the width of the panel-isolated coal pillar
remaining unchanged, the average bearing stress of the coal pillar increases, leading to
the panel-isolated coal pillar approaching a critical state of instability. Considering the
stability of the panel-isolated coal pillar and the resource recovery rate, combined with the
simulation results mentioned above, under the condition of a 200 m-wide panel-isolated
coal pillar, the reasonable mining scale for the small panel is between 490 m and 550 m,
and the mining district recovery ratio is between 75% and 78%. Under the condition of a
250 m-wide panel-isolated coal pillar, the reasonable mining scale for the small panel is
between 640 m and 700 m, and the mining district recovery ratio is between 78% and 79%.
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5. Engineering Practice of Pressure Relief and Rockburst Prevention Measures under
the Layout Pattern of Small Panel and Large Coal Pillar
5.1. Control Effect of Rockburst under the Layout Pattern of Small Panel and Large Coal Pillar

After adopting the layout pattern of a small panel and a large coal pillar, the inclined
mining scale of the third panel is 550 m, and the panel-isolated coal pillar’s width is 200 m
between the second and third panels, as shown in Figure 1. According to theoretical
analysis and numerical simulation conclusions, under the current panel mining scale, the
reasonable width for the panel-isolated coal pillar should be between 210 m and 270 m.
The actual width of the coal pillar left between the second and third panels is less than the
reasonable width, leading to a higher degree of stress concentration in the panel-isolated
coal pillar area, posing a risk of rockburst during the mining process in the third panel.
Based on the distribution characteristics of microseismic events greater than 1 × 103 J in the
panel-isolated coal pillar area between the second and third panels during the monitoring
period from September to December 2021, the plane distribution map of microseismic
events in the isolated coal pillar area is shown in Figure 15. By December 2021, working
face 205 (LW205) had completed mining, and working face 301 (LW301) had advanced
852 m, in the later stages of mining. During this stage, there were a lot of microseismic
events on the side of the isolated coal pillar near working face 301 (LW301), and there were
large-energy microseismic events in the elastic region of the coal pillar.
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This indicates that with the advancement of working face 301, the goaf area in the third
panel expands, and the stress on the panel-isolated coal pillar area increases. Combined
with the mining disturbance to the panel-isolated coal pillar, there were many large-energy
microseismic events in the panel-isolated coal pillar area, extending into the central elastic
area. Therefore, under the current layout pattern of a small panel and a large coal pillar,
the isolation protection effect of the panel-isolated coal pillars is limited, and there is still a
certain risk of rockburst. Appropriate unloading and prevention of rockburst measures
need to be taken.

5.2. Unloading and Prevention of Rockburst Measures

In response to the limited isolation effect of the panel-isolated coal pillar in the current
layout pattern of a small panel and a large coal pillar, unloading and prevention of rockburst
measures are implemented in the return airway of working face 301 (LW301) in the third
panel. The pressure relief is carried out by roof deep hole blasting and large-diameter
drilling in the return airway of working face 301 (LW301). The roof deep hole blasting can
destroy the structural integrity of the roof above the return airway along the trough side
of working face 301 (LW301), preventing the occurrence of large area roof suspension and
reducing the lateral abutment pressure exerted on the panel-isolated coal pillar by working
face 301 (LW301). The large-diameter drilling in the coal seam causes the coal on both sides
of the return airway to break, transferring stress to the deeper part of the surrounding
rock of the roadway, reducing the stress concentration in the panel-isolated coal pillar area,
ultimately improving the stability of the panel-isolated coal pillar, and further reducing the
risk of rockburst [28].
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Two blasting hole schemes are used for unloading in the roof above the return airway
in working face 301 (LW301): a fan-shaped roof hole in the working face and a down-groove
cutting roof hole. For the fan-shaped hole blasting in the working face, a set of three holes
(1#, 2#, 3#) is arranged, with hole positions at the shoulder recess on the production side; the
distance between blasting holes is 15 or 20 m, the hole diameter is 85 mm, and the sealing
length is not less than 15 m. For the cutting roof hole along the groove, a set of two holes (4#,
5#) is arranged; the opening position is the middle part of the roadway roof, the distance
between the blasting holes is 5 m, the hole diameter is 85 mm, and the sealing length is not
less than 15 m [29]. The specific blasting parameters are shown in Table 2 and Figure 16.

Table 2. Roof deep hole blasting parameters.

Drilling Number Drilling Elevation Angle/(◦) Blast Hole Depth/m Explosive
Dosage/kg End Hole Position

1# 60 62 60 Coarse grain sandstone
2# 50 44 40 Medium grain sandstone
3# 40 32 40 Fine grain sandstone
4# 60 62 60 Coarse grain sandstone
5# 60 38 40 Medium grain sandstone

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18 
 

 
(a) 

  
(b) (c) 

Figure 16. Schematic diagram of the layout of the roof deep hole blasting. (a) Drill hole layout plan. 
(b) Schematic diagram of Ⅰ-Ⅰ section. (c) Schematic diagram of Ⅱ-Ⅱ section. 

Large-diameter drilling is arranged in the vertical side of the LW301 return airway, 
with a hole depth of 30 m, a hole diameter of 150 mm, a sealing length of 3 m, and a hole 
spacing of 1 m or 2 m, with a distance of 1.2–1.5 m from the floor [30]. The layout of large-
diameter coal seam drilling is shown in Figure 17. 

  
(a) (b) 

Figure 17. Schematic diagram of the layout of the large-diameter drilling in the coal seam. (a) Section 
diagram. (b) Plane diagram. 

5.3. Unloading and Prevention of Rockburst Effect 
Based on the microseismic events in the panel-isolated coal pillar area of the mine 

from August to October 2021, the seismic wave CT inversion was conducted. Through the 
inversion of seismic wave CT, the propagation velocity of the seismic wave in the coal rock 
mass can be obtained. The higher the velocity of the seismic wave in the coal rock mass, 
the higher the stress concentration degree [31,32]. 

Figure 18 shows the CT inversion contour of the panel-isolated coal pillar and its 
vicinity before and after pressure relief. On 15 September 2021, near the 120 m advance 
drainage roadway of the return airway in front of working face 301 (LW301), the positive 
anomaly coefficient of the wave velocity (An) was between 0.15 and 0.35, and there was a 
phenomenon of stress concentration. Before 18 October 2021, pressure relief measures 
such as deep borehole blasting in the roof and large-diameter drilling in the coal seam 
were implemented in this area and its vicinity. The CT inversion results on October 18 
showed that the value of An in this area decreased significantly. On 4 November 2021, in 
the 200 m range of the advance drainage roadway of the return airway in front of  work-
ing face 301 (LW301), the value of An was between 0.15 and 0.45, indicating stress 

301return airway

2#

3#

17m

17m

1#

23m

60
°

50
°

40
°

4#
Coal

Mudstone

Fine
grained

sandstone

Medium
grained

sandstone

Coarse
grained

sandstone 20.08

13.03

10.79

Rock
columnarLithology Thickness

/m

1.25

13.70

62m

32m

44m

Panel isolated coal pillar
floor

301return airway
floor301 open-off cut

15m

23m

38m

62m

5#

4#

60
°

4#
Coal

Mudstone

Fine
grained

sandstone

Medium
grained

sandstone

Coarse
grained

sandstone 20.08

13.03

10.79

Rock
columnarLithology Thickness

/m

1.25

13.70

Figure 16. Schematic diagram of the layout of the roof deep hole blasting. (a) Drill hole layout plan.
(b) Schematic diagram of I-I section. (c) Schematic diagram of II-II section.

Large-diameter drilling is arranged in the vertical side of the LW301 return airway,
with a hole depth of 30 m, a hole diameter of 150 mm, a sealing length of 3 m, and a hole
spacing of 1 m or 2 m, with a distance of 1.2–1.5 m from the floor [30]. The layout of
large-diameter coal seam drilling is shown in Figure 17.
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Figure 17. Schematic diagram of the layout of the large-diameter drilling in the coal seam. (a) Section
diagram. (b) Plane diagram.
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5.3. Unloading and Prevention of Rockburst Effect

Based on the microseismic events in the panel-isolated coal pillar area of the mine
from August to October 2021, the seismic wave CT inversion was conducted. Through the
inversion of seismic wave CT, the propagation velocity of the seismic wave in the coal rock
mass can be obtained. The higher the velocity of the seismic wave in the coal rock mass,
the higher the stress concentration degree [31,32].

Figure 18 shows the CT inversion contour of the panel-isolated coal pillar and its
vicinity before and after pressure relief. On 15 September 2021, near the 120 m advance
drainage roadway of the return airway in front of working face 301 (LW301), the positive
anomaly coefficient of the wave velocity (An) was between 0.15 and 0.35, and there was
a phenomenon of stress concentration. Before 18 October 2021, pressure relief measures
such as deep borehole blasting in the roof and large-diameter drilling in the coal seam were
implemented in this area and its vicinity. The CT inversion results on October 18 showed
that the value of An in this area decreased significantly. On 4 November 2021, in the
200 m range of the advance drainage roadway of the return airway in front of working face
301 (LW301), the value of An was between 0.15 and 0.45, indicating stress concentration.
Before November 16, appropriate pressure relief measures were taken in the corresponding
region and its vicinity. The CT inversion results on November 16 showed a significant
decrease in the anomaly coefficient of the wave velocity in the corresponding region. To
sum up, after implementing deep borehole blasting and large-diameter drilling in the
coal seam for unloading in the return airway in front of working face 301 (LW301), the
stress concentration level in the panel-isolated coal pillar area was effectively reduced,
demonstrating good unloading and an anti-burst effect.
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6. Conclusions

In this work, the reasonable range of the coal pillar width and mining scale of the panel
are studied by means of theoretical analysis, field measurement, and numerical simulation.
According to the achieved results:

(1) Based on the mechanical theory, considering the stability of the panel-isolated coal
pillar and the main key strata above the goaf, it is derived that under the current
mining layout, the critical width for the instability of the panel-isolated coal pillar is
257 m, and the critical mining width for the small panel is 537 m.

(2) With the increase in the width of the panel-isolated coal pillar and the decrease in the
mining scale of the small panel, the stress concentration and energy accumulation in
the panel-isolated coal pillar area decrease, enhancing the stability of the isolation
coal pillar. Considering the stability of the panel-isolated coal pillar and the recovery
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rate of coal resources, the reasonable range of the panel-isolated coal pillar is 210 m
to 270 m. For a 200 m-wide panel-isolated coal pillar, the reasonable mining scale
for the small panel is 490 m to 550 m; for a 250 m-wide panel-isolated coal pillar, the
reasonable mining scale for the small panel is 640 m to 700 m.

(3) Practical mining experience indicates that despite adopting the small panel and
large coal pillar layout pattern, the actual width of the coal pillar is less than the
reasonable width, resulting in a higher degree of stress concentration in the panel-
isolated coal pillar area and frequent large-energy microseismic events. Therefore,
in the return airway of working face 301, deep borehole blasting and large-diameter
drilling in the coal seam are employed for pressure relief. After implementing pressure
relief measures, the CT inversion results in the panel-isolated coal pillar area show a
significant reduction in the abnormal coefficient of wave velocity, indicating a notable
pressure relief effect.

The key findings indicate that optimizing the dimensions of the longwall panel and
coal pillar can ensure the stability of the extra-thick water-bearing key strata, reduce the
stress concentration around the stope, and realize the purpose of rockburst prevention and
water control. Further, the development law of the overlying rock fracture zone above
the stope under different layouts can be studied to control the development height of the
water-conducting fracture zone.
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