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Abstract: A considerable amount of research on link prediction has recently been driven by missing
relationships between knowledge graph entities and the problem of the incompleteness of knowledge
graphs. Some recent studies have shown that convolutional neural networks based on knowledge
embeddings are highly expressive and have good performance in link prediction. However, we found
that the convolutional neural network (CNN)-based models do not handle the link between relations
and entities well. For this reason, this paper proposes a link prediction model (LPM) based on feature
mapping and bi-directional convolution. For the modeling of the task, an encoding layer–mapping
layer–decoding layer structure is used. Among these layers, the encoding layer adopts a graph
attention network to encode multi-hop triad information and obtains richer encoding of entities
and relationships. The mapping layer can realize the mapping transformation between entities and
relations and project the entity encoding in the space of relation encoding to capture the subtle
connection between entities and relations. The decoding layer adopts bidirectional convolution to
merge and decode the triples in a sequential inverse order, which makes the decoding layer model
more advantageous in prediction. In addition, the decoding layer also adopts the r-drop training
method to effectively reduce the distribution error generated by training between models and enhance
the robustness of the model. Our experiments demonstrated the effectiveness of mapping relations,
bidirectional convolution, and r-drop, and the accuracy of the proposed model showed significant
improvements for each evaluation metric on two datasets, WN18RR and FB15k-237.

Keywords: knowledge graph; link prediction; knowledge embedding; feature mapping; convolutional
neural network

1. Introduction

Knowledge graph [1] is a method for representing a knowledge base as a directed
graph, where nodes and edges represent entities and relationships between entities, re-
spectively. Knowledge graphs play an important role in practical applications in areas
such as semantic search [2], dialog generation [3], question and answer (Q&A) [4], and
recommendation algorithms [5]. However, knowledge graphs often face the problem of
missing relations, i.e., there are unknown relations in the graph. To address this problem,
knowledge base completion tasks [6], also known as link prediction, have emerged to
predict whether a given triple is valid, e.g., (Yao Ming, gender, man).

Currently, models based on knowledge embedding and convolutional neural networks
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have achieved satisfactory results in link prediction. However, the current knowledge
embedding methods [7] do not take into account the subtle links between entities and
relationships, although they contain multi-hop ternary information with high quality. Multi-
hop ternary information is used to add multiple intermediate entities and relationships
between the head entity, relationship, and tail entity; adding new entities and relationships
can constitute more triads. In addition, existing convolutional neural network models
mainly perform convolutional operations on the ternary directly while ignoring the sequen-
tial relationships between entities and relations in the ternary.

Based on the above observations, this paper proposes a link prediction model based on
feature mapping and bidirectional convolution. (1) Firstly, the multi-hop ternary informa-
tion is fed into the graph attention network to realize the encoding of entities and relations.
(2) After encoding entities and relationships, the entities are mapped according to the space
of relationship encoding to acquire the encoding of entities in the space of relationships,
which can capture the links between entities and relationships. (3) After the mapped entity-
relationship encoding is obtained, the ternary is combined in two sequences in reverse
order, and the combined ternary is encoded and then fed into the convolutional neural
network, which is trained by the r-drop method. The bi-directionally combined ternary
will be more advantageous in predicting the head and tail entities after the information is
extracted by the convolutional neural network. Our architecture model includes a coding
layer, mapping layer, and decoding layer, in which the multi-hop graph neural coding
layer, the entity relationship transformation layer, and the bidirectional convolutional layer
play the roles of coding layer, mapping layer, and decoding layer, respectively.

The contributions of this paper are as follows. To the best of our knowledge, this paper
introduces, for the first time, the mapping of entities and relations in a convolutional neural
network for dealing specifically with the problem of link prediction on knowledge graphs.
This mapping mechanism is the innovation of this paper. Secondly, we extend the convolu-
tional neural network using bidirectional convolution to extract information from ternary
groups. This bi-directional convolutional approach is important in the link prediction task.
Finally, we evaluated our model in detail on two datasets, FB15K-237 and WN18R. We
conducted corresponding experiments on both datasets, and the results demonstrate that
the method proposed in this paper significantly outperforms the baseline model.

2. Related Work

Recent link prediction methods can be broadly categorized as follows: translation-
based models, multiplication-based models, CNN-based models, rotation-based models,
GNN-based models, and others.

2.1. Translation-Based Models

Bordes et al. [8] proposed the TransE model, which is modeled by interpreting triples
as translations of entities over low-dimensional embeddings. Although TransE achieves
good results, it cannot handle complex relations, such as self-inverse, one-to-many, many-
to-one, and many-to-many cases. For this reason, Wang et al. [9] proposed the TransH
model, which models a relation as a hyperplane and performs translation operations on it,
which can well maintain the mapping nature of the relation. However, an entity may have
more than one aspect, and various relationships may focus on different aspects of the entity,
so Lin et al. [10] proposed the TransR model, which constructs entity and relationship
embeddings in separate entity and relationship spaces and projects the features between
entities to model the translation. Ji et al. [11] proposed a finer-grained TransD model,
which uses two vectors to represent entities and relationships. Not only the diversity of
relations but also the diversity of entities is considered. Fan et al. [12] proposed the TransM
high-level model, which utilizes the structure of the knowledge graph to pre-compute
different weights for each training triad based on its relation mapping attributes. In this
way, the optimal function handles each ternary that depends on its weights, improving
the overall performance of the model. Zhang et al. [13] proposed the TransAP model,
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introducing location-aware embeddings and self-attention blocks which proved capable
in adapting to various translational distance models. Lu et al. [7] proposed PTransE and
AMIE+ to extract multi-hop and rule-based relationships.

2.2. Multiplication-Based Models

Nickel et al. [14] proposed the Rescal model, a tensor decomposition-based relational
learning method. The model is able to collectively learn through potential components
to improve the ability to judge ternary groups. Yang et al. [15] proposed the Distmult
model, which captures the relational semantics using a bi-linear goal-learning approach.
Trouillon et al. [16] used complex-valued embeddings and proposed the CompIEX model,
where the combination of complex-valued embeddings can handle a large number of binary
relations, including symmetric and anti-symmetric relations. Kazemi et al. [17] proposed
the SimplEX model, which allows for independent learning of two embeddings per entity,
with complexity that grows linearly with the size of the embeddings. Balažević et al. [18]
proposed the TuckER model, which uses a purely linear model to deal with the ternary
prediction problem and achieved relatively good results.

2.3. CNN-Based Models

Dettmers et al. [19] proposed the ConvE model, a multi-layer convolutional network
model as a first attempt to deal with connectivity prediction problems using convolutional
neural networks. Subsequently, Nguyen et al. [20] proposed the ConvKB model, which
improves the model performance using convolutional neural networks to capture global
relationships and transition features between entities and relationships in the knowledge
base. Vu et al. [21] proposed an embedding model for CapsE, which employs a two-fold
capsule network to model the ternary, generating an intermediate hidden layer through
multiple filters to produce a continuous vector. Two convolutions are used to improve
the performance of the model. Balažević et al. [22] proposed a hyper-network architecture
HypER model that generates simplified relation-specific convolutional filters for relation
prediction and also achieved relatively good results. On the other hand, Vashishth et al. [23]
proposed the InteractE model, which employs feature alignment, new feature reshaping,
and cyclic convolution, allowing for improved model performance.

2.4. Rotation-Based Models

Sun et al. [24] proposed a new knowledge graph embedding method, the RotatE
model, where each relation is defined as a rotation from the source entity to the target
entity in a complex vector space, which is capable of inferring and modeling a variety of
relational patterns, and the embedding in the complex vector space also leads to a significant
improvement in the performance of the model. Zhang et al. [25] proposed the QuatE
model, which goes beyond the traditional complex-valued representation, introducing
a more expressive hyper-complex representation for entities and relations embedded in
knowledge graphs, and relations are modeled as rotations in quaternion space, which
likewise optimizes the performance of the model. Gao et al. [26] proposed the Rotate3D
model, which maps entities to 3D space and defines relations as rotations from head
entities to tail entities, exploiting the non-exchangeable composite property, which naturally
maintains the order of the relationship composite. Chen et al. [27] proposed the HittER
model, which consists of two different Transformer blocks: the bottom extracts the features
of each entity–relationship pair in the local neighborhood of the source entity, and the top
aggregates the relationship information outputted from the bottom. The introduction of
the Transformer also improved the model performance. Abboud et al. [28] proposed a
BoXE model based on spatial Transformer embedding, embedding entities and relations in
the form of hyper-rectangles. These hyper-rectangles spatially describe the basic logical
attributes, the model can capture the information from the rich rule language, and the
global reasoning approach also improves the model performance.
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2.5. GNN-Based Models

Schlichtkrull et al. [29] introduced relational graph convolutional networks to deal with
link prediction models specifically developed to deal with the multi-relational data charac-
teristics of realistic knowledge bases. Li et al. [30] also fused graph neural networks with
multi-layer perceptron with good results. Tan et al. [31] proposed knowledge-relational at-
tention networks (KRAT) that utilize the context of the graph to project neighboring triples
to different potential spaces simultaneously, capturing the subtle semantic information and
importance of different contextual triples. Liang et al. [32] aggregated multimodal and
graph structural information to generate the final embedding of the knowledge graph for
knowledge graph completion. Niu et al. [33] introduced graph convolutional networks
(GCNs) into the channel attention. The convolutional encodes the node structural fea-
tures and represents them in matrix form to fully exploit the node feature information.
Zamini et al. [34] learned entities and relations by embedding them in a low-dimensional
vector space with a graph neural network.

2.6. Other Models

Zhang et al. [35] proposed the regularization method DURA model, which specif-
ically deals with the existing tensor decomposition-based models and regularizes the
tensor decomposition-based models, improving the performance of tensor decomposition
models. Nathani et al. [36] proposed the attention feature embedding method, which
captures entity and relationship features in the neighborhood of any given entity with
significant performance improvement. Chen et al. [37], on the other hand, proposed
a meta-relational learning MetaR framework for the link prediction problem with few
samples. Baek et al. [38] proposed a meta-learning-based framework GEN model for this
problem. The model is used for inductive inference for node embedding networks, and
for transformational inference for link prediction networks from the unseen entities in link
prediction, the uncertainty is modeled, which also improves the accuracy of the model.
Bose et al. [39] proposed a meta-learning approach for link prediction with fewer samples,
where in addition to the global parameters, the model learns a graph signature function,
which exploits the structural information of the graph as compared to other graphs from
the same distribution, resulting in faster adaptation and better convergence than ordinary
meta-learning. Xu et al. [40] proposed a cross-modal attention mechanism that provides
bi-directional attention to visual and textual features by integrating relational embedding,
thus improving the robustness of the model. Zhang et al. [41] introduced federated learning
to the task of knowledge graph completion. Shomer et al. [42] introduced a data augmen-
tation approach for knowledge graph completion. Luo et al. [43] used the sample-less
learning approach for the task of knowledge graph completion. Wang et al. [44] proposed
a multi-concept representation learning approach where each entity or relationship is pro-
jected to multiple vectors to capture the complex conceptual information hidden in them
for optimal embedding.

3. Model Details

The experimental model in this paper is divided into three layers, starting with a
coding layer for extracting coded representations of entities and relationships from the
input data. The goal of the encoding layer is to capture the important features of the input
data. Second is the mapping layer, through which entities are mapped in the relation
space. The role of this layer is to model and represent the associations of entities across
relationships. Finally, there is the decoding layer, which is used to decode the triples. The
decoding layer reconverts the encoded entities and relations into their original ternary form
for the link prediction task.

The encoding layer, as shown in Figure 1a, fuses the single-hop ternary information
with the multi-hop ternary information, and the fused information is used to obtain the
entity coding and relationship coding through the graph neural network; the mapping
layer, as shown in Figure 1b, because the entity coding and relationship coding obtained
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from the coding layer belong to different coding spaces, maps the entity coding in the
relationship coding space and obtains new entity coding, which strengthens the subtle
connection between the entity and the relationship coding. The decoding layer, as shown in
Figure 1c, strengthens the prediction capability of the model by combining the sequential
and inverse sequence of the ternary information.

Figure 1. Overall model diagram divided into three parts: (a) encoding layer, (b) mapping layer, and
(c) decoding layer.

3.1. Encoding Layer

In order to obtain the embedding of entities and relations, it is necessary to learn
the representation of each ternary. We have the entity, and relation feature vectors of the
single-hop triad tms

is js = (eis , rms , ejs) and the multi-hop triad tmdnd
id jdkd

= (eid , rmd , ejd , rnd , ekd
) are

concatenated to obtain a richer ternary representation. Multi-hop ternary can carry more
information between entities and relations, which will only make the embedding richer.
Firstly, the single-hop and multi-hop ternary are merged, where t denotes the ternary, s
denotes the single-hop information, d denotes the multi-hop information, eis , ejs , eid , ejd , ekd
denote entity embeddings, and rms , rmd , rnd denote relation embeddings. First, the single-
hop and multi-hop triples are merged as follows.

hi = concat[eis , eid ] (1)

hj = concat[ejs , ekd
] (2)

gk = concat[rms , rmd , rnd ] (3)

The linear transformation is then performed with the following equation.

cijk = [hi||gk||hj] (4)

where cijk is the vector representation of the triplet after linear transformation, the matrix hi
represents the embedding of the entities eis , eid , the matrix hj represents the embedding of
the entities ejs , ekd

, and the matrix gk represents the embedding of the relations rms , rmd , rnd .
We perform a linear transformation parameterized by the weight matrix W1 and then

operate on it via the activation function LeakyRelu to obtain the absolute attention bijk of
the ternary with the following formula.

bijk = LeakyReLU(W1cijk) (5)
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To obtain the relative attention αijk, the activation function softmax is applied to the
following equation.

αijk = So f tmaxjk(bijk) (6)

The embedding h′i of entity ei is the sum of each ternary representation weighted by
their attention values, as shown in the following equation.

h′i = σ( ∑
j∈Ni

∑
k∈Rij

αijkcijk) (7)

where Ni denotes the neighborhood of entity ei and Rij denotes the set of relations connect-
ing entity ei and ej. To stabilize the learning process and encapsulate more information
about the neighborhood, the attention mechanism calculates the embedding and then
connects the embeddings with the following equation.

h′i =
M

∑
m=1

σ( ∑
j∈Ni

∑
k∈Rij

αm
ijkcm

ijk) (8)

In the last layer of the model, rather than joining the embeddings of multiple heads,
an averaging method is used to obtain the final embedding vector of the entity, as shown
in the following equation.

h′i = σ(
1
M

M

∑
m=1

∑
j∈Ni

∑
k∈Rij

αm
ijkcm

ijk) (9)

However, when learning new embeddings, entities lose their initial embedding infor-
mation. To solve this problem, we use a matrix vector WE to perform a linear transformation
with Hi, where Hi represents the input entity embeddings of our model, and then add H f

to the final encoding, which represents the entity information of the initial embeddings, to
obtain the result of the linear transformation, H′′, as shown in the following equation.

H′′ = WEHi + H f (10)

The experiments use hinge loss to train the model, and the hinge loss is given by the
following expression.

L(Ω) = ∑
tij∈S

∑
t′ij∈S′

max{dt′ij
− dtij + γ, 0} (11)

where γ > 0 is a hyperparameter, S is the set of valid triples, and S′ denotes the set of
invalid triples. In our architecture, we extend edges to directed paths by introducing an
auxiliary relation between two entities. The embedding of this auxiliary relation is the sum
of all relation embeddings in the path. Our model iteratively accumulates knowledge from
the multi-hop information of the entities.

3.2. Mapping Layer

For relation r, we locate the relation-specific translation vector dr in the relation-specific
hyperplane wr instead of in the same space where the entities are embedded so that the
entity and relation distributions use different coding spaces, and then the projections are
used to match the relations and the entities to allow for a more diversified coding of the
entities and relations. Specifically, for a triple t_tk

ij = (ei, rk, ej), the embedded head entity
h and tail entity t are first projected to the hyperplane wr with projections h⊥ and t⊥,
respectively. It is expected that h⊥ and t⊥ can be associated with the translation vector dr in
the hyperplane if (ei, rk, ej) is the correct triple, and the projection function is shown below.

h⊥ = h − w⊤
γ hwr (12)
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t⊥ = t − w⊤
γ twr (13)

3.3. Decoding Layer

In our experiments, we employed bi-directional convolution as part of the decoder,
aiming to analyze the features of global embedding and bi-directional coding. By em-
ploying bidirectional coding, we give the model a stronger edge in predicting entities.
Subsequent experimental results demonstrated that bi-directional coding shows good re-
sults in improving the performance of the model, and the scoring function of the decoding
layer is shown by the following equation.

htriple = concat[h⊥, dr, t⊥, t⊥, dr, t⊥, h⊥] (14)

f (tk
ij) = (∥Ω

m=1 ReLU(htriple ∗ wm))W (15)

where wm denotes the convolution filter, Ω denotes the hyperparameter of the number of
filters used, ∗ is the convolution operation, and W denotes the linear transformation matrix
used to calculate the final score of the triple.

The r-drop training method is used while decoding due to the randomness of the
dropout, and although the same model is passed twice, it is also slightly different in
the forward passing process. r-drop makes each batch of data pass through the forward
neural network before and after two times to acquire two different distributions. The KL
dispersion between the two distributions generated by the r-drop is continuously reduced
during the training process, which in turn improves the robustness of the model. The loss
function used in the model is shown below.

L = ∑
tk
ij∈{S∪S′}

log(1 + exp(ltk
ij
· f (tk

ij))) +
λ

2
∥ W ∥2

2 (16)

ltk
ij
=

{
1 f or tk

ij ∈ S

−1 f or tk
ij ∈ S′ (17)

where L is the loss function of the decoding layer; L consists of the softplus function and
the L2 regularization, where the coefficient of the L2 regularization is λ/2; and S is the
triple of positive samples while S′ is the triple of negative samples.

4. Experiment and Analysis
4.1. Dataset

We evaluated our proposed method using two benchmark datasets, WN18RR and
FB15k-237. WN18RR (WordNet-18 Reversed Relations) is a commonly used knowledge
graph link prediction dataset for evaluating and comparing the performance of link predic-
tion models. This dataset is an extension of the WordNet-18 dataset, an English vocabulary
network representing relationships between words, with 40,943 entities and 11 relation-
ships. The FB15k-237 dataset was pruned with respect to the original FB15k dataset by
removing some of the frequently occurring and relatively easy to predict relationships.
This was done to increase the difficulty of the dataset, making it more accurate to assess the
performance of the model in dealing with complex and rare relationships, with a total of
14,541 entities and 237 relationships in the dataset. Other specific data are shown in Table 1.

Table 1. Details of the dataset.

Dataset Entities Relations Training Validation Test Total

WN18RR 40,943 11 86,835 3034 3134 93,003
FB15k-237 14,541 237 272,115 17,535 20,466 310,116
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4.2. Training

Experiments were conducted to partially augment the data by creating two sets of
invalid triples, one set replacing the head entities in the triples with invalid entities and the
other set replacing the tail entities in the triples with invalid entities. We randomly drew
the same number of invalid triples from these two sets to ensure robust performance in
detecting head and tail entities. The experimental initial embedding used TransE-generated
entity and relation embeddings to initialize our embedding.

The experiment adopted the training process of encoder–mapper–decoder. Firstly, the
multi-hop triple information was fed into the graph attention network for encoding, and the
encoding of entities and relations of the knowledge graph was obtained. Then, the entities
were mapped according to the space of relations, and the mapped entity–relationship
encoding was obtained. Finally, the bi-directional convolutional decoder was trained to
perform the relation prediction task.

Different parameter settings were used for different dataset experiments. (1) For the
WN18RR dataset, we used Adam to optimize all parameters, the coding layer epoch was
3600, the initial learning rate of the coding layer was set to 5 × 10−6, the decoding layer
epoch was 200, the initial learning rate of the decoding layer was set to 1 × 10−5, the
decoding layer batch_size was 64, and both entity, and the relation embedding of the last
layer was set to 200. (2) For the FB15k-237 dataset, all parameters were also optimized
using Adam, the epoch of the coding layer was 3000, the initial learning rate of the coding
layer was set to 0.00001, the epoch of the decoding layer was 200, the initial learning rate
of the decoding layer was set to 0.000001, the batch_size of the decoding layer was 64, and
both the entity and relational embeddings of the last layer were set to 200.

4.3. Validation

In the link prediction task, the goal is to predict a triple; that is, to give the head entity
as well as the relationship prediction tail entity or to give the head entity as well as the
relationship prediction tail entity. We generated a set of (N-1) incorrect triples for each
entity, replaced them with each other entity, and then assigned a value to each such triple.
Subsequently, we sorted these scores in ascending order to obtain a ranking of correct
triples (ei, rk, ej). The experiment filtered all the duplicates in the setup, i.e., when ranking,
we removed the triples that already existed in the training, validation, or test set. The whole
process was repeated by replacing the tail entities and reporting the average metric. We
report the mean inverse rank (MRR), mean rank (MR), and hit rate (Hits@N), e.g., N = 1, 3,
and 10 for the first hit, third hit, and tenth hit, respectively.

4.4. Model Comparison

The proposed model, denoted as ConvFM, was compared with the previously meth-
ods: TransE, ConvE, ConvKB, DisMuit, CompIEX, and KB-GAT.

4.4.1. Comparison with the Translation Model Approach

TransE models the entities and relations of a triad by embedding them in low dimen-
sions, but the initial embedding information of the translation model is not rich enough,
and there is no mapping of entities to the relational space to extract the connections between
entity relations. In contrast, the ConvFM model not only has the mapping of entities to the
relationship space but also has a richer encoding of entity relationships.

4.4.2. Comparison with Multiplication Methods

DisMuit uses a bi-linear objective learning approach to capture relational semantics,
and CompIEX models entities and relations using complex-valued embedding, but tensor
decomposition models are generally prone to overfitting and have poor overall results. The
ConvFM model, on the other hand, is based on convolutional neural networks and has
better overall results.
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4.4.3. Comparison with CNN Methods

ConvE uses a multi-layer convolutional network model for link prediction of triples,
and ConvKB uses a convolutional neural network to capture the global relationships and
transition features between entities and relationships in the knowledge base, but none of
the above models takes into account the order problem among the triples themselves. The
ConvFM model, on the other hand, takes into account the sequential inverse order problem
of the triads to improve the performance of the model.

4.4.4. Comparison with the KB-GAT Model

Although the KB-GAT model has a higher quality of knowledge embedding and uses
convolutional neural network as the base model, it does not consider the mapping problem
between entity and relational relations and ignores the connections between entity relations.
The ConvFM model, on the other hand, obtains better results by mapping the entities to
the relational space and obtaining the subtle connections between entity relations.

The prediction results of the model for both datasets are displayed in Table 2. These
results clearly show that our proposed method achieved essentially the best results on both
datasets, FB15k-237 and WN18RR.

Table 2. Different models for link prediction, with the best results highlighted in bold.

Model WN18RR FB15K-237

MR MRR @1 @3 @10 MR MRR @1 @3 @10
TransE 2300 0.243 4.27 44.1 53.2 323 0.279 19.8 37.6 44.1
ConvE 4464 0.456 41.9 47 53.1 245 0.312 22.5 34.1 49.7

ConvKB 1295 0.265 5.82 44.5 55.8 216 0.289 19.8 32.4 47.1
DisMuit 7000 0.444 41.2 47 50.4 512 0.281 19.9 30.1 44.6

CompIEX 7882 0.449 40.9 46.9 53 546 0.278 19.4 29.7 45
KB-GAT 1940 0.440 36.1 48.3 58.1 210 0.518 46 54 62.6
ConvFM 1421 0.475 40.2 51.1 60.7 126 0.515 45.2 55.6 66.6

5. Ablation Experiments

Given the strong experimental results of the proposed method, a closer examination
of the specific contributions of its components is warranted. Knowledge embedding of
multi-hop graph attention and one-way convolution are used as the basis of the model,
and two-way convolutional networks, feature mapping, and R-drop were used as variables
to set up controlled experiments.

First, in the experiments, all the triples were encoded through the coding layer to
acquire the coded representation of entities and relationships. Next, experiments were
conducted on two datasets by adding bi-directional convolution and feature mapping, and
evaluation metrics such as Hits@1, Hits@3, Hits@10, and MRR were observed. The results
showed that the model tends to stabilize after about 200 rounds of training. Thereafter, a
control experiment was conducted, and the MR evaluation metrics of the three models on
two datasets were observed. The experimental results show that after about 200 rounds
of training, the models basically converge and achieve the optimal values among the
five metrics.

This experiment used the coding result of the last epoch of the coding layer as the
coded representation of entities and relations. After the feature mapping layer, the entities
were mapped into the relationship space. In the decoding layer, the data of each evaluation
index were counted every ten rounds. The results in Figure 2 show that after 200 rounds of
training, the three models basically converge. Figures 2–4 show the specific results of the
three models on the two datasets except for the MR evaluation metrics. Figure 5 shows the
specific results of the three models on the two datasets for the MR evaluation metrics. The
results show that the five metrics achieved optimal values at close to about 200 epochs.



Appl. Sci. 2024, 14, 2089 10 of 14

Figure 2. Results of ConGAT-BI.

Figure 3. Results of ConGAT-BI-FM.

Figure 4. Results of ConGAT-BI-FM-rDrop.
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Figure 5. Results of MR.

When facing sparse and non-overlapping relations, our model was also able to show
excellent performance. Multi-hop graph attention neural networks can provided significant
advantages when dealing with these relations via the model’s mapping mechanism. Graph
neural networks are particularly good at aggregating sparse relational links in the knowl-
edge graph through a sparse representation of the adjacency matrix. In addition, through
the mapping layer of the model, we can effectively identify and process non-overlapping
relations and realize accurate mapping. From now on, we will also focus on conducted
detailed experiments on sparse or non-overlapping relation processing to further validate
our conclusions and continuously improve the performance of the model in these areas.

The experiments used the coding layer of the graph attention network and the one-
way convolution as the basis of the overall model (ConGAT). In the case of the basic
convergence of the model, the models of all three control experiments performed well, as
shown by Table 3, where the bi-directional convolution, feature mapping, and rDrop all led
to different degrees of model improvement. The final experiment showed that the model
ConGAT–BI-FM–rDrop achieved the best results.

Table 3. The specific results of the ablation experiments, with the best results highlighted in bold.

Model WN18RR FB15K-237

MR MRR @1 @3 @10 MR MRR @1 @3 @10
ConGAT–BI 2322 0.451 38.4 49.5 58.9 173 0.514 43.2 54.7 65.3

ConGAT–BI–FM 1451 0.470 39.2 50.6 59.6 148 0.515 43.8 55.2 65.9
ConGAT–BI-FM–rDrop 1421 0.475 40.2 51.1 60.7 126 0.515 45.2 55.6 66.6

6. Conclusions

This paper presents a link prediction model based on feature mapping and bidirec-
tional convolution. The model first splices multi-hop and single-hop information and
encodes it through a graph attention network to obtain an encoded representations of
entities and relationships. Then, the model maps entities into the relationship coding space.
Finally, the model splices the forward and inverse order triples and decodes them using
a convolutional neural network, which is combined with r-drop for training. The model
achieved good results on the WN18RR and FB15k-237 datasets.

However, the model has some limitations. First, the model uses a bi-directional convo-
lutional and attentional mechanism during encoding and decoding, which may be limited
by the localization of information transfer. Second, the model does not consider the encod-
ing of multi-hop graph attention networks and the decoding of graph neural networks,
which may limit the expressive power of the model. Therefore, in further research, the
use of graph neural networks in the encoding and decoding process could be explored to
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improve the performance of the model.
Future research directions could consider using graph neural networks for decoding

based on feature mapping and multi-hop graph attention network encoding to achieve
consistency in encoding and decoding models. This combined use of the same network
structure may improve the representation and generalization capabilities of the model and
further enhance the performance of the link prediction task. In addition, other improve-
ments could be explored, such as introducing more sophisticated attention mechanisms or
using more advanced pre-trained models to enhance model performance. These research
directions are expected to promote the development and application of link prediction
models in practical applications.
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