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Abstract: To address the recognition challenges faced by arrester pointer instruments’ dial scales in
various scenarios, this paper introduces a deep learning-based recognition method for pointer instru-
ment scales. An attention module is integrated into the YOLOv5 network architecture, enhancing
the accuracy and robustness of the model. After correcting the dial, dial recognition is conducted
with OpenCV to achieve precise identification of the instrument scales. The proposed method was
tested using images of arrester pointer instruments against diverse backgrounds. The experimental
results demonstrate that the method processes instrument data images in an average time of 0.662 s
and achieves a successful recognition rate of 96% with an average error of 0.923%. This method
provides a rapid and efficient approach for recognizing instrument scales and offers a novel solution
for identifying similar types of instruments.

Keywords: deep learning; pointer instrument; YOLOv5; attention mechanism; OpenCV

1. Introduction

To ensure the optimal functioning of substation facilities, real-time monitoring of the
operational status of arresters is crucial. Owing to their consistent data display, straight-
forward structure, and superior anti-interference capabilities, pointer instruments are
extensively utilized in substations. However, traditionally, the reading of instrument scales
typically necessitates manual operations at predetermined intervals, a method that is not
only labor-intensive but also susceptible to omissions and errors. With advancements in
technology, intelligent scale recognition systems for instruments are increasingly supplant-
ing manual operations, demonstrating the capability to efficiently and accurately carry out
the tasks of reading and recording scales in substations.

Currently, in the research of scale recognition for instruments, researchers have pro-
posed solutions from different perspectives. Huo et al., have developed an innovative
method that employs computer vision techniques for the detection of pointers and the
recognition of indicator numbers. In this method, the characteristic features of the instru-
ment’s pointer are extracted from an image that has undergone preliminary processing.
This is performed by applying the rules of Freeman chain code encoding. The indicator
number associated with the pointer is determined by analyzing its angular position [1].
Li et al., have introduced an optimized three-point-based circle determination method for
calibrating the dial center and segmenting the dial, and they also propose an improved
angle method to facilitate the automatic reading recognition of pointer instruments [2].
Wang has created an automated system for recognizing pointer meters that capitalizes
on line scan vision technology. This system employs the light-spot centroid algorithm to
accurately determine the central point of the meter’s pointer. Trials have demonstrated that
this method for extracting data from pointer meters exhibits remarkable resilience against
various disturbances [3]. Ma et al., have introduced a highly precise and sturdy algorithm
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for the automatic reading of pointer meters. Their innovative approach involves a new
method for setting the binarization threshold, which is based on symmetry levels to seg-
ment the region of the pointer, successfully overcoming issues related to the shadow of the
pointer [4]. Peng et al., have introduced a method for recognizing pointer instruments that
uses Fourier transform to speed up convolution processes and improve cosine similarity
measures. By utilizing statistics of grid motion, this technique efficiently removes incorrect
match points and assists in the refined alignment of the image, thereby greatly improving
the speed of identification for pointer instruments [5]. Li et al., have developed an algo-
rithm for reading dial gauges based on coordinate positioning, which tackles the challenges
posed by irregular lighting, intricate dial backgrounds, and the interference from damping
fluids in the gathered images of the instruments. The results of their experiments confirm
that this algorithm successfully identifies the circle’s center and the gauge pointer, enabling
the automatic acquisition of readings [6]. Guo et al., have presented a smart approach for
reading indications on pointer meters and automating data gathering, utilizing machine
vision combined with wireless sensor network (WSN) technology. Findings indicate that
their method for detecting pointers shows enhanced robustness and superior resistance
to interference when compared to traditional image segmentation and skeletonization
techniques [7]. Yang et al., have proposed a real-time system for reading single-point
analog meters, employing the YolactEdge instance segmentation framework, which has
been executed and operationalized on the Jetson Xavier NX edge computing device [8].

The traditional recognition techniques previously mentioned are heavily reliant on
the use of either isolated or manually configured features to accurately pinpoint the scales
present on various instruments. However, these methods tend to fall short when subjected
to environments characterized by their complexity and a high degree of variability, where
their performance in terms of accuracy and robustness is often compromised. In the realm of
pointer detection, a favored approach is the application of the Hough transform algorithm.
Despite its widespread use, this algorithm is notably susceptible to the detrimental effects
of image noise, resulting in a performance that is less than ideal in terms of its anti-
interference properties.

With the advancement of deep learning, numerous detection algorithms stemming
from this field have been proposed, including the YOLO series [9–13] and the R-CNN
series [14–18]. Wu et al., have developed the YOLOX-CAlite algorithm for meter detection
to address the specific performance challenges encountered in target detection within the
context of meter reading. The tests conducted demonstrated that this refined YOLOX-CAlite
version reached an average precision (AP) rate of 90.4% [9]. Zhang et al., have suggested a
technique that combines Yolov7 with the Hough transform for the recognition of pointer
meters, aiming to improve their automatic readability. The model’s mean Average Precision
(mAP) on the instrument dataset using Yolov7 has achieved an impressive high of 99.8%.
Moreover, the accuracy of the readings from pointers using this technique surpasses 95%,
indicating its potential for extensive application in numerous situations [10]. Liu et al.,
have engineered a smart recognition technology for pointer instruments that leverages
YOLOv5, enabling swift location and reading identification of these instruments [11]. Chen
et al., have presented a smart vision recognition approach that integrates YOLOv5 with the
U-2-Net network (YLU2-Net) to boost the precision and speed of meter identification in
intricate settings. The trials conducted validate the effectiveness and performance of the
YLU2-Net method they propose [12]. Zhang et al., have developed a technique that utilizes
YOLOv3 for the categorization and reading detection of industrial instruments, capable of
interpreting both pointer-type and digital meters [13]. Liu et al., have introduced a flexible
detection and identification system for pointer meters using computer vision, adaptable to
a range of settings. The system employs a Faster Region-based Convolutional Network
(Faster R-CNN) to accurately identify the location of the meter of interest, subsequently
adjusting the camera according to the detection box. Test outcomes show the system’s
reliability and precision, verifying its effectiveness across diverse scenarios [14]. Cai et al.,
have put forward a recognition model that utilizes convolutional neural networks along
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with a unique virtual sample creation technology. This technology can produce a multitude
of images from a small number of actual instrument images, effectively facilitating the
training of the recognition model [15]. Zuo et al., have presented a novel and reliable
method for recognizing readings on pointer meters, achieving autonomous recognition [16].
Hou et al., have introduced an innovative method for recognizing pointer meters that
combines lightweight convolutional neural networks (CNN) with wireless sensor networks
(WSNs). This approach encompasses image pre-processing, CNN-based classification, and
calculation of readings at the WSN endpoint, which notably decreases data transmission
by sending only the recognized outcome across the WSN [17]. Wang et al., have explored
an automatic method for reading industrial pointer meters to tackle present challenges, by
incorporating object detection through the Faster Region-based Convolutional Network
(Faster-RCNN) combined with classic computer vision techniques [18]. Zhou et al., have put
forward an innovative intelligent end-to-end method for reading pointer meters utilizing
deep learning techniques. This approach identifies the meter and captures the pointer
concurrently without the need for pre-existing information. Tests demonstrate that this
method outperforms several standard methods in both speed and efficacy [19]. Wang et al.,
have developed a Lite-FCOS guided by scale value for recognizing readings from pointer
meters, employing Hough transform and analysis of pointer distribution to ascertain the
direction of the meter pointer [20].

Within the realm of these algorithms, R-CNN stands as a foundational approach to
region-based object detection, a process which partitions the task of detection into discrete
phases: initially, the algorithm identifies areas within an image that potentially contain
objects—a step known as target localization. Subsequently, it classifies each localized
region into specific categories depending on the objects they are believed to contain. The
R-CNN and its subsequent iterations, such as Fast R-CNN and Faster R-CNN, leverage this
two-stage strategy to fine-tune the precision of object detection. They are particularly adept
at discerning intricate details and managing the presence of small or overlapping objects
against complex backgrounds. However, the increased accuracy offered by these algorithms
comes at the price of computational efficiency; the need to generate and individually
analyze multiple region proposals for each image makes them less suitable for applications
requiring swift decision-making in real-time scenarios. YOLO (You Only Look Once)
exemplifies the single-stage object detection paradigm, eschewing the multi-stage process
in favor of a unified, holistic approach. YOLO transforms the task of object detection into
a solitary regression challenge, concurrently determining the bounding boxes and class
probabilities in one go directly from entire images. This streamlined method significantly
accelerates the detection process, offering a considerable advantage in scenarios where
real-time processing is crucial.

To minimize environmental interference on measurement accuracy and boost the pre-
cision and robustness of arrester instrument scale recognition, this study introduces a deep
learning-based recognition method. The schematic diagram of the research methodology
for this study is shown in Figure 1.

In this paper, the Methods section delves into the technical aspects of the proposed
solution, detailing the integration of attention mechanisms into the YOLOv5 model and
the subsequent steps for instrument scale recognition. In the Results section, the outcomes
of the experimental evaluation of the proposed method on a specialized dataset will be
presented. Metrics such as precision, recall, and mean average precision are used to
quantify the model’s performance. The Discussion section interprets the significance of
the study’s findings, noting the high success rate in recognition and the positive impact
of attention mechanisms on model accuracy. The Conclusion section encapsulates the
main achievements of the research, emphasizing the practical implications for substation
monitoring automation and suggesting avenues for future development in intelligent
industrial systems.
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Figure 1. The Schematic Diagram of the Research Methodology for This Study.

2. Methods

This method incorporates an attention mechanism into the YOLOv5 detection model
to significantly enhance the network’s feature extraction capabilities and robustly localize
the instrument area. During the scale recognition phase, we first apply perspective transfor-
mation correction to the tilted dial images, followed by scale reading, effectively enhancing
the precision of instrument scale recognition.

2.1. Image Detection Model Based on Deep Learning

The YOLO series models, grounded in deep learning, are capable of performing object
detection tasks. This paper introduces three prevalent attention mechanisms (Convolutional
Block Attention Module (CABM), Coordinate Attention (CA), and Squeeze-and-Excitation
(SE)) into the original YOLOv5 model. These mechanisms are, respectively, embedded into
the layer preceding the SPPF (Spatial Pyramid Pooling-Fast) layer within the Backbone
module. Consequently, three instrument localization models are derived: CABM-YOLOv5,
CA-YOLOv5, and SE-YOLOv5, the structures of which are illustrated in Figure 2. In
Figure 2, the CBS (ConvBNSiLU) module is responsible for extracting image features and
is one of the fundamental modules used to build the backbone network of YOLOv5.
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As Figure 2 indicates, upon receiving image data, the Backbone module employs
attention mechanisms to further mine effective instrument features from the instrument
feature map extracted by the original model in different ways:

(1) The CABM module computes attention maps for channel and spatial dimensions of
the input feature map consecutively, and fuses them with the input feature map in
sequence, achieving the goal of highlighting instrument features [21].

(2) The CA module conducts average pooling on the incoming feature map across the
width and height dimensions, proceeds with a fusion process, then enlarges the results
to secure attention weights for both axes, subsequently applying these weights to the
input feature map to bolster the efficiency of extracting instrumental features [22].

(3) The SE module compresses, then excites, the input feature map followed by a calibra-
tion operation, making the model more sensitive to instrument features [23,24].

The image features extracted by the Backbone, along with their corresponding se-
mantic information, are uploaded to the Neck module. This module performs feature
fusion between top-level and bottom-level features to further enhance the representational
effectiveness of the instrument characteristics. Ultimately, this process yields multi-class
object detection data information, referred to as Detect.

2.2. Instrument Scale Recognition Method

The study proposes a method for recognizing the markings on instruments. Initially,
it establishes a self-positioning method for the instrument panel to determine the contours
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within the panel. Subsequently, a method to correct the tilt of the scale dial is developed,
where the dial is rotated for adjustments, resulting in a corrected image of the instrument
panel that lays the groundwork for further analysis or recognition of the panel markings.
Finally, a scale recognition algorithm is introduced to obtain the results for instrument scale
recognition. The method for recognizing instrument scales is illustrated in Figure 3.
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2.2.1. Instrument Panel Self-Positioning

After the identification and extraction of instruments using CA-YOLOv5, it is necessary
to further extract the dial for improved scale recognition accuracy. Based on the structural
characteristics of arrester pointer instruments, a method that first identifies the outer
contour of the dial and then the inner contour is adopted for dial extraction. The process of
inner dial contour extraction is illustrated in Figure 4.
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follows: Alarm, Model: JCQ-2/800, Surge Arrester Operation Detector, Date: March 2023, Number:
3831, Shanghai Leichuan Surge Arrester Co., Ltd.).
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Step one involves performing mean blur on the input image to reduce the impact
of random noise and quickly obtain the contour lines and the utilization of the Hough
Gradient Circle Detection algorithm, as shown in Figure 4a to determine the location of the
dial’s outer contour. This step aims to reduce background interference and save data on
the circle’s center coordinates and radius.

In the second step, as illustrated in Figure 4b, Canny edge detection is applied to
the image to filter the extracted contours, removing those that are small and irregular in
area. The algorithm includes the following four steps: (1) Apply Gaussian filtering to
remove noise from the image. (2) Compute the gradient magnitude and direction of the
pixels in the image. (3) With the gradient magnitude and direction of the points known,
perform non-maximum suppression to remove all non-edge points. (4) Set upper and lower
thresholds to filter processed edges to determine the contour edges.

The third step conducts an elliptical fitting to the contours that have been filtered.
Based on the data retained from step one, a further selection is performed on the fitted
ellipse to finalize the inner contour of the dial, as depicted in Figure 4c. The data on
the major and minor axes of the ellipse are saved to serve as a basis for calculating the
perspective transformation of the dial in subsequent steps.

2.2.2. Dial Tilt Correction

If a disparity exists between the long and short axes of the inner dial contour, it
indicates that the dial is tilted to varying degrees. To ensure the accuracy of subsequent
scale recognition, it is necessary to perform a perspective transformation on the tilted dial
to correct its alignment. Perspective transformation involves using matrix multiplication to
project the original two-dimensional image into three-dimensional space and then map it
onto a new two-dimensional plane. The perspective transformation process is depicted in
Figure 5.
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The specific method is as follows: extend the original image coordinates with a z-
coordinate to perform perspective transformation in three-dimensional space, and assume
(z′i = zi = 1), which means that the spatial operation before and after remains on the plane
(z = 1). The working principle is shown in Figure 5a, and the perspective transformation
formula is as x′i
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assume t33 = 1,
t11xi + t12yi + t13 − t31xix′i − t32yix′i = x′i
t21xi + t22yi + t23 − t31xiy′i − t32yiy′i = y′i

(3)

Obtains the coordinate information of the endpoints of the major and minor axes
retained from the ellipse fitting process, as well as the coordinate information for the
corresponding points on the major and minor axes after the perspective transformation into
a circle, as shown in Figure 5b. By substituting these into equation (3), the transformation
matrix T yielding:

T =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 =

[
T1 T2
T3 t33

]
(4)

where T1 denotes the image linear transformation, T2 is used for generating the image
perspective transformation, and T3 represents the image translation. By substituting
the computed transformation matrix T into equation (2), the resulting data of the dial
coordinates after perspective transformation are obtained, yielding a corrected circular
dial as shown in Figure 6, thereby achieving the rectification of the inclined instrument
dial. Perspective transformation may lead to significant offset of the dial position in the
corrected image and the scale not being centered. The counting rectangular frame in the
dial can be detected and extracted, and an affine transformation can be applied to it to
deduce the rotation angle. Subsequently, the dial is corrected for rotation based on the
calculated rotation angle for subsequent image analysis or processing.
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Figure 5. Perspective Transformation. (a) Principle of perspective transformation; (b) Four sets of 
corresponding coordinate points. 

 
Figure 6. Perspective-transformed Image of the Instrument Panel. (Note: The Chinese characters in
the image are as follows: Alarm, Model: JCQ-2/800, Surge Arrester Operation Detector, Date: March
2023, Number: 3831, Shanghai Leichuan Surge Arrester Co., Ltd.).

2.2.3. Scale Recognition Algorithm

After correcting the dial, the designated colors on the instrument scale are extracted
and located, preserving the three colors of yellow, green, and red in the scale dial and
eliminating the rest. The result is shown in Figure 7. By iterating over the scale bars,
the coordinate data for all scale points are obtained and stored separately in array form,
facilitating subsequent calculations of the instrument scale.

The process of recognizing the scale of a pointer-type surge arrester instrument is
shown in Figure 8. The dial can be divided into regions I, II, III, and IV based on different
scale colors. The distribution of scales between regions is uneven, but within each region,
the scales are evenly distributed. When the pointer is in region II, a coordinate system is
established as shown in Figure 8a. The result of scale recognition calculation based on the
angular method is as follows.

V = Ai + αi·
Mi
βi

(5)
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Figure 8. The Process of Recognizing the Scale of a Pointer-type Surge Arrester Instrument. (a) The
coordinate system; (b) Scale recognition results. (Note: The Chinese characters in the image are as
follows: Alarm, Model: JCQ-2/800, Surge Arrester Operation Detector, Date: March 2023, Number:
3831, Shanghai Leichuan Surge Arrester Co., Ltd.)

Ai (wh 3, 4) are the starting scales for each region; αi represents the deflection angle of
the pointer from the starting line within its region; Mi is the scale range for an individual
region; βi is the angle corresponding to the scale range of an individual region. The scale
recognition result is shown in Figure 8b.

2.3. Experimental Setup and Analysis

A total of 1000 images of surge arrester pointer-type instruments were captured in the
field (resolution 600 × 800), and then randomly divided into 800 images for the training set
and 200 images for the validation set. These images cover meter readings from different
angles, backgrounds, and lighting conditions to ensure that the trained model has strong
generalization ability. These were then fed into localization models with different attention
mechanisms for training and detection. In this study, Table 1 enumerates the configuration
parameters for both software and hardware utilized in the experiment.

This study utilizes evaluation metrics such as Precision (P), Recall (R), Average Preci-
sion (AP), and mean Average Precision (mAP) to evaluate the model’s performance. The
formulas for calculating these parameters are as follows.
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Table 1. Configuration Parameters for Both Software and Hardware.

Name Parameters

Operating System Windows 10
CPU AMD Ryzen7 5800H
GPU NVIDIA GeForce RTX3070 8G
RAM 16 GB (8GB × 2)

Python 3.7.0
Pytorch 1.13.1
CUDA 11.3

Precision (P) is defined as the proportion of positive samples that the model correctly
identifies out of the total positive samples that it identifies. The formula for calculation is

P =
TP

(TP + FP)
(6)

where, TP represents the number of True Positives, and FP represents the number of
False Positives.

Recall (R) is the measure of the model’s correctly identified positive samples in relation
to the total number of actual positive samples. The formula for calculation is

R =
TP

TP + FN
(7)

where FN is the number of false negatives, which are the correct samples that were missed.
Average Precision (AP) denotes the mean of precision scores at various recall thresh-

olds, typically derived by constructing a precision-recall curve and computing the area
beneath this curve.

AP =
∫ 1

0
P(R)dR (8)

where P(R) is the P-R curve on the range [0,1].
Mean Average Precision (mAP) refers to the average of AP across all classes or queries,

which is a common metric in the context of multiple classes or multiple queries. In some
cases, mAP might also be the average of AP across all levels of detection difficulty or at
different recall cut-off points:

mAP =
∑n

i=1 AP
n

(9)

where n is the number of categories.
These indicators offer an all-encompassing view for assessing the model’s efficacy, tak-

ing into account the accuracy of the model’s detections as well as its capacity to encompass
positive samples.

3. Results

Under the same experimental conditions, the test set was input into three different meter
positioning models—CBAM-YOLOv5, CA-YOLOv5, SE-YOLOv5—as well as the original
YOLOv5 model for training and testing. The test results for each model are shown in Table 2.

Table 2. Test Results of Different Models.

Model. Precision(P)
/%

Recall (R)
/%

mean Average Precision (mAP)
/%

Test Time
/ms

CBAM-YOLOv5 89.5 84.7 90.5 66.1
CA-YOLOv5 91.9 88.1 92.6 66.3
SE-YOLOv5 90.3 86.6 91.4 65.8

YOLOv5 88.8 76.4 88.6 65.3
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The data presented in Table 2 reveal that the integration of the attention mechanism
module, while adding to the complexity of the base model, has resulted in a longer average
detection time for the CBAM-YOLOv5, CA-YOLOv5, and SE-YOLOv5 models relative to
the standard YOLOv5 model. However, in terms of mean average precision (mAP), the
CBAM-YOLOv5, CA-YOLOv5, and SE-YOLOv5 models have seen respective increases
of 1.9%, 4%, and 2.8% compared to the original YOLOv5 model. This confirms that the
inclusion of the attention mechanism module can enhance the capability of extracting
key features, thereby improving recognition accuracy. The P-R curves of the four target
detection models are shown in Figure 9.
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From Figure 9, it is evident that the P-R curve for the CA-YOLOv5 model covers
the largest area, and its AP value, calculated using Equation (8), is 0.915. Based on the
aforementioned four evaluation metrics, it can be seen that the CA-YOLOv5 model has
stronger positioning capability in the task of instrument recognition compared to CBAM-
YOLOv5, SE-YOLOv5, and YOLOv5. The positioning result of the CA-YOLOv5 target
positioning model is shown in Figure 10.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 16 
 

 
Figure 10. The Positioning Result of the CA-YOLOv5 Target Positioning Model. 

Combining the optimal object detection model CA-YOLOv5 with the scale recogni-
tion model, a complete meter scale recognition system can be obtained. Within this sys-
tem, when an image is inputted, the object detection model CA-YOLOv5 is responsible 
for locating the meter and marking the location result with a red box. Subsequently, the 
marked section is inputted into the scale recognition model, which is in charge of extract-
ing and correcting the dial, as well as calculating the deflection angle of the pointer, to 
ultimately obtain the scale reading results. 

After model training is complete, it is necessary to perform scale recognition on the 
meter data in the test set, and to tally the success rate of meter scale recognition under 
different error thresholds e. The performance of different models is evaluated based on 
the average error w of the results and the time consumed. The expression for error thresh-
old e and average error w are 

𝑒𝑒 =
|𝑉𝑉 − 𝑉𝑉′|

ℎ
      (10) 

𝑤𝑤 =
1

200
�𝑒𝑒𝑖𝑖

200

𝑖𝑖=1

 (11) 

where V is the calculated result of the instrument scale; V’ is the actual recognized result 
of the instrument scale; h is the unit scale of the area where the instrument needle is lo-
cated. The recognition results of the test set are shown in Table 3. 

In addition, binary descriptor-based SURF [25–27] and U-net technique [28,29] are 
being widely deployed for recognition systems. For comparison, the results identified by 
these two methods are also included in Table 3. 

Table 3. The Recognition Results of the Test Set. 

Model Error Threshold e Average Error w/% Consumed Time  
/s 0.1 0.4 0.8 1.2 

CA-YOLOv5 7% 50% 81% 96% 0.923 0.662 
SURF 5% 34% 68% 80% 1.612 0.933 
U-net 5% 36% 71% 85% 1.276 1.024 

From Table 3, it can be seen that within the allowable range of error threshold, the 
success rate of arrester pointer instrument scale recognition by CA-YOLOv5 has greatly 
improved compared to the SURF recognition algorithm and the U-net model. With an 

Figure 10. The Positioning Result of the CA-YOLOv5 Target Positioning Model.



Appl. Sci. 2024, 14, 2049 12 of 15

Combining the optimal object detection model CA-YOLOv5 with the scale recognition
model, a complete meter scale recognition system can be obtained. Within this system, when
an image is inputted, the object detection model CA-YOLOv5 is responsible for locating
the meter and marking the location result with a red box. Subsequently, the marked section
is inputted into the scale recognition model, which is in charge of extracting and correcting
the dial, as well as calculating the deflection angle of the pointer, to ultimately obtain the
scale reading results.

After model training is complete, it is necessary to perform scale recognition on the
meter data in the test set, and to tally the success rate of meter scale recognition under
different error thresholds e. The performance of different models is evaluated based on the
average error w of the results and the time consumed. The expression for error threshold e
and average error w are

e =
|V − V′|

h
(10)

w =
1

200

200

∑
i=1

ei (11)

where V is the calculated result of the instrument scale; V’ is the actual recognized result of
the instrument scale; h is the unit scale of the area where the instrument needle is located.
The recognition results of the test set are shown in Table 3.
Table 3. The Recognition Results of the Test Set.

Model
Error Threshold e Average Error

w/%
Consumed Time

/s0.1 0.4 0.8 1.2

CA-YOLOv5 7% 50% 81% 96% 0.923 0.662
SURF 5% 34% 68% 80% 1.612 0.933
U-net 5% 36% 71% 85% 1.276 1.024

In addition, binary descriptor-based SURF [25–27] and U-net technique [28,29] are
being widely deployed for recognition systems. For comparison, the results identified by
these two methods are also included in Table 3.

From Table 3, it can be seen that within the allowable range of error threshold, the
success rate of arrester pointer instrument scale recognition by CA-YOLOv5 has greatly
improved compared to the SURF recognition algorithm and the U-net model. With an
error threshold of 1.2 times, the recognition success rate is as high as 96%, and the average
error is 0.923%, indicating high accuracy and robustness. In terms of detection speed, the
method takes an average of 0.662 s to detect instrument images, which is shorter than the
other two scale recognition models. The test results show that the method proposed in
this paper can recognize instrument scales against different backgrounds and distances,
with not only a short processing time but also strong robustness and accuracy, meeting the
practical application requirements for arrester pointer instrument scale recognition.

4. Discussion

The results of the research on the recognition method of dial scales for arrester pointer
instruments present a significant advancement in the field of automated scale recogni-
tion using deep learning techniques. The integration of an attention mechanism into the
YOLOv5 network architecture, coupled with OpenCV for image processing, has led to a
high success rate of 96% in recognition with an average error rate of just 0.923%. These
findings underscore the potential of deep learning to enhance the accuracy and efficiency
of scale recognition tasks in complex environments.

The enhanced performance of the CA-YOLOv5 model in recognizing arrester pointer
instruments is attributed to the improved feature extraction from the attention mechanism.
This finding is consistent with other research showing the benefits of attention mechanisms
in deep learning models. The attention mechanism allows the model to focus on more
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relevant features within the image, thus reducing the influence of background noise and
increasing the robustness of the recognition process.

The success of the attention-enhanced YOLOv5 models over traditional methods like
the SURF recognition algorithm and U-net model is particularly notable. While the SURF
and U-net techniques are dependable and widely used, the proposed CA-YOLOv5 model
outperforms them, not just in terms of recognition rate, but also in processing time. This
suggests that the use of attention mechanisms in combination with convolutional neural
networks is a promising direction for real-time image recognition tasks.

The implications of this study are twofold. Firstly, the application of the CA-YOLOv5
model can significantly reduce the time and resources spent on manual scale readings,
minimizing human error and optimizing the operational efficiency of substation facilities.
Secondly, the methodology can be generalized to other types of instruments and scenarios
that require rapid and accurate scale detection, thus broadening the scope of automated
industrial monitoring systems.

The practical application of these findings could include integration into real-time
monitoring systems for substations, contributing to improved predictive maintenance and
reliability of electrical power networks. Furthermore, the methodology could be adapted
to other fields such as medical imaging, where precision and speed are critical.

Further research could explore the integration of more sophisticated attention mecha-
nisms or the combination of different deep learning models to improve recognition rates
even further. It also presents the opportunity to study the model’s performance in larger,
more diverse datasets to ensure its robustness and scalability.

5. Conclusions

In this study, we have innovatively incorporated a CA (Channel Attention) attention
mechanism module into the YOLOv5 object detection model framework. This module
significantly enhances the model’s proficiency in extracting relevant features, which is
particularly crucial for the accurate recognition and localization of arrester pointer-type
instruments. Leveraging the OpenCV library, we carried out meticulous dial correction,
which significantly refined the accuracy of scale recognition.

Despite the introduction of the attention mechanism module contributing to an in-
crease in the model’s complexity—and consequently, a slight uptick in the average de-
tection time for the modified CBAM-YOLOv5, CA-YOLOv5, and SE-YOLOv5 models in
comparison to the baseline YOLOv5 model—the trade-off has proven to be beneficial. The
improvements in mean average precision (mAP) are noteworthy, with increases of 1.4%,
4%, and 2.8% for the aforementioned models, respectively. These metrics not only validate
the efficacy of the attention mechanism in bolstering the extraction of essential features but
also showcase the potential for more sophisticated object detection capabilities in complex
real-world scenarios.

Our rigorous testing on a specialized dataset of arrester pointer-type instruments yielded
impressive results. The proposed method for scale recognition attained a remarkably high suc-
cess rate of 96% within the defined acceptable error margin. Moreover, the method maintained
an impressively low average error rate of 0.923% while operating at commendable speeds,
averaging a mere 0.662 s for image processing. This performance surpasses that of conventional
methods, such as the SURF (Speeded Up Robust Features) recognition algorithm and the U-net
model, by a significant margin. The notable improvements in accuracy and speed clearly
demonstrate the superiority of our method, confirming its potential for widespread adoption in
practical applications where rapid and precise scale recognition is paramount.

In conclusion, the study successfully addresses the challenges posed by the recognition
of arrester pointer instruments in various scenarios. The CA-YOLOv5 model’s impressive
accuracy and efficiency in recognizing dial scales against diverse backgrounds and distances
demonstrate the power of deep learning in complex pattern recognition tasks. The thorough
validation of the proposed method against a specialized dataset confirms its viability for
practical application and sets a new benchmark for automated scale recognition technology.
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This study represents a substantial contribution to the automation of substation monitoring
and opens up new avenues for research and development in intelligent industrial systems.
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Abbreviations
Abbreviations and full names utilized thought the manuscript.

Abbreviation Full name
YOLOv5 You Only Look Once version 5
OpenCV Open Source Computer Vision Library
SPPF Spatial Pyramid Pooling-Fast
CBAM Convolutional Block Attention Module
CA Channel Attention
SE Squeeze-and-Excitation
R-CNN Region-based Convolutional Neural Network
WSN Wireless Sensor Network
YOLOX-CAlite A variation of the YOLOX model with a particular lite attention mechanism
Yolov7 You Only Look Once version 7
YLU2-Net A combination of YOLOv5 and the U-2-Net network
Faster R-CNN Faster Region-based Convolutional Network
SURF Speeded Up Robust Feature

U-net
A type of convolutional neural network designed for biomedical image
segmentation

Lite-FCOS A lightweight variant of FCOS (Fully Convolutional One-Stage Object Detection)
CNN Convolutional Neural Network
AP Average Precision
mAP Mean Average Precision

YOLO
You Only Look Once: A real-time object detection system that views object
detection as a single regression problem

SAM Spatial Attention Module
CAM Channel Attention Module
CBS ConvBNSiLU
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