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Featured Application: The specific application of this work involves the development of an
intelligent system for diagnosing and treating fish diseases in Greek fish farming. The project
aims to enhance the competitiveness of Greek fish farming by addressing the increasing mortality
rates attributed to unsustainable farming methods and environmental factors. The application
of data mining classifiers, particularly decision trees (DTs), in predicting and categorizing fish
mortality instances contributes to the development of an intelligent system for disease diagnosis
and treatment. The proactive approach, supported by rigorous evaluation processes and a feature
importance analysis, holds implications for sustainable aquaculture management and aligns with
global sustainability initiatives.

Abstract: A proposal has been put forward advocating a data-driven strategy that employs classifiers
from data mining to foresee and categorize instances of fish mortality. This addresses the increasing
concerns regarding the death rates in caged fish environments because of the unsustainable fish
farming techniques employed and environmental variables involved. The aim of this research is to
enhance the competitiveness of Greek fish farming through the development of an intelligent system
that is able to diagnose fish diseases in farms. This system concurrently addresses medication and
dosage issues. To achieve this, a comprehensive dataset derived from various aquaculture sources was
used, including various factors such as the geographic locations, farming techniques, and indicative
parameters such as the water quality, climatic conditions, and fish biological characteristics. The main
objective of the research was to categorize fish mortality cases through predictive models. Advanced
data mining classification methods, specifically decision trees (DTs), were used for the comparison,
aiming to recognize the most appropriate method with high precision and recall rates in predicting
fish death rates. To ensure the reliability of the results, a methodical evaluation process was adopted,
including cross-validation and a classification performance assessment. In addition, a statistical
analysis was performed to gain insights into the factors that identify the correlations between the
various factors affecting fish mortality. This analysis contributes to the development of targeted
conservation and restoration action strategies. The research results have important implications for
sustainable management actions, enabling stakeholders to proactively address issues and monitor
aquaculture practices. This proactive approach ensures the protection of farmed fish quantities while
meeting global seafood requirements. The data mining using a classification approach coincides with
the general context of the UN sustainability goals, reducing the losses in seafood management and
production when dealing with the consequences of climate change.

Keywords: data mining; decision trees; farmed fish; fish death rates; fish mortality prediction;
sustainable aquaculture; UN sustainability goals; growth factors; seafood environmental factors

Appl. Sci. 2024, 14, 2129. https://doi.org/10.3390/app14052129 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14052129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6522-2128
https://orcid.org/0000-0002-7127-5779
https://doi.org/10.3390/app14052129
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14052129?type=check_update&version=2


Appl. Sci. 2024, 14, 2129 2 of 19

1. Introduction

Increasing mortality rates are a major challenge for both wild fisheries and in marine
aquaculture. Various factors, such as overfishing, the presence of pollutants, the destruction
of ecosystems, and climate change, contribute to the increased rates. Overfishing threatens
the sustainability of marine aquaculture, underscoring the urgent need to address this
challenge [1,2].

Furthermore, pollution from industrial and agricultural activities has resulted in a
degraded water quality, adversely impacting fish health and survival [3].

In the realm of aquaculture, unsustainable practices, such as overcrowding, poor water
quality, and excessive antibiotic use, can trigger disease outbreaks and lead to heightened
mortality rates. The rapid expansion of aquaculture has been accompanied by environmental
degradation and disease proliferation, resulting in substantial fish losses [4,5].

This work introduces a project dedicated to enhancing Greek fish farming through
the incorporation of innovative technologies and sustainable practices. The project’s core
objective is the development of intelligent systems for diagnosing and treating fish diseases,
ultimately bolstering the competitiveness of Greek aquaculture. The proposed data-driven
strategy utilizes data mining classification methods, including decision trees (DTs), to
predict and categorize instances of fish mortality. The model considers various factors
such as the geographical locations, husbandry methods, water quality, weather conditions,
and biological characteristics of the fish. The application of DTs in the research allows
for the identification of thresholds for features like the median atomic weight (MAB),
water temperature (Temp), volume of the cell (Vol), and concentration of fish inside the
cell (i–f), leading to the classification of outcomes into specific classes. The project’s aim
is to aid sustainable aquaculture management, offering a proactive approach to address
fish mortality issues by demonstrating valuable insights into the factors influencing fish
mortality. The findings aid the development of targeted conservation and management
strategies, empowering stakeholders to protect farmed fish stocks. The current research
complies with the UN sustainability goals to reduce seafood production losses due to
climate change [6].

This research effort aims to promote sustainable fishing and aquaculture in Greece.
The current project, entitled “Improving Greek Fish Farming Competitiveness”, aims to
upgrade the sector by creating an intelligent system for diagnosing fish diseases, taking
into account factors including the treatment, diet, temperature, and volume. This initiative
is coordinated with a broader effort to enhance the competitiveness of Greek fish farming
through the integration of technological innovation and sustainable practices [7].

This study comprises six distinct sections, each contributing to a comprehensive un-
derstanding of the proposed data-driven strategy for fish mortality prediction and catego-
rization. These sections encompass the Introduction, Related Work, Research Methodology,
Results, Discussion, and Conclusions. Each segment provides a structured overview of
our approach, methodology, findings, and implications. Hence, the introductory part has
made clear the scope and goal of the current study regarding the application of data mining
models in fish mortality prediction. Following this, the Related Work refers to existing
research, studies, or projects that are relevant to the use of data mining in fish mortality
prediction, incorporating the research objectives of the study. The Research Methodology
mentions the specific approach, techniques, and procedures used to conduct the study. This
section outlines how the research was designed, implemented, and analyzed to address the
research questions or objectives. It includes details about the research scope, an overview
of the method used, the dataset, as well as the DTs classifiers. The Results section provides
information about the outcomes and findings of the study based on the descriptive statisti-
cal analysis of the collected data, including explanatory tables, and figures to present the
mortality rates through DT classification, highlighting the implications and significance of
the findings in relation to the research questions or objectives. The Discussion negotiates
the interpretation of the results produced by the study, providing a context in which the
findings take shape and purpose, discussing their implications, and drawing overall con-



Appl. Sci. 2024, 14, 2129 3 of 19

clusions. Moreover, the last section refers to conclusions and summarizes the key points of
the paper, enhancing the main notions for the reader.

2. Related Work

The current research negotiates the use of DT classifier prediction models in fish mor-
tality factors. Thus, the field of study combines the data mining techniques configuration
and application and its contribution to the cage aquaculture industry. Also, a statistical
analysis of the factors which affect fish mortality takes place, indicating those that are more
likely to impact fish death rates. The literature review refers to similar attempts to classify
and predict fish death rates using machine learning and data mining models.

There is research focusing on a model called “Digital Twin”, which focuses on the
design of infrastructure supporting an advanced artificial intelligence Internet of Things
(AIoT) system for monitoring fish in the aquaculture industry. This system is based on
the Internet of Things and cloud technology combined with artificial intelligence (AI) and
machine learning models. The physical unit is equipped with sensors and elements inte-
grated into intelligent fish feeding and selection machines. These collect and transmit raw
data to cloud services, using wireless communication networks for real-time and remote
monitoring. There are four main software twin services: an automated fish feeding process,
fish metric estimation, the measurement of environmental factors, and the monitoring of
fish vitality, mortality, and disease. Each one of the digital twin services is designed to
support multiple artificial intelligence (AI) services capable of performing sophisticated
decision-making processes like optimization, prediction, and data analysis [8].

The development of advanced monitoring technologies presents a critical avenue for
addressing the persistent challenges in the aquaculture industry, such as early outbreak
detection, the mitigation of massive mortality events, and the promotion of sustainable
practices. The current landscape of the fish industry is characterized by these challenges,
underscoring the need for sophisticated systems. Another research attempt to provide a
comprehensive analysis of the monitoring technologies uses a Gaussian distribution model
adjusted for the identification of hazardous operating conditions in industrial fish farming.
This model facilitates the visualization of fish production states—ranging from normal to
warning to dangerous—through 2D imaging techniques. Moreover, the implications of
this method extend beyond cage aquaculture, offering potential applications for advanced
decision making across scientific fields. The statistical analysis unveils data patterns within
various physical, chemical, and biological systems [9].

Following this, another significant study examines the perspectives of fishermen from
various regions in Fiji on the primary causes and risk factors of fish poisoning. Fish poison-
ing is an emerging health risk, especially given that fish is the main food source. Utilizing a
computational, intelligence-based data mining methodology, the research delves into the
fishermen’s views, employing data mining techniques. These techniques refer to association
rule mining (ARM) and were used to uncover patterns and perceived primary causes of
fish poisoning in order to assess the effectiveness of an ARM-based approach in conjunction
with a dedicated database for capturing expert fishermen’s insights into fish poisoning.
The findings revealed a consensus among fishermen regarding the environmental factors
contributing to fish poisoning. Contaminated migratory paths, water pollution, and specific
seasonal and environmental conditions were some of the main causes for increased fish
mortality rates. These insights had the potential to guide the development of diagnostic
decision-making systems for the monitoring, detection, and prediction of fish poisoning,
and risk factor-mitigating strategies [10].

Nowadays, aquaculture holds the first place as a fundamental sector of the food
industry. However, in order to become a sustainable and more profitable industry, it is
necessary to monitor several associated risk factors. These factors include the temperature,
salinity, ammonia, hydrogen, nitrogen dioxide, bromine, etc. The current study examines
the important role of aquaculture in the food industry and highlights the necessity for
sustainable and profitable practices. An innovative detection model based on a multivariate
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Gaussian probability framework that detects anomalies is proposed, aiming to correlate the
gathered raw data of fish tank water compositions with fish mortality rates. The machine
learning model, trained on daily data collection for the Senegalese sole, show a high
performance in the real-time monitoring and successful prediction of high mortality rates.
This approach highlights a significant advancement in predictive modeling, providing
unique potentiality to fish farming practices [11].

Digital technologies can organize, store, and analyze big real-time volumes of raw
data in an autonomous and self-optimized manner. Such technologies have started affect-
ing general policies, administration, economies, trade, societies, and science. This article
explores the potential of three digital data technologies including AI, data mining, and
blockchain, in reforming the commercial cage aquaculture industry. These technologies,
currently undergoing rapid development and implementation, are significantly influencing
various aspects of cage aquaculture trade by providing solutions to significant problems
and drawbacks, such as transparency in the supply chain, consumer information access, reg-
ulatory oversight, and market competition. By enhancing the transparency and information
availability, the trust among stakeholders in the cage aquaculture sector is fostered [12].

Research Objectives

The current study seeks to provide predictions of high accuracy using DTs for mor-
tality case classification. Along with the data mining experiments, a series of statistical
analysis tests were conducted to measure the correlation among mortality rates and other
factors. The application of DT classifiers is used for analyzing, handling, categorizing, and
extracting new patterns from fish data. Different feature types, numbers of classes, and
instances were used.

The research objectives refer to four different directives. To begin with, the primary
goal is to evaluate the effectiveness of DT classifiers for fish mortality prediction. Following
this, it is essential to highlight the impact of a series of environmental factors on fish
mortality rates in Greek aquaculture. Research on how the current fish farming practices
contribute to fish mortality is also a main objective.

Finally, this study aims to create the foundations of a robust system that not only
diagnoses and categorizes fish diseases but also builds the foundations of an effective
treatment strategy.

The empirical investigation incorporates three phases: The first phase focuses on
the statistical analysis of the fish mortality factors. The second phase refers to the DT
application on the raw data of the fish in order to reveal potential matches through a
series of mortality occurrences. Finally, the third phase demonstrates the data classification
using decision tree graph visualizations along with their classification performance using a
dataset of 37,203 instances for training, validation, testing, and visualization. The generated
results will indicate the cases under which the dependent and independent factors are
related, achieving a high classification accuracy referring to different numbers of class
attributes. The research objectives are clearly stated in the following table: each one of
them examines the efficiency of such a probabilistic approach for fish mortality prediction
(Table 1).

Table 1. Research objectives.

No. Research Objectives (ROs)

1. Evaluate the effectiveness of decision tree classifiers in predicting fish mortality;
2. Analyze the impacts of environmental factors on fish mortality rates in Greek aquaculture;
3. Research how the current fish farming practices contribute to fish mortality;

4. Aim to create the foundations of a robust system that not only diagnoses and categorizes
fish diseases but is also able to suggest effective treatment strategies.
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3. Research Methodology
3.1. Research Scope

The proposed research endeavors to address the critical issue of fish mortality in Greek
fish farming, which is caused by a combination of factors including overfishing, pollution,
habitat destruction, and unsustainable aquaculture practices. The overarching goal is
to enhance the competitiveness of Greek aquaculture by developing and implementing
intelligent systems for the diagnosis and treatment of fish diseases.

3.2. Method Overview

The collection of data took place in cage aquaculture within the Ionian Sea in Greece,
yielding information on nominal (one) and numerical factors (four). The study utilized
an extensive dataset, incorporating various elements such as the geographical locations,
husbandry methods, and other variables like the water quality and weather conditions. This
dataset includes a range of cage aquaculture techniques, offering a wealth of information
for the analysis. We utilize a data-driven approach, incorporating data mining classifiers,
and leveraging comprehensive datasets from diverse aquaculture sources [13,14].

Prior to the DTs classification deployment, a data mining-algorithm performance
comparison took place to determine which algorithm performs better based on the current
data. A DT classification performance assessment requires certain steps which need to be
taken. Regarding the statistical analysis of the data to analyze the correlations between
the “Deaths” variable (considered as the dependent variable) and the other variables in
the dataset (considered as independent variables), data cleansing and formatting must be
conducted, including handling missing values and outliers. Following this, an exploratory
data analysis is conducted to understand the distribution and range of each variable. A
correlation analysis is significant to calculate the correlation coefficients between the de-
pendent “Deaths” variable and each of the other independent variables. Finally, data
visualization using plots will help to demonstrate the relationships between the “Deaths”
variable and the other variables. Data mining classifiers like DTs are employed for the pre-
dictive modeling of fish mortality instances. We implement rigorous evaluation processes,
such as k-fold cross-validation and a performance metric analysis, to ensure the reliability
of the research findings. The data classification is properly represented in tree structures.
Rows containing any missing values were excluded from the final dataset analysis. An
analysis of these factors was conducted to discern their impact on fish mortality. The
study managed to provide measurements of the water quality, weather state, and biological
characteristics of the fish as the primary elements influencing mortality rates (Table 2) [15].

Table 2. Descriptive statistics.

Variable Count Mean Std Dev Min 25th Pctl Median 75th Pctl Max

MAB 37,203 702.39 623.45 2.20 142.50 531.80 1202.75 2628.90
Deaths 37,203 −44.34 83.75 −995.00 −45.00 −17.00 −6.00 −1.00
Temp 37,203 20.29 4.05 12.00 16.30 20.80 23.80 27.30

Vol 37,203 2503.33 946.23 640.00 1271.00 3260.00 3260.00 3260.00
i–f 37,203 9.95 6.15 0.01 5.22 10.17 13.95 41.25

3.3. Dataset

A dataset specifically focused on fish mortality was extracted and utilized in the
experiments. This dataset encompasses diverse aquaculture practices, providing a rich
source of information for the analysis The data were collected from marine aquaculture
companies in the Ionian Sea in Greece. The data contain one nominal and four numerical
factors (real, integers) of 37,203 instances. This dataset encompasses caged fish information,
including variables like the median atomic weight of the fish (MAB), the volume of the
cell occupied by the fish (Vol), the concentration of fish within the cell (i–f), the water
temperature (Temp), and the number of “Deaths” (Tables 2 and 3) [16–20].
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Table 3. Fish mortality statistic values.

Features Value

Count 37,203
Mean −44.34

Standard deviation 83.75
Minimum −995.00
Maximum −1.00

Missing values Non-missing values

The values within the “Deaths” variable are transformed into discrete classes, enabling
the application of classification algorithms. This transformation process is commonly
referred to as binning or discretization (Tables 3 and 4). The class range segmentation is
also demonstrated along its number of instances (Table 5).

Table 4. Binned fish mortality classes.

Features Value

Unique bins/classes 5
Most frequent bin −199.8–1.0 (35,536 occurrences)

Table 5. Equal width binning strategy for the “Deaths” variable.

Class No Range Instances

1 From −995 to −796 74
2 From −796 to −597 139
3 Form −597 to −398 301
4 From −398 to −199 1153
5 From −199 to −1.0 35,536

3.4. Classification Algorithm Performance Assessment

Before the DT classification process is deployed, a classification algorithm performance
assessment is essential to be conducted to define the optimal algorithm for such a classifica-
tion. To determine which algorithms might perform better for the current dataset, there
are several factors that need to be considered, such as the nature of the data, its features,
and the specific problem context (classification, regression, etc.). Without applying each
algorithm to the data, it is difficult to predict with certainty which one will underperform.
Decision trees offer distinct advantages over logistic regression, KNN (K-nearest neigh-
bors), and naive Bayes in various situations, primarily due to their inherent flexibility
and robustness to certain types of data. They excel at handling complex and non-linear
relationships between features and the target variable, making them particularly useful
for datasets where linear models like logistic regression might struggle to capture the
underlying patterns. Decision trees naturally accommodate both categorical and numerical
data, and their hierarchical structure allows for an intuitive interpretation and analysis,
akin to human decision-making processes. This interpretability is a significant advantage,
particularly in fields where understanding the decision rationale is as important as the
decision itself [21–25].

Moreover, decision trees are less sensitive to outliers and missing values compared to
logistic regression and naive Bayes, which can be significantly impacted by such anomalies
due to their reliance on assumptions about the data distribution. While KNN is non-
parametric and also robust to the non-linearity of data, it can suffer from the curse of
dimensionality and become computationally intensive with large datasets, a drawback
that decision trees mitigate through feature selection and dimensionality reduction at each
split. However, decision trees can be prone to overfitting, especially with very complex
trees, and may require techniques like pruning or ensemble methods like random forests
to maintain generalizability. In contrast, logistic regression offers a more straightforward,
less computationally intensive option for binary outcomes with linear relationships, and
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naive Bayes can be particularly effective in probabilistic classification tasks, such as spam
detection, despite its simplicity and strong independence assumptions [21–25].

3.5. Decision Trees (DTs)

A variety of data mining classifiers were employed in a comparative analysis to
determine the most effective method for predicting fish mortality, focusing on achieving a
high classification accuracy. Data mining serves as an approach to extract valuable insights
through the utilization of data analysis tools and data mining models. These tools enable the
discovery of significant correlations, providing essential information for decision-making
and predictive processes. Among the commonly used techniques in data mining, DTs play
a pivotal role. The application of data mining aims to unearth new knowledge, establish
connections and correlations, and reveal intricate patterns [26,27].

Efforts to optimize the binning strategy for a maximum classification accuracy involve
patterns for understanding the identification and potential correlation between the “Deaths”
variable and other factors. Among the optimal classification strategies is the ability to
explore a range of binned variables and measure their effect on the overall data classification
performance using cross-validation methods. In the current experiment, the equal width
binning model was used for the “Deaths” variable. The initial dataset was divided into
training (70%), validation (20%), and testing datasets (10%) [28,29].

DTs that were trained on each binned target in the training set were evaluated using
the validation set and tested using the test set. DTs, a frequently employed classification
model in data mining, act as a classification mechanism, interpreting data and assigning
values to classes in an ‘if-then-else’ sequence. The nodes in the decision tree refer to
dataset features, while the branches represent the features values. The top node refers to a
superclass which includes the leaf nodes representing the sub-classes. The process involves
splitting the entire set of examples into training, validation, and testing datasets [29,30].

Following this, the DT training process takes place with the training set of examples,
where a hypothesis is generated, and the percentage of correctly classified examples in the
validation sets is calculated. This procedure is repeated with a diverse range of training
data. Finally, the testing process validates the results using new data, with overfitting being
a potential challenge to the classification process due to insufficient data [29,30].

Tree pruning techniques are employed to address overfitting, maintaining the model’s
simplicity and interpretability. The success rate of the data mining methods was gauged by
calculating the average success rate across ten experiments (folds). The model underwent
training and assessments using a 10-fold cross-validation approach. A pruned DT classifier
with a maximum depth of 3 was applied to eliminate overfitting. The 10-fold cross-
validation provided a concise measurement of the model’s performance, succeeding in
achieving a high average accuracy (95.43%).

In the context of decision trees, the Shannon function plays a crucial role in the DT
algorithm, serving to assess the utility of each attribute by quantifying the information it
contributes to bits. The Shannon function gauges the overall relevance of an attribute, consid-
ering its consistency with the existing knowledge. When an attribute conveys a substantial
size of information, the Shannon function yields a lower value. It calculates the information
gained from the entire set of examples separately calculated for a specific attribute [29].

The quantification of information gained is expressed in bits, and the mathematical
expression for the Shannon function is articulated as follows:

I(P(u1), . . . , P(un)) =
n

∑
i=1
−P(ui) log2P(ui) (1)

where I(P(u1), . . . , P(un)) refers to the amount of information gained by splitting the
dataset according to the attributes of P(u1), . . . , P(un), P(u) refers to the analogy of the
dataset assigned to each class after the split, and P( ui) refers to the probability of the
possible answer (ui) (Algorithm 1) [29–31].
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Remainder (A) =
n

∑
i=1

pi + ni
p + n

I
(

pi
pi + ni

,
ni

pi + ni

)
(2)

Gain (A) = I
(

pi
pi + ni

,
ni

pi + ni

)
− Remainder (A) (3)

Gini (A) = 1−
n

∑
i=1

p2
i (4)

Algorithm 1. Shannon function pseudocode.

1. Function shannonFunction(attribute):
2. knowledgeConsistency = evaluateKnowledgeConsistency(attribute)
3. informationGained = calculateInformationGained(attribute)
4. fitnessSimilarity = assessFitnessSimilarity(attribute, knowledgeConsistency)
5. shannonValue = calculateShannonValue(informationGained, fitnessSimilarity)
6. return shannonValue
7. evaluateKnowledgeConsistency(attribute):
8. calculateInformationGained(attribute):
9. assessFitnessSimilarity(attribute, knowledgeConsistency):
10. calculateShannonValue(informationGained, fitnessSimilarity):
11. shannonValue = informationGained/fitnessSimilarity
12. return shannonValue

Beyond the Shannon function, the Gini index and the chi-squared test are also used to
measure the information gain from the class attributes. These measures look at different
aspects of the data, and the choice of the most suitable function mostly depends on the
particular problem. Selecting a suitable function to evaluate the information gain is critical
to create precise DTs that can significantly classify and predict results (Algorithm 2) [29,30].

Algorithm 2. Binary decision tree pseudocode.

1. Function Custom_Decision_Tree (Attributes, default_class, training_examples);
2. Atts← Attributes;
3. Default_Class← default_class;
4. Training_Examples← training_examples;
5. Best_Attribute← 0;
6. Attribute_Values[i]← Atts[1. . .N];
7. Subset[i]← 0;
8. SubTree← 0;
9. Create Node RootNode;

a. If Training_Examples have the same classification then
b. return classification;
c. If Training_Examples is empty then
d. return Default_Class classification;

10. Best_Attribute← Find_Best_Attribute(Atts, training_examples);
11. RootNode← Best_Attribute;

e. For any Attribute_Value(i) of Attribute_Values do

i. Training_Examples(i)← Best Attribute_Value[i] from Training_Examples;

f. If SubTree is not empty
g. then

i. New_Atts← Atts - Best_Attribute;
ii. SubTree← Custom_Decision_Tree(SubTree, New_Atts);
iii. Attach subtree as a child of RootNode;

h. Else

i. Create Leaf Node Leaf;
ii. Leaf← Default_Class;
iii. Attach Leaf as a child of RootNode;

12. Return RootNode;
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4. Results

The results present the correlations between various factors and fish mortality. The
author discusses the strength and direction of the correlations, highlighting potential
relationships between factors like the median atomic weight of the fish, the volume of the
cell occupying the fish, the fish concentration inside the cell, and the water temperature.
The text also mentions the correlation’s significance or lack thereof in the binned data.

4.1. Descriptive Statistics

Table 6 indicates that for all variables, the p-values are significantly below 0.05, indi-
cating that the data for these variables do not follow a normal distribution. Given these
results, it is more appropriate to use non-parametric methods for analyzing the correlations
between these variables. To explore the possible correlation between the “Deaths” vari-
able and the other independent variables, the non-parametric Spearman correlation was
employed to assess the linear relationship for each pair of continuous variables [16–20].

Table 6. Shapiro–Wilk test.

Variable Statistic p-Value

MAB 0.9002 0.0000
Deaths 0.4999 0.0000
Temp 0.9412 ~0

Vol 0.7078 0.0000
i–f 0.9688 ~0

The correlations have changed after binning the “Deaths” variable. The correlations are
generally weaker with the binned “Deaths” variable compared to the original continuous
values. This change is expected, as discretizing a continuous variable can lead to a loss
of information, which may affect the strength and nature of the relationships with other
variables (Table 7).

Table 7. Spearman’s rank correlation coefficients.

Variable Correlation
Coefficient Sig. (2-Tailed) N

MAB 0.4439 ~0 37,203
Temp 0.1100 ~0 37,203

Vol 0.3099 ~0 37,203
i–f 0.2616 ~0 37,203

The MAB has a correlation of 0.4439 with the “Deaths” variable, indicating a mod-
erately positive relationship. This implies that when the MAB increases, the “Deaths”
variable tends to increase as well. The “Temp” shows a weak positive correlation of 0.1100
with the “Deaths” variable. The “Vol” has a correlation of 0.3099, indicating a weak to
averagely positive relationship with the “Deaths” variable. The “i–f” has a correlation
of 0.2616, also indicating a weak to moderately positive relationship with the “Deaths”
variable. All variables have very low p-values (close to 0), indicating strong statistical
significances of the correlations with “Deaths” (Figure 1) (Table 7).
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4.2. Overall Classification Performance Assessment

Table 8 represents the overall classification performance assessment for the used mod-
els. The decision tree model was successfully trained and evaluated on the validation
set, achieving an accuracy of approximately 95.43%. The logistic regression model was
successfully trained and evaluated on the validation set, achieving an accuracy of approxi-
mately 95.42%. Also, the K-nearest neighbors (KNN) model was successfully trained and
evaluated on the validation set, achieving an accuracy of approximately 94.74%. Finally, the
naive Bayes model was successfully trained and evaluated on the validation set, achieving
an accuracy of approximately 95.30%. With the performance metrics, the results can be
summarized into an overall table.

Table 8. Decision Tree accuracies.

Model Value

Decision trees 95.43%
Logistic regression 95.42%

K-nearest neighbors (KNN) 94.74%
Naive Bayes 95.30%

4.3. Decision Tree Mortality Classification

Figure 2 indicates the initial non-pruned decision tree visualization for fish mortality
prediction. Focusing on the DT graph and its implications for classifying outcomes based
on various variables, it is imperative to prune the decision tree using pruning techniques in
order to avoid overfitting occurring. The bigger the decision tree becomes, the bigger the
noise that is generated among the nodes, and the overfitting increases as well. High values
of overfitting result in a lower classification accuracy for the classification process. A low
classification accuracy leads to insufficient classification (Figure 2) [28,29].

Figure 3 indicates the final pruned decision tree visualization for fish mortality predic-
tion. The entire process also covers the training process of the DT classifier, including the
preprocessing steps, pruning, and model evaluation using a 10-fold cross-validation. In
DTs, each subsequent split aims to increase the homogeneity of the node with respect to the
target variable, which, in this context, is likely related to the classes of fish mortality. The
Gini impurity is a metric that quantifies the purity of a node, with a lower value indicating
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a higher purity. The “value” arrays give insight into the composition of the classes at each
node, showing how many samples fall into each class. The class with the majority within
each “value” array dictates the predicted class for that node or the further splitting rule if
the node is not a terminal leaf node (Figure 3) [28,29].
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Figure 2. Initial non-pruned decision tree representation for fish mortality prediction.
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Figure 4 represents the root node of the decision tree while splitting, based on the
feature “MAB” at a threshold of 111.85. The Gini impurity at this node is 0.088, suggesting
a reasonable level of purity among the samples with respect to the target variable. The node
is responsible for a significant number of samples, specifically 26,042, and these samples are
distributed across various classes as indicated by the “value” array [45, 97, 217, 832, 24,851].
This distribution suggests that the majority of the samples at this node fall into the last class
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represented in the “value” array. From this root node, the decision tree further branches
into two child nodes: The left child node is the result of the condition MAB ≤ 111.85. At
this node, the Gini impurity is slightly higher than the root node, which is 0.245, indicating
that the samples are less pure with respect to the target variable compared to the root
node. The samples are divided among the classes as [28, 76, 149, 546, 5049]. This node will
further branch out based on additional conditions. The right child node follows from the
condition MAB > 111.85 and splits again at MAB ≤ 454.15. This node has a very low Gini
impurity of 0.038, suggesting that the samples at this node are quite homogeneous. There
are 20,194 samples at this node, distributed as [17, 21, 68, 286, 19,802] across the classes.
The predominance of samples in the last class indicates a strong majority class presence at
this node (Figure 4).
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Figure 5 represents the root node while splitting on the feature “MAB”, with a thresh-
old of 25.55. This indicates that the first decision in the tree to separate the data involves
checking if the “MAB” value is less than or equal to 25.55. The Gini impurity for this
node is 0.245, and it contains samples that fall into various classes, as indicated by the
“value” array. The left child node of the root is further split based on the feature “Temp”,
with a threshold of 16.9. The Gini impurity of this node is 0.302, and it also contains a
mix of classes. The right child node of the root also splits based on the “Temp”, but with
a threshold of 17.9. Its Gini impurity is 0.173. Each of the nodes following the “Temp”
splits further into more nodes, which are not fully visible in the provided snippet. These
subsequent nodes will have additional thresholds and possibly other features that they
split on, further segmenting the data into the most homogeneous groups possible with
respect to the target variable (likely the classes of fish mortality). Each of these rules would
further branch out based on additional conditions until a final leaf node is reached, which
would provide the predicted class. The predicted class at each leaf node would typically be
the class that has the majority within that node, indicated by the ‘value’ array. The ‘value’
array, such as [18, 49, 100, 380, 2593], represents the distribution of samples across different
classes at that node. The Gini impurity is a measure of the node’s purity; a smaller Gini
index indicates a greater purity (Figure 5).

Figure 6 represents the root node while splitting the decision tree’s right child node
based on the feature “MAB” at a threshold of 454.15. The Gini impurity at this node is
remarkably low, at 0.038, indicating that the samples are quite pure with respect to the
target variable, and there is a strong majority class present. There are 20,194 samples at
this node, which are distributed across various classes as indicated by the “value” array
[17, 21, 68, 286, 19,802]. From this node, the decision tree branches into two paths: On the
left, if “Temp” is less than or equal to 18.9, the Gini impurity increases slightly to 0.09, and
the number of samples at this node is 5963. The samples are distributed as [14, 18, 41, 206,
5684] across the classes. This path indicates that temperature plays a significant role in
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classifying samples when “MAB” is less than or equal to 454.15. On the right, if “Temp”
is greater than 18.9 and less than or equal to 12.15, the Gini impurity is very low at 0.016,
with 14,231 samples. The “value” array is [3, 3, 27, 80, 14,118], suggesting a strong class
presence. This suggests that lower temperatures are associated with a particular class when
the “MAB” is greater than 454.15 (Figure 6).
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Figure 5. Decision tree representation for “Deaths” prediction (left nodes).

Focusing on the DT structure and its implications for classifying outcomes based
on various variables, the authors discuss specific thresholds for features like “MAB”,
“Temp”, “Vol”, and “i–f”, detailing how these thresholds lead to different branches and
classifications. The entire process also covers the training process of the DT classifier,
including preprocessing steps, pruning, and model evaluations using a 10-fold cross-
validation (Figures 2–6). Derived from the illustrated DT structure, when the “MAB” is less
than or equal to 111.85, it results in diverse branches, predominantly leading to classes 3 and
4. Conversely, when the “MAB” exceeds 111.85, most outcomes are categorized as class 4,
occasionally extending to class 3. The “Temp” emerges as a pivotal factor, introducing
various thresholds such as 16.90, 12.65, 17.90, and 18.90, contributing to distinct branches
and classifications. For example, when the “MAB” is less than 25.55 and the “Temp” is
less than 16.90, additional temperature limits further categorize the results into classes
number 3 and 4. The “Vol” thresholds, including 2155.00 and 1160.50, are featured in the
tree representation, helping with the result classification when paired with the variables
“MAB” and “Temp”. The “i–f” within the cage also shapes the results, with thresholds of
2.61, 0.20, and 1.29. In collaboration with the variables “MAB” and “Temp,” the “i–f” factor
serves to more accurately categorize examples into unique classes (Figures 2–6) [29,30].
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Figure 6. Decision tree representation for “Deaths” prediction (right nodes).

The DT classifier underwent training on a preprocessed dataset, involving different
phases including excluding missing values and the discretization of “Deaths” variable
values into five equal-width bins. To prevent overfitting, the model underwent pruning
using a maximum depth value for a decision tree representation of 5, and its performance
was evaluated through 10-fold cross-validation.

The results indicate a robust accuracy through a series of training, validation, and
testing sets, achieving classification accuracies of 95.47% for the training set, 95.43% for
the validation set, and 96.26% for the testing set. The visualization of the pruned DT
offers insights into the model’s decision-making process for classifying data based on the
provided features (Figures 2–6) (Table 9) [28–31].

Table 9. Decision tree accuracies.

Classification Accuracy Value

Training 95.43%
Validation 95.46%

Testing 96.29%

5. Discussion

The model’s notable accuracy and ability to generalize signifies its potential for effec-
tively predicting the discretized “Deaths” values according to the selected dataset attributes.
To classify instances of fish mortality, advanced data mining classifiers (DTs) were employed
to determine the best performing predictive method [32].
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These models managed to produce commendable accuracy rates, underscoring their
efficacy in predicting fish mortality values. The success of these models highlights the
initiative of data-driven approaches in cage aquaculture management [33].

A thorough analysis of feature importance was conducted to uncover factors influenc-
ing fish mortality, facilitating the deployment of strategic conservation and management
practices, and offering valuable forecasts to stakeholders aiming to mitigate fish mortality
through data processing [34].

The research findings bear significant implications for sustainable management en-
deavors, empowering stakeholders to proactively act against the factors that affect fish
mortality. The data insights were derived from the current research, contributing to an
expanded range of disciplines aimed at safeguarding fish stocks and promoting sustainable
cage aquaculture [35,36].

The study underscores the importance of proactive measures and the continuous mon-
itoring in cage aquaculture to maintain caged fish stocks. Adhering to best practices and
implementing ongoing observation processes allow for sustainable cage aquaculture oper-
ations. Furthermore, the current research encompasses the global sustainability goals by
eliminating farmed fish production losses caused by climate change. Regarding farmed fish
mortality, for sustainable best practices, the project follows the global policy for responsible
fish consumption and production [37,38].

5.1. Research Contribution

The current research proposes a pioneering data-driven strategy, leveraging advanced
data mining classifiers and incorporating DT classifiers to forecast and classify examples of
caged fish mortality. The project, embedded within the overarching initiative “Improving
Competitiveness of the Greek Fish Farming through Development of Intelligent Systems
for Disease Diagnosis & Treatment”, addresses the significance of mortality rate escalation
in caged fish populations. The focus expands to unsustainable fish farming paradigms and
environmental factors which impact this issue [37].

The key contribution lies in the development and evaluation of predictive models
showcasing highly accurate results. By employing efficient data mining classifiers for
numeric data, the research identifies DTs as one of the most suitable methods for predicting
fish mortality. The robustness of the model pinpoints the efficacy of data-driven practices
in cage aquaculture management [37].

Furthermore, the incorporation of a comprehensive dataset from diverse aquaculture
sources, encompassing factors like the geographical locations, husbandry methods, and
key parameters including the weather conditions and water quality, adds significant depth
to the research. The dataset forms the basis for a thorough analysis, including a feature
importance assessment and the prediction of factors which influence fish mortality [38].

The outcomes of this research contribute significantly to sustainable management
efforts. The deployment of focused conservation and operational strategies, informed
by the feature importance analysis, offers valuable insights for stakeholders. The proac-
tive measures advocated in the strategies aim to mitigate fish mortality and enhance the
protection of farmed fish stocks [38].

5.2. Practical Applications

The authors have expanded the discussion to provide insights into how their re-
search can be applied in the field of aquaculture. Specifically, they have outlined potential
implementation strategies, including the integration of decision tree classifiers into exist-
ing aquaculture management systems. By leveraging the predictive capabilities of these
classifiers, aquaculture stakeholders can make informed decisions regarding disease man-
agement, stock optimization, and environmental monitoring. Furthermore, the research
has addressed the challenges associated with implementation, such as data integration and
stakeholder engagement, and highlighted opportunities for scaling the solution across dif-
ferent aquaculture settings. Overall, these practical applications underscore the relevance
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and potential impact of their research in improving the sustainability and competitiveness
of fish farming practices.

5.3. Limitations

It is imperative to explicitly discuss the limitations of the study to provide a comprehen-
sive understanding of its scope and potential constraints. While the research demonstrates
a robustness in its methodology and predictive modeling approach, several limitations war-
rant acknowledgment. Firstly, despite the thorough analysis conducted, limitations related
to data quality issues may exist. The dataset’s completeness, accuracy, and representative-
ness could influence the reliability and generalizability of the findings. Additionally, while
the research methodology is well structured, sample size limitations may constrain the
extent to which conclusions can be drawn. The size and diversity of the dataset, although
comprehensive, may not fully capture the complexity of aquaculture systems, potentially
limiting the study’s applicability to diverse contexts. Moreover, biases in the data collec-
tion process, such as selection bias or measurement bias, could introduce distortions in
the analysis and interpretation of results. Acknowledging these limitations is crucial for
contextualizing the study’s findings and informing future research endeavors aimed at
addressing these constraints for more robust and reliable outcomes.

5.4. Future Work

The current research provides a foundation for predictive modeling in fish mortality
using data mining classifiers, particularly DTs. Future work should consider several
avenues for further exploration and enhancement, including the exploration of other
advanced machine learning techniques to gain a more comprehensive understanding of
patterns within fish mortality data.

In terms of data acquisition and data management, real-time monitoring and dynamic
updates can enable the model to adapt to changing conditions and identify emerging
threats promptly, contributing to a more proactive management system.

While maintaining the focus on data mining classifiers in the current study, the au-
thors have outlined potential avenues for further investigation, including expanding the
application of their methodology to different aquaculture environments and species. By
conducting comparative analyses with other machine learning techniques and decision
tree algorithms, future research could provide a more comprehensive understanding of
predictive modeling in marine aquaculture management. Additionally, we have considered
the integration of decision tree classifiers with other data analysis techniques to enhance
the predictive accuracy and address the emerging challenges in aquaculture.

Regarding the various factors, collecting more data to include genetic factors and
environmental variables would contribute to a more nuanced understanding of mortal-
ity predictors and aid in the development of personalized conservation strategies. Also,
validating the predictive models across diverse aquaculture settings will enhance the gener-
alizability and applicability in varying environmental conditions. Including a multispecies
analysis will tailor predictive models to specific species for more accurate and targeted
management strategies. Addressing these future directions will contribute to the ongoing
evolution of data-driven approaches in cage aquaculture management, ensuring their
adaptability, effectiveness, and contribution to the broader goals of sustainable aquaculture
and responsible resource management.

Enhancing the interpretability and transparency of the decision-making procedure
will gain stakeholders’ trust. The collaboration with industry stakeholders, including fish
farmers, environmental agencies, and policymakers, is necessary to gather practical insights
and enhance the relevance of developed models.

These future research directions aim to advance the understanding of AI’s role in
marine aquaculture management and contribute to the development of innovative and
effective solutions for sustainable aquaculture practices. Moreover, there are areas of



Appl. Sci. 2024, 14, 2129 17 of 19

opportunity for optimizing the long-term impacts of implemented strategies and policies
on fish mortality rates, providing insights into the sustainability of aquaculture policies.

6. Conclusions

The research proposes a data-oriented strategy deploying classification methods to
forecast and categorize caged fish mortality examples, indicating the increasing rates at-
tributed to unsustainable fish farming and environmental factors. The current research
aims to support Greek fish farming competitiveness by developing an intelligent system
that will eventually allow for fish diseases diagnosis, emphasizing medication and dosage
issues. The project utilizes a comprehensive dataset, enabling predictive modeling with
state-of-the-art data mining classifiers, particularly DTs, ensuring high precision and recall
rates. The feature importance analysis offers insights for developing targeted conserva-
tion strategies.

The DT classifier, trained on extensive datasets from the Ionian Sea, showcases a
robust predictive performance in fish mortality instances. The correlation findings highlight
factors influencing mortality, such as the median atomic weight, the volume of the cell, the
concentration of fish, and the water temperature. The DT structure provides thresholds for
feature variables, contributing to the classification of outcomes. Pruning, model evaluation
using the 10-fold cross-validation, and high accuracies (95.47%, 95.43%, 96.26%) underscore
the model’s reliability. The discussion emphasizes the model’s effectiveness, the data-driven
approaches in cage aquaculture management, and implications for sustainable practices.

The conclusions also consider the future directions and global seafood demand, em-
phasizing the research’s importance in addressing complex challenges in cage aquaculture.
The project’s promising direction for improving fish farming practices, coupled with the ne-
cessity for endless research and collaboration to meet global seafood demands sustainably,
is highlighted. The study provides valuable new knowledge for establishing the develop-
ment of innovative actions and evidence-oriented practices to optimize the resilience and
sustainability of the aquaculture industry.

This research pinpoints the keystone role of data-oriented approaches and methods in
predicting caged fish mortality rates. By designing, training, and applying advanced data
mining classifiers, this research not only demonstrates the potential effectiveness of such
models but also sets a milestone for future efforts in the field. The findings manage to explain
the broader goal of sustainable cage aquaculture management, providing a beacon for efforts
to meet the growing global demand for seafood without compromising sustainability.
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Deaths number of fish deaths
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