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Abstract: Microseismic monitoring plays an essential role for reservoir characterization and earth-
quake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly
affects the precision of event localization and subsequent processing. It is challenging for traditional
methods to realize efficient and accurate microseismic velocity inversion due to the low signal-to-
noise ratio of field data. Deep learning can efficiently invert the velocity model by constructing a
mapping relationship from the waveform data domain to the velocity model domain. The predicted
and reference values are fitted with mean square error as the loss function. To reduce the feature
mismatch between the synthetic and real microseismic data, data augmentation is also performed
using correlation and convolution operations. Moreover, a hybrid training strategy is proposed by
combining synthetic and augmented data. By testing real microseismic data, the results show that the
Unet is capable of high-resolution and robust velocity prediction. The data augmentation method
complements more high-frequency components, while the hybrid training strategy fully combines
the low-frequency and high-frequency components in the data to improve the inversion accuracy.

Keywords: microseismic velocity inversion; deep learning; data augmentation; hybrid training; Unet

1. Introduction

Microseismic monitoring plays an important role for both fault/fracture characteriza-
tion and seismic risk analysis in unconventional reservoirs and rock masses [1–5]. Most
current microseismic inversion procedures require realistic velocity models. For example,
the reliability of microseismic inversion and interpretation depends heavily on the accuracy
of the velocity model [6,7]. However, most microseismic velocity models used in produc-
tion are directly adapted from the well-logging curves, which are generally approximate to
simplified models and may be contaminated by noise. Various velocity model calibration
methods have been proposed based on traveltime (difference)-based inversion [8–10]. Addi-
tionally, full waveform inversion (FWI), as a strong inversion tool, has also been introduced
to microseismic inversion [11,12]. However, FWI usually involves a higher computational
demand and is also affected by cycle skipping due to the sinusoidal nature of the wavefield
and complex scattering [13]. Cycle skipping can lead convergence at local minima and thus
yield incorrect velocity models.

Traditional traveltime-based velocity inversion and full-waveform inversion rely on
data quality, such as signal-to-noise ratio (SNR) [14]. However, the real microseismic
data are usually of low SNR, which largely affects the accuracy of the inversion. In ad-
dition, traditional velocity inversion methods rely on the accuracy of the initial velocity.
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Recently, deep learning (DL) has shown excellent capabilities for nonlinear mapping func-
tion approximation in computer vision, especially in the tasks of reconstructing models
and high-resolution images [15,16]. The development of DL has also brought new oppor-
tunities to seismic and microseismic data processing and inversion [17], such as signal
denoising [18], signal identification and classification [19,20], first-arrival picking [21–23],
source location [24], and velocity model building and calibration [25]. Using seismic wave-
forms as the feature input and velocity models as the labels, the trained models with the
nonlinear mapping capability of neural networks can effectively predict velocity models
from seismic waveforms. There are already several studies on using DL algorithms to
invert velocity models. Araya-Polo et al. [26] extracted features from the acquired seismic
data and proposed using deep convolutional neural networks (DCNNs), instead of seismic
tomography, to reconstruct velocity models. Yang et al. [27] proposed a supervised deep
fully convolutional neural network (FCN) approach to build velocity models directly from
raw seismic data.

However, there are only a few studies on DL-based downhole microseismic velocity in-
version to take advantage of the nonlinear mapping ability of deep neural networks (DNNs)
to carry out velocity inversion tasks [28,29]. Unlike velocity model inversion in active seis-
mology, there is generally only one velocity model corresponding to hundreds, possibly
even thousands, of microseismic events. The combination of abundant microseismic events
within restricted regions and limited velocity model information hinders dataset construc-
tion and network performance. Additionally, microseismic processing and interpretation is
dependent on activities and geology in the region of interest, which may limit the availabil-
ity of past microseismic events for DL algorithms. In this sense, the training data play a
vital role to ensure the learning performance of the network. FWI in active seismology relies
heavily on low-frequency components [30], while field microseismic data generally contain
higher frequency contents than active seismic data, and the high-frequency information
might be missing in synthetic data considering the computational expense. Yang et al. [31]
found that integrating physical information with synthetic data can improve the effective-
ness of the training data and network performance. Alkhalifah et al. [32] employed the
domain adaptation approach to introduce real signal features into the synthetic data by
correlation and convolution operations. They demonstrated the effectiveness of domain
adaptation by applying it to seismic imaging problems. Wu et al. [33] proposed to inte-
grate domain knowledge to impose prior constraints for geophysical problems, which can
improve the generalizability and interpretability of DNN models.

In this study, we adopt the Unet model to construct a mapping relationship between
microseismic waveform data and the velocity model. The data augmentation is imple-
mented by correlation and convolution operations to alleviate the feature differences
between the training and real data. We also propose a hybrid training strategy to better
integrate the low-frequency feature in synthetic data and high-frequency feature in aug-
mented data. By testing real data of downhole microseismic monitoring, we demonstrate
that the proposed data augmentation and hybrid training strategy is reliable and effective
in predicting microseismic velocity models.

2. Methodology
2.1. Velocity Inversion and Network Architecture

The velocity inversion can be expressed as the minimization of the following objective
function:

J =
∥∥∥dsyn − dobs

∥∥∥
2

(1)

where J is the objective function, ∥ ∥2 denotes the Euclidean norm, dsyn is the synthetic data
vector, and dobs is the recorded data vector.

Conventional methods for velocity inversion include seismic tomography and full-
waveform inversion, which are based on travel time and waveform, respectively. As
mentioned before, the two methods rely on the data quality and the setting of the initial
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velocity model, both of which cannot be well satisfied in microseismic monitoring. In this
paper, we use neural networks to solve this nonlinear function. Neural networks can create
strongly nonlinear mappings between microseismic gathers and velocities by building
multiple hidden layers:

v = Net(d; θ) (2)

where v ≡ [vp, vs] denotes the predicted velocity value, and θ indicates the total weight in
the network. The training process of the network is realized through forward propagation
and back propagation in the network models to update the θ. The testing process involves
directly predicting the velocity model by inputting waveform data to the trained model.

We adopt the Unet (Figure 1), as it has shown great potential for many geophysical
inversion tasks [34,35]. We make microseismic data and the associated velocity model
{d, v} in pairs as the network input. We use the leaky rectified linear unit (LeakyReLU)
activation function, which alleviates the problems of gradient vanishing and allows for a
better fitting of the model [36].
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Figure 1. Unet network architecture. Gathers are input features, and the outputs are velocity models.
Each box represents the output feature map of the convolutional layer. The number at the top of
each box indicates the channel number in the corresponding feature map. The encoder consists of
a convolution layer with a 3 × 3 convolution kernel size (blue arrow), a batch normalization (BN)
layer, a leaky rectified linear unit (LeakyReLU), and a 2 × 2 maximum pooling layer and the Dropout
layer (yellow arrow). Each decoder replaces the maximum pooling layer with a 5 × 5 transposed
convolution layer (black arrows). Skip connections indicate the corresponding channel feature maps
connecting the encoder and decoder sections (green arrows).

2.2. Data Augmentation

Domain adaptation refers to learning when the feature distributions of the source
and target domains are inconsistent [37]. It aims to narrow the distribution gap between
the two domains to achieve a better learning performance in the target domain. Based
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on the idea of domain adaptation, data augmentation is achieved by linear operations of
correlation and convolution operations between synthetic and real data [38]:

di
s(t) = di

s(t)⊗ dk
s(t) ∗ dij

r (t)⊗ dij
r (t) (3)

where i is the index of the single trace, j is the index of an arbitrary event of the real data,
k is the index of the reference trace and we set k = 1, di

s(t) is the new augmented data,
di

s(t) is the single trace of the synthetic data, dk
s(t) is the reference trace of the synthetic

data, dij
r (t) is the single trace of the real data, ⊗ is the correlation operator, and ∗ is the

convolution operator.
Here, we randomly select one reference field event for each synthetic event correspond-

ing to each stage and set the first trace as the reference trace. The high-frequency informa-
tion in the real data can be implicitly introduced through the operations in Equation (3).
The correlation operation can eliminate the effects of recording time delays between the
synthetic and real data. The data augmentation operation can reduce the feature difference
between the training (source) synthetic data and the (target) real data and will finally
contribute to enhancing the performance of the neural network model when applying to
the real data.

2.3. Loss Functions and Quantitative Metrics

Deep learning-based microseismic velocity inversion is a regression problem. We use
MSE as the loss function to fit the reference velocity model and the predicted values:

LMSE(xi, xi) =
1
N

N

∑
i=1

(xi − xi)
2 (4)

where N is the total number of pixels in a single velocity image; xi and xi are a reference
velocity value and a predicted value, respectively.

We use the regression metrics peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and mean absolute error (MAE) to quantify the prediction results and evaluate
the inversion performance [39–41]. PSNR reflects the degree of global reconstruction
of the velocity image. The PSNR unit is dB, and the larger the value, the better the
inversion performance:

PSNR(x, x) = 20 × log10

(
Max(x)√
MSE(x, x)

)
(5)

where x and x denote the velocity label and inverted velocity, respectively.
Local structure and detail are important factors when recovering a velocity model. To

evaluate the performance of the network model in reconstructing the local details, we use
SSIM to characterize the similarity between the predicted velocity model and the reference
velocity model. The values range from 0 to 1. The higher the value, the lower the image
distortion, indicating that the predicted velocity model is closer to the ground truth:

SSIM(x, x) =
(2µxµx + G1)(2σxx + G2)

(µ2
x + µ2

x + G1)(σ2
x + σ2

x + G2)
(6)

where µx and µx represent the mean values of xi and xi values, respectively, σx and σx
are their standard deviations, σxx denotes their covariance, and G1 and G2 represent the
constants to avoid a zero denominator.
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MAE is utilized to evaluate the variation in velocity across the stratigraphic interface.
The lower the value, the lower the error:

MAE(xi, xi) =
1
N

N

∑
i=1

|xi − xi| (7)

2.4. Training Procedure

We investigate three different training strategies, training only the synthetic dataset,
training only the augmented dataset, and the hybrid training strategy:

loss =
{

loss_syn, epoch < epochs_syn
w × loss_aug, else

(8)

where epochs_syn is the number of epochs when training the synthetic data, and w is a
weight coefficient that indicates the smoothness of the loss curve, enabling the loss value
to have a smooth transition from the synthetic data training stage to the augmented data
training stage.

In our single-stage and multi-stage examples, we use different parameter settings. The
optimizers are Adam. After many rounds of parameter tuning and tests, we finally select
the following hyperparameters: the batch sizes are 32, and w values are 0.1, while the learn
rates are 0.001 and 0.0001, training epochs are 200 and 300, and epochs_syn has values of
80 and 140, respectively.

We work with a PyTorch implementation of the neural network [42]. All network
training and testing in this study was performed on a CPU with a frequency of 2.90 GHz
and 512 GB RAM.

3. Data

To generate more training data, we prepare a horizontally layered model adapted
from a field downhole monitoring of five-stage hydraulic fracturing [10], as shown in
Figures 2 and 3a. There are 395 events in total and the event numbers from stage 1 to
stage 5 are 105, 116, 48, 66, and 60, respectively. The field microseismic data contain three
components and we consider only the Z component to reduce the number of operations.
The acquisition system consists of 15 receivers (black reverse triangles) placed at a constant
spacing of 20 m in a vertical linear array. Each trace has 1201 samples with a time interval
of 0.5 ms. Four-layer velocity models are constructed referring to the velocity model
from traveltime inversion with eight ball-hit events [10]. We obtain 200 velocity models
by adding random ±10% perturbations to the P- and S-wave velocities with fixed layer
depths. We randomly set 30 source locations in the source region (Figure 3a) for each
velocity model. The velocity model has a size of 64 × 200, with a grid spacing of 5 m. A
Ricker wavelet with a peak frequency of 100 Hz is used as the source function. We use
6000 synthetic gathers (200 models × 30 sources) as the initial training dataset. The testing
dataset included 105 field microseismic events from stage 1 (corresponding to a single
reference velocity model).

Figure 3b shows the results of the power spectra comparison. The augmented data
approaches the real data in terms of energy distribution by retaining more high-frequency
contents of the real data. The exemplary synthetic and real microseismic waveform data
are shown in Figure 3c–f.
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Figure 3. Model and data. (a) A horizontally layered model for downhole microseismic monitoring.
The black rectangle indicates the region where the sources are located, the red pentagram indicates
an arbitrary source, and black reverse triangles indicate the receivers. (b) Power spectra comparison.
(c) The original noise-free synthetic waveforms generated by ray-tracing. (d) Real microseismic data.
(e) Result of the real data autocorrelation. (f) The augmented data for the synthetic waveforms in (c).
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4. Result
4.1. Single-Stage Examples

For single-stage examples, we focus on the feasibility of the network and training
strategy. The overall quantitative metrics are listed in Table 1. As indicated in Equation (8),
the hybrid dataset here denotes a hybrid strategy involving both synthetic and augmented
data. It shows that the hybrid training strategy outperforms the other two training strategies
for almost all metrics in the velocity inversion task under the same conditions.

Table 1. The mean values of quantitative metrics for single-stage examples.

Training Dataset Phase PSNR SSIM MAE

Synthetic P 19.88 0.7097 272.243
S 19.92 0.8139 133.958

Augmented P 27.90 0.8644 113.514
S 27.71 0.8912 57.431

Hybrid P 30.04 0.8591 93.143
S 29.60 0.8911 48.308

The predicted one-dimensional velocity profiles of the Unet model using the three
training strategies are shown in Figure 4. The displayed velocity values correspond to
two arbitrary events and are averaged along the horizontal direction. We can find that
augmented data and the hybrid training strategy yield better fittings to the reference
velocity model. Figure 5 shows the two-dimensional profiles corresponding to Figure 4b
by the hybrid training strategy. Training with the synthetic data involves first learning the
low-frequency information in the data, and then it can provide an initial velocity model
(Figure 5c,d). The model obtained by training the synthetic data (low frequency) may also
predict high-frequency velocity components with the real data (with high frequency), but
the results have a large error since the model did not learn these high-frequency features.
After training with the augmented data containing high-frequency information, the model
improves the precision of the predicted velocity models (Figure 5e,f).
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Figure 4. One-dimensional profiles of the reference and predicted velocity values of two arbitrary
events from the first stage. (a) Velocity curves of one sample event. The red solid and dashed
lines indicate the reference velocity for P- and S-wave, respectively, and the blue, magenta, and
black dashed lines indicate the results of training with synthetic, augmented, and hybrid dataset.
(b) Velocity curves of another sample event. The meanings of the symbols and colors are the same
with (a).
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Figure 5. Two-dimensional profiles of the reference and predicted velocity values of an arbitrary
event from the first stage. (a,b) The reference P- and S-wave velocities. (c,d) Predictions of P- and
S-wave velocities trained with the synthetic dataset (when the epoch is 80). (e,f) Predictions of P- and
S-wave velocities trained with both the synthetic and the augmented dataset (when the epoch is 200).

4.2. Robustness Testing

In order to further evaluate the superiority of the proposed data augmentation method
and hybrid training strategy, we carry out robustness tests on the real data of the first stage.
We denoise the real data by wavelet filtering to obtain the clean signals, and then calculate
the SNR of the real data [43]:

S/N = 10 × log10

(
Sc

Sn

)
= 10 × log10

(
Sc

Sr − Sc

)
(9)

where S/N is the SNR, Sr is the real data signal, Sc is the clean signal after denoising the
real data signal, and Sn is the noise of the real data signal.

The distribution of the SNRs for all events in the first stage is shown in Figure 6. Most
of the SNRs of the real events are lower than 5 dB. We select a sample event (S/N = 3.44)
to quantitatively evaluate the stability and robustness of the network. The predicted
two-dimensional and one-dimensional velocity profiles of the Unet model using the three
training strategies are shown in Figures 7 and 8. The detailed values of quantitative
metrics are listed in Figure 7. The results suggested that the data augmentation method
can significantly improve the prediction accuracy of purely synthetic data by introducing
real data information. Moreover, the hybrid training strategy effectively utilizes the useful
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information of the synthetic data in the low-frequency components and yields the best
inversion results.
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4.3. Multi-Stage Examples

From the results of single-stage examples, we believe that the augmented data and
hybrid training strategy have higher accuracies for efficient velocity inversion. Therefore,
we try to expand the research area to consider more fracturing stages. We consider all
five stages, corresponding to five reference velocity models. We generate 12,000 gathers
(1000 models × 12 sources) as the initial training dataset. The quantitative metrics are
shown in Table 2. Compared to single-stage examples, the predictions are generally worse
due to the combined effects of increased area and characteristics and limited field samples.
Please also note that these metrics are mean values for all the predictions in five stages.
The one-dimensional velocity profiles and the loss curves are shown in Figures 9 and 10,
respectively. The predictions for the first stage (Figure 9a) are better than other stages
(Figure 9b), especially for the two deep layers, mainly due to the largest number and best
coverage of the microseismic events in the first stage. The hybrid training strategy can
achieve slightly faster convergence rates than the other two strategies.
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Table 2. The mean values of quantitative metrics for multi-stage examples.

Training Dataset Phase PSNR SSIM MAE

Synthetic P 18.75 0.7094 314.843
S 19.16 0.7209 155.461

Augmented P 21.50 0.7030 228.985
S 17.89 0.6759 152.441

Hybrid P 22.24 0.7478 221.382
S 18.46 0.6369 165.114

5. Discussion and Conclusions

We attempt to directly invert the velocity models from microseismic waveforms in
this study. The testing results with purely synthetic data demonstrate the Unet model
can predict the layered velocity model quite well and in an efficient manner. Since the
predicted velocity models are almost the same as the real ones and thus do not contain
much information, we do not show those simple results in this manuscript. Zhou et al. [29]
demonstrated the effectiveness of a modified Attention Unet in predicting complex syn-
thetic velocity models with microseismic records. They did not consider field microseismic
data and adopted Gaussian noise to evaluate the robustness of the model, while we used
field data to enhance the synthetic data by data augmentation operations. We also investi-
gate and test many other scenarios by considering different SNRs, source locations, source
mechanisms, and model numbers and sizes to mimic the field cases. Specially, the number
and coverage of real microseismic events largely determine the features and constraints
that can be extracted by the network model. However, these cases just introduce more
complicated features which require a larger training dataset and computation expense.
Further investigation of the influential factors on deep learning-based microseismic velocity
inversion is out of the scope of the current study.

The disadvantage of most current deep learning algorithms is the heavy dependence
on the training dataset and weak generalization capability. The introduced data augmenta-
tion method and hybrid training strategy proved to be effective in alleviating the feature
gap in data domains and improving the generalization ability of the network model, which
may provide guidance for other deep learning-based seismic inversion tasks. Transfer
learning is also helpful to fill the feature gap, but also relies on the scale of the training data.
Another feasible approach to realize seismic inversion with a limited training dataset is
combing data-driven algorithms with the physical laws of seismic wave propagation, to
provide more physical constraints and optimize the learning performance. In this work, we
only consider a horizontally layered model, which is the most-commonly used model in
microseismic processing. We will investigate the performance of the proposed method on
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heterogeneous models and compare it with conventional velocity inversion methods (e.g.,
FWI method). One of the advantages of deep learning methods is the weak dependence on
the raypath coverage since we can train the model with a large and complete dataset.

In this paper, we propose an improved deep learning method for microseismic velocity
inversion. The synthetic data are augmented to incorporate the features of the real data, and
a hybrid training strategy that integrates the synthetic and augmented data is introduced.
The Unet model can directly predict the layered velocity model from microseismic wave-
forms. Training the synthetic data involves first learning the low-frequency information
in the data, and then it can provide an initial velocity model. Then, the augmented data
are trained to learn the high-frequency information, which can improve the precision of
the predicted velocity model. The hybrid training strategy makes better use of the data
and enables the model to learn more imbedded connections between the waveforms and
velocity models. Field downhole microseismic examples demonstrate the feasibility and
superiority of the proposed method for efficient inversion of microseismic velocity models.
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