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Abstract: The paper proposes a rapid, straightforward, and inexpensive method for finding the
basic parameters of helical gears with an involute profile. The basic parameters envisaged are the
normal module, normal profile shift coefficient, and the helix angle. The proposed method uses balls
introduced between the teeth and, thus, the contact with the measuring device surfaces is of the point
type, and the centres of the balls are positioned symmetrically with respect to the measuring direction.
The condition that the centre of the ball occupies an imposed position is mandatory. Additionally,
there is the condition of the positions of the contact points between the balls and the flanks of the
teeth. Two sets of balls of different sizes are necessary for a measurement. The conditions of the
balls’ positioning lead to a system of five unknowns. The methodology of solving the system is
detailed and the method is exemplified for an actual helical gear. The new proposed method is
based on the distance over pins but, using balls, presents the following advantages: It can be applied
equally to all gears, regardless of the odd or even number of teeth. Furthermore, the dimension to be
measured is singular compared to the dimension over pins when a maximum value must be found
from several measurements.

Keywords: involute helical gear; inspection; module; profile shift coefficient; helix angle

1. Introduction

Everyday engineering applications require new mechanisms which generate functions.
To synthesise these mechanisms, the Machines and Mechanisms Theory must be applied.
Thus, new dimensional constructive solutions of mechanisms, which, for a stipulated
law of motion of the driving element, ensure a specified law of motion of the driven
element [1], are designed. The problem can be solved in two ways: (a) the law of motion
of the driven element is achieved with precision, and (b) the law of motion approximates,
with a pre-stipulated accuracy, the imposed theoretical law. A more in-depth analysis
shows that obtaining a solution which gives an imposed theoretical law of motion is an
idealistic impossible task, mainly due to the backlash from the pairs of the mechanism,
the manufacturing errors of the dimensions of the elements [2], and the deformations of
the elements. Nevertheless, in a first approximation, it is accepted that all elements of
the mechanism are perfectly rigid, the backlash from the kinematic pairs is zero, and the
constructive dimensions of the elements are precisely machined. Under these simplifying
hypotheses, one of the frequently met problems in engineering practice is finding the
constructive solutions which allow, for the driven element, a motion identical to the motion
of the driving element—these are the homokinetic mechanisms; Seherr-Thoss [3] and
Dudita [4] present a series of constructive solutions of homokinetic mechanisms. An initial
method to classify these mechanisms revolves round the relative position between the
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axes of the driven and driving element. In the broadest scenario when the driving and
the driven axis are not co-planar, the tripodic transmissions are a solution of homokinetic
coupling. Innocenti [5] presents a constructive solution where the tripodic coupling is
achieved by pairs of point–surface type, while Qiu [6] presents a constructive solution of
tripodic coupling with three curve–curve-type contacts. Notably for both methodologies,
the mechanisms preserve homokinetic characteristics, even as the axes adjust their relative
positioning over time. In the context of spherical mechanisms, an example of homokinetic
mechanism is the Rzeppa coupling [7]. For planar mechanisms, where the input and
output axes are parallel, the technical literature offers numerous constructive solutions
for homokinetic mechanisms, with a prime example being the parallelogram mechanism.
In instances where both axes retain fixed spatial positions, and the driving and driven
element have rotation motion, the most convenient solution for achieving a homokinetic
mechanism consists of a mechanism made of three elements only: the ground, the driving
element, and the driven element. It is demonstrable that regardless of the position of the
input and output axes, the transmission of motion between the mobile elements is made
via a higher pair aligning with the overarching definition of cam mechanisms. This is a
class 1 higher pair for the crossed axes and class 4 higher pair for the spherical mechanisms
or plane parallel mechanisms [8]. This remark indicates the fact that the gear mechanisms
are a special category of cam mechanisms. Additionally, one can attain broader relevance
in the context of gear mechanisms by recalling the transmission ratio, generally defined as

i12 =
ω1

ω2
(1)

where ω1 and ω2 are the angular velocities of the driven and driving axes, respectively. In
the case of gear mechanisms, in most situations, they should ensure the transmission of
motion with a rigorously constant ratio:

i12 = const. (2)

The surfaces that give rise to the kinematic higher pair are typically referred to as
“flanks”. Specific criteria, as outlined in the pertinent technical literature [9,10], must be
satisfied by these flanks to facilitate the transmission of rotational motion at a constant ratio.

For mechanisms with parallel axes, the flanks of the spur gears can be described
as ruled surfaces, with their generatrixes lying parallel to the wheel axes. The whole
gearing process can be studied in a section normal to the axes of the wheels (frontal plane).
The intersection between the flanks and the plane normal to the axes of the wheels are
named profiles. In this case, the condition of two toothed wheels to maintain a constant
transmission ratio is derived from the fundamental law of gearing. This law dictates
that for two profiles designed to mesh with a constant transmission ratio, the common
normal at their point of contact should always pass through a fixed point [11,12]. This
point known as the “pitch point “ and lies along the centre line, dividing it in a ratio
inversely proportional to the transmission ratio. Therefore, if there are stipulated the centers
distance, the transmission ratio and one of the profiles, then, based on the fundamental
law of gearing, the profile of the conjugate wheel can be found. From a practical point of
view, an extremely pertinent problem is determining a profile curve that, by the gearing
fundamental law, conducts to a curve of the same type of the conjugate profile. Therefore,
the manufacturing technology of both teethed wheels is unified to a unique one and the
costs of the transmission are thus substantially reduced. The single curve that satisfies
this condition is the circle involute. This property of the involute makes possible the wide
spread of spur gears with involute teeth in engineering applications. The parameters
defining the involute teeth are used in all three stages: design, machining, and control.
The last stage has a distinct importance since by finding the parameters which define the
geometry of the teeth, one can estimate the manner of the fabrication process [13,14], ensure
the accuracy requirements imposed on the gear during the design step, and thus certify the
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appropriate running of the assembly [15,16] from which it belongs. Concerning the control
methods of the gears, these evolved from classical ones [17,18], when the over teeth and
over pins/over balls dimensions were verified, to modern procedures [19–22]. One can
mention a modern control method of gears which assimilates the helical gears with helical
screws [23].

2. Materials and Methods
2.1. Aspects Concerning the Geometry of Spur Gears with Involute Teeth

Given that the geometric and kinematic evaluations of helical gears can ultimately be
deduced from the analysis of a spur gear, we first consider the geometric and kinematic
parameters of spur gears, before moving on to understanding those of a helical gear.
From the above, it is plausible to leverage the fundamental law of gearing to determine a
conjugate profile that corresponds to any given profile. From a manufacturing perspective,
it is advantageous if both profiles are curves of the same type. Among all the planar curves,
the involute of the circle is unique as its conjugate is of the same type. This curve is defined
by a point attached to a mobile straight line that, without any slippage, rolls along an
affixed circle, termed the base circle Cb, as shown in Figure 1.
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In the initial position, the mobile straight line takes the position ∆0. Three fixed points
on this straight line are considered: A0

0 coincides to the point of tangency, A−
0 is inside the

base circle, and A+
0 . Allowing the straight line to roll without slipping over the base circle

Cb, it occupies a current position ∆ where the tangency with the base circle is in the point T.
The three points fixed to the generating straight line take the current positions A0, A−, and
A+ respectively, describing during the motion of a normal involute, a prolate involute, and
a curtate involute (Figure 1).

The condition of pure rolling stipulates that the length of the line segment A0T should
equal the arc length A0

0T. Based on this remark, the polar parametric equations of the
normal involute can be obtained:{

ρy = OA0 = rb
cosαy

θy = ∠A0
0OA0 = tanαy − αy

(3)

The function that appears in the definition of the θy angle is denoted invα and is
defined as

invα = tanα − α, [α]rad (4)
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and is frequently met in the theory of gearing. The αy parameter from Equation (3) is the
pressure angle of the normal involute on the base circle Cy of radius ry. Within the theory
of involute gears, we can identify a circle by specifying the pressure angle of the normal
involute profile. This profile is created using a base circle with an already established centre
and radius.

Based on relations (3) and (4), the cartesian parametric equations of any of the three
involutes can be obtained:{

x(α) = rb
cosα sin(invα) + a · sin(tanα)

y(α) = rb
cosα cos(invα) + a · cos(tanα)

(5)

where for a < 0 the prolate involute is obtained, for a = 0 the normal involute is obtained,
and for a > 0 the curtate involute is obtained.

Another observation with important consequences concerns the fact that the length of
the segment TA0 is the curvature radius of the normal involute in the current point A0.

ρc = length(TA0) = rbtanα (6)

As the tooth count of a gear wheel approaches infinity, it logically follows that the
radius of the base circle expands towards infinity as well. Thus, a gear wheel evolves into
a rack with an infinite number of teeth and the curvature radius of the rack profile also
expands towards infinity. This implies that the profile of an involute gear rack takes the
form of a straight line, as depicted in Figure 2. The base line of the rack ∆0 is the line
alongside which the thickness of the tooth s0 is equal to the space width e0. Consequently,
it corresponds to half the pitch of the rack (maintaining consistency across any section
parallel to the direction of motion):

s0 = e0 = p0/2 (7)

with
p0 = πm (8)

where m is a parameter with dimension of length and taking standard values. The reference
straight line divides the tooth into two zones:

• The addendum, of height

ha0 = h∗a0m, h∗a0 = 1
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• The dedendum. As can be noticed from the detail A, the tooth is cut on the inferior
zone of a length

c0 = c∗0m, c∗0 = 0.25(ISO value) (10)
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The reference height of the dedendum becomes

h f 0 = h∗f 0m = (h∗a0 + c∗0)m (11)

For a complete definition of the geometry of the rack, additional specifications must
be stipulated:

• The pressure angle of the straight profile:

α0 = 20◦; (12)

• The filleting radius ρ0 at the root of the tooth:

ρ0 =
c∗0

1 − sinα0
m ∼= 0.38m (13)

As a conclusion, the profile of the basic rack is defined by the module m, the pressure
angle α0, the reference addendum coefficient h∗a0 = 1, and the coefficient of radial backlash
c∗0 = 0.25.

The gear with involute teeth is defined using the basic rack. The definition parameters
require adherence to two specific conditions:

• The gearing is accomplished without backlash between the flanks;
• The gearing is accomplished with standard radial backlash c0

The two conditions are sufficient for the complete definition of the gear. The centroids
of the relative motion between the wheel and the base rack are represented (Figure 3) by
the pitch circle of the gear cd of diameter

d = mz, (14)

and the rolling straight line of the rack ∆w parallel to the reference line ∆0, but at a distance
from this, with the quantity X named profile shift and expressed as

X = mx (15)
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The profile shift coefficient x of the gear is considered:
x = 0 when the straight line ∆w is tangent to the pitch circle;
x < 0 when ∆w intersects the pitch circle;
x > 0 when ∆w is external to the pitch circle.
In conclusion, with stipulated parameters for the shape and dimensions of the basic

rack, the toothed wheel is fully characterized by the next three parameters:

1. The number of teeth z, which describes the dimension of the wheel;
2. The module m, which describes the dimension of the tooth;
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3. The profile shift coefficient x, which describes the shape of the tooth.

A precise method for manufacturing the involute gears is gear generation, wherein the
resultant gear is conceived as the envelope of a distinctive series of positions of a toothed
cutting tool. This procedure requires a relative motion between the gear blank and the
tool mimicking the motion that would otherwise be present between the tool and the final,
machined gear. One manufacturing technique uses a tool which mirrors the profile of the
generating rack (conjugate to the basic rack).

To highlight the impact of the number of teeth and of the profile shift coefficient
on gear machining, a simulation program was developed. This simulation experiment
incorporated two different configurations of tooth count, z = 5 and z = 10, along with
three distinct values attributed to the profile shift coefficient. Figure 4 shows the results
of the simulation. It is evident that negative values of the profile shift coefficient led to
an undercutting phenomenon which involves the removal of tooth material within the
dedendum zone. Conversely, positively large values result in overcutting of the tooth. Both
phenomena are more pronounced when the tooth count of the gear wheel z is smaller.
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Concerning the adoption of the profile shift coefficient of a gearing, essential observa-
tions are as follows:
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• The first remark is related to the effect of the profile shift coefficient upon the cen-
tre distance; in order to achieve a standard centre distance, gear correction must
be performed;

• The second observation refers to the gear synthesis methodology; to ensure satisfac-
tory kinematic and dynamic behaviour, a gear mechanism needs to conform to all
stipulated conditions for smooth operation. Such criteria can be defined by a condition
formulated as follows:

Fk(m, z1, z2, x1, x2) ≥ 0, k = 1 ÷ n (16)

where n is the number of imposed criteria. For the imposed module, the relation (16) becomes

fk(z1, z2, x1, x2) ≥ 0 (17)

If we consider only the equality from Equation (17) and treat the profile shift coef-
ficients x1 and x2 while z1 and z2 are regarded as parameters, the equation of a curve
is obtained:

ϕk(x1, x2) ≥ 0 (18)

This curve divides the plane x1x2 into two regions: one where the criterion is satisfied,
and another where it is not. For a gearing with a stipulated number of teeth, the intersection
of all regions where all the n conditions are verified will represent, in the x1x2 plane, a
closed domain [24], where all the imposed criteria of correct running will be satisfied.
The boundary of this domain is named the “locking contour”. Knowing the locking
contour allows, for a given pair of teeth, the correct and operative choice of the profile
shift coefficients.

2.2. Helical Gears

In order to define the profile of a helical gear, a base cylinder is set on a plane (P),
as shown in Figure 5. In the (P) plane, (∆) is considered the straight line that makes the
angle (βb) with the generatrix of the cylinder tangent to the plane. By rolling the plane (P)
without slipping, a ruled surface is generated which can be used as a tooth flank. During
the process of flank creation, the points of the straight line (∆) will sit on the base cylinder
as a helix with constant pitch (Eb), named the base helix. Each point of the straight line
(∆) describes an involute generated using the circles of radius (rb) (the radius of the base
cylinder). As an example, in the foreground plane, the involute (e) is generated and in
the background plane, the involute (e′) is generated. All involute curves commence from
the base cylinder and, due to their origin at the base helix, preserve a uniform angular
discrepancy across the length of the cylinder’s generatrix.
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The generation process of the flank’s surface yields the conclusion that it constitutes a
helical involute ruled surface. The intersection of the flank with an arbitrary cylinder of
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radius ry coaxial to the base cylinder is a helix (Ey). Based on Figure 6, where the unfolded
cylinders are also shown, the inclination angle βy of the helix on the cylinder of radius ry is
found. It must be noted that both helices share the same axial pitch.

tan(βy) =
2πry

pz

tan(βb) =
2πrb

pz

}
⇒ tan(βy) = tan(βb)

ry

rb
(19)
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We introduce the convention that the parameters from a frontal section (normal to the
axis of the wheel) are denoted with the index “t”. Thus, the relation (19) becomes

tan(βy) =
tan(βy)

cos(αyt)
(20)

where αyt represents the pressure angle of the involute (e) on the circle of radius ry, as in
Figure 6. Given that the gearing interaction between the profiles in any section perpen-
dicular to the axes of the wheels mirrors that of two spur gears, it can be asserted that
the rack’s profile will be linear across all frontal sections. Additionally, with helical teeth,
the interaction between the teeth of the wheel and the rack occurs along a straight line
(∆). It is noteworthy that this line no longer aligns perpendicularly to the direction of
displacement. As a result, it becomes apparent that the flank of the helical rack is planar,
with the orientation of the teeth not being perpendicular to the direction of displacement.
Instead, the teeth’s direction forms an angle β0 with the direction of displacement. In a
section perpendicular to the tooth, the size and the design of the reference helical rack must
have standard dimensions, identical to that observed in a rack with spur teeth. Figure 7
shows the basic rack with helical teeth.
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Figure 7. The basic rack with helical teeth.

The base plane P of the rack is presented in Figure 7. The intersection between the
reference plane to any frontal plane is a straight line along which the tooth thickness is
identical to the space width. With respect to the reference plane, the following parameters
are defined:

• The addendum of the tooth ha0 ;
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• The dedendum of the tooth h f0 .

In the frontal plane, the frontal pitch pt, and ha0 and h f0 are defined as functions of the
frontal module mt using relations similar to the ones used for spur gears:

pt = πmt (21)

ha0t = h∗a0tmt (22)

h f0t = (h∗a0t + c∗0t)mt (23)

In order to apply the relations (21)–(23), the relations between the parameters from
the frontal section h∗a0t, c∗0t, and mt and the known (standard) parameters from the normal
section h∗a0

= 1 and c∗0 = 0.25 m must be found. Figure 8 shows a section with the base
plane through the basic rack with helical teeth, a section normal to the tooth denoted
n-n, and another frontal one t-t parallel to the direction of motion of the basic rack. The
geometric parameters in the frontal section are indexed with “t”, along with the convention
that the parameters from the normal section are not indexed. It should be noted that in
other works the “n” index may be used instead. From the right triangle QMP, one can write

PM =
MQ

cos(β0)
⇒ pt =

p
cos(β0)

(24)

and from here, the relation between the normal m and frontal mt module results in

mt =
m

cos(β0)
(25)

The addendum ha0 and the dedendum h f0 of the tooth appear in actual size, both in
the normal and frontal sections

ha0 = h∗a0tmt = h∗a0
m (26)

where from
h∗a0t = h∗a0

m
mt

= h∗a0
cos(β0) (27)

it results
h f0 = (h∗a0t + c∗0t)mt = (h∗a0

+ c∗0)m (28)

where, considering Equation (27), one obtains

c∗0tmt = c∗0m (29)

and from here, the following is obtained:

c∗0t = c∗0cosβ0 (30)

To find the pressure angle of the profile in the frontal plane, the triangles ABC and
AtBtCt are used, where

AtBt = AB = ha0 ; BC = BtCtcosβ0; BC = ha0 tanα0; BtCt = ha0 tanα0t (31)

From relation (31), one obtains

tan(α0t) =
tan(α0)

cos(β0)
(32)
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The relations (26)–(32) fully define the profile of the basic rack in the frontal section.
Therefore, the wheel can be defined in the frontal section using the frontal profile of the
base rack. The conditions for definition are the same as for the spur teeth:

• Gearing without backlash between flanks;
• Gearing with standard radial backlash;
• The shift of the profile X is the same in both sections.

X = xtmt = xm,⇒ xt = x
m
mt

= xcosβ0 (33)

The frontal pitch pt is

pt = πmt = π
m

cosβ0
(34)

and the pitch diameter d is

d = zmt =
z

cosβ0
m (35)

The addendum of the tooth ha is

ha = (h∗a0t + xt)mt = (h∗a0
+ x)m (36)

The dedendum of the tooth h f is

h f = (h∗a0t + c∗0t − xt)mt = (h∗a0
+ c∗0 − x)m (37)
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The addendum diameter da is

da = d + 2ha =
(
z + 2h∗a0t + 2xt

)
mt =

(
z

cosβ0
+ 2h∗a0

+ 2x
)

m (38)

The pressure angle of the frontal profile on the pitch circle αt is

αt = α0t = atan
tanα0

cosβ0
(39)

The base diameter db is

db = dcosα0t = mtzcosα0t =
mz

cosβ0
cosα0t (40)

The angle of inclination of the helix β of the flank on the pitch cylinder is

β = β0 (41)

The relation (20) -the angle of the flank’s helix in the base cylinder βb is applied for the
case of the base circle and is

βb = atan[tanβ0cosα0t] (42)

2.3. Method and Device for Finding the Characteristic Parameters of the Helical Gears with
Involute Teeth
2.3.1. The Procedure for Finding the Characteristic Parameters of a Helical Gear with
Involute Teeth

In a recent work, the authors proposed a quick and cost-effective technique, along
with the associated device, to accurately determine the three geometric characteristics of
an involute toothed spur gear: the number of teeth z, the module m, and the profile shift
coefficient x. The method is based on the manner of precision control of the spur gear with
involute teeth using the measurement over pins. Two main disadvantages are obvious for
the method of over pins measurement:

• The mechanical system formed by the measuring instrument, the two pins, and the
measured wheel is not steady, and the distance to be measured is accepted as the
maximum value of the distance between the two pins;

• The application of the method varies depending on whether the number of teeth is
odd or even.

The method proposed in [25] eliminates these drawbacks by employing a number of
three or four pins, placed symmetrically with respect to the measuring direction, Figure 9a
(even teeth number) and Figure 9b (odd teeth number).

As a fundamental premise, the method involves experimentally determining the
dimension over pins by utilizing a specifically designed device and expressing this dimen-
sion in terms of the gear’s three primary geometric features. Finally, an equation of two
unknowns, the module m and the profile shift coefficient x, is obtained:

inv
{

acos
[

mzcosα0

2(D − dR)
(cosψup + cosψdown)

]}
= invα0 −

π

2z
+

2x
z

tanα0 +
dR

mzα0
(43)

Therefore, two equations are necessary to find the two parameters m and x. To
overcome this, it is essential to note that the dimensions of the wheel do not undergo
significant change for the typical values of the profile shift coefficient:

−0.5 < x < 0.5 (44)
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teeth: (a) gear with even number of teeth, when the direction of measurement passes through two 
Figure 9. The proposed method for finding the characteristic parameters of a spur gear with involute
teeth: (a) gear with even number of teeth, when the direction of measurement passes through two
teeth or two spaces; (b) gear with odd number of teeth, when the direction of measurement passes
through a tooth and a space.

So, by replacing x = 0 in Equation (43), the following equation of the unknown
module m is obtained:

inv
{

acos
[

mzcosα0

2(D − dR)
(cosψup + cosψdown)

]}
= invα0 −

π

2z
+

dR
mzα0

(45)

This equation can be solved simply. Next, knowing that the module m takes standard
values, the actual module of the gear is chosen as the standard value mstd, closest to
the solution of Equation (45). Now, the adopted standard value of the module mstd is
replaced in Equation (43) and an equation from which the profile shift coefficient x is found
is obtained:

inv
{

acos
[

mstdzcosα0

2(D − dR)
(cosψup + cosψdown)

]}
= invα0 −

π

2z
+

2x
z

tanα0 +
dR

mstdzα0
(46)

2.3.2. Alternative Method for the Helical Gears

The methodology outlined above is not applicable to involute helical gears. The main
reason for this is the difficulty of employing pins or rollers with this type of gear. As
illustrated in Figure 10, the axes of the two pins making contact with the tooth flanks are
not coplanar, making this approach impractical.
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This can be overcome by using ball bearings spheres, keeping in mind that these balls
should be in contact with the flanks of the teeth and with another frontal surface. The
motivation behind this approach is to ensure that all the sphere centres are situated within
the same frontal plane, as demonstrated in Figure 11.
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Figure 11. Schematics for the device used for involute helical gears.

The geometry of the wheel is characterised by the number of teeth z, the module m in
the normal section, the normal profile shift coefficient x, and the helix angle of the teeth
of the base rack β0. The gearing is studied in the frontal section, and the profile is also an
involute, characterised by the number of teeth z, the frontal module mt, and the frontal
profile shift coefficient xt.

Considering the relation (25) and the fact that the angle β0 may take any value, it results
that in the frontal section, the value of the module is not standard and the methodology
applied for the spur gears is not effective. Therefore, in this case, the conditions imposed
upon the coordinates of the contact points are used.

In Figure 12, a frontal section is presented, which contains the centre of a ball of radius
rB which makes contact with the boundary flanks at points Y and Y. The normal at the
contact point is tangent to the base circle in the Ty point. The Y points are placed on a circle
characterised by the pressure angle αyt of the involute generated using the base circle of
radius rb. The pitch circle passes through points D.
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Applying the involute properties, one can write
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arcY’Y” = ry φyt =
1
2

mzcosα0t
cosαyt

[
φ0t + 2(θyt − θ0t)

]
= 1

2
mzcosα0t

cosαyt

[
ed

d/2 + 2(invαyt − invα0t)
]

= mzcosα0t
cosαyt

[ π
2 −2xttanα0t

z + (invαyt − invα0t)
]
= mzcosα0t

cosαyt

[
π
2z −

2xttanα0t
z + (invαyt − invα0t)

] (47)

where φy represents the arc of the space width on the circle Cy and φ0t is the arc of the
space width on the pitch circle. From the above relation, one can obtain

φyt =
arcYY

ry
=

mzcosα0t
cosαyt

[
π
2z −

2xttanα0t
z + (invαyt − invα0t)

]
1
2

mz·cosα0t
cosαyt

= 2
[

π

2z
− 2xttanα0t

z
+ (invαyt − invα0t)

]
(48)

Next, one can obtain

TYOTY = φyt + 2αyt = 2
[

π
2z −

2xttanα0t
z + (invαyt − invα0t)

]
+ 2αyt

= 2
[

π
2z −

2xttanα0t
z + (invαyt + αyt − invα0t)

]
= 2

[
π
2z −

2xttanα0t
z + tanαyt − invα0t

] (49)

The angles TYOBTY and TYOTY are supplementary:

TyOBTy = π − 2
[

π

2z
− 2xttanα0t

z
+ tanαyt − invα0t

]
(50)

The length of the cord YY can be expressed in two ways:

rBsin
[

1
2

(
π − 2

[
π
2z −

2xttanα0t
z + tanαyt − invα0t

])]
= rysin

[
1
2

(
2
[

π
2z −

2xttanα0t
z + (invαyt − invα0t)

])] (51)

And from here, the following equation is obtained:

rBcos
(

π

2z
− 2xttanα0t

z
+ tanαyt − invα0t

)
=

1
2

mz
cosα0t

cosαyt
sin
[

π

2z
− 2xttanα0t

z
+ (invαyt − invα0t)

]
(52)

Additionally, the radius of the centre of the ball can be found:

YB = rBcos
[

1
2

(
π − 2

[
π
2z −

2xttanα0t
z + tanαyt − invα0t

])]
+rycos

[
1
2

(
2
[

π
2z −

2xttanα0t
z + (invαyt − invα0t)

])] (53)

From here, the following is obtained:

YB = rBsin
(

π

2z
− 2xttanα0t

z
+ tanαyt − invα0t

)
+

1
2

mz
cosα0t

cosαyt
cos
[

π

2z
− 2xttanα0t

z
+ (invαyt − invα0t)

]
(54)

Figure 13 shows that the measured dimension over balls D using the proposed device
can be expressed as

D = YBcosψup + YBcosψdown + 2rB (55)

where YB is the radius of the circle where the centres of the balls (of radii rB) are positioned
in the space between teeth, contacting both flanks of the teeth. As previously stated, the
balls are positioned symmetrically with respect to the diameter parallel to the direction of
measurement. From relation (55), the following is obtained:

YB =
D − 2rB

cosψup + cosψdown
(56)
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𝜋

2𝑧
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2𝑥𝑡 𝑡𝑎𝑛𝛼0𝑡

𝑧
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𝑟𝐵2 

𝑌𝐵2
𝑐𝑜𝑠 𝛼𝑦1𝑡) + 𝛼𝑦2𝑡] = 0

𝑟𝐵2 𝑐𝑜𝑠 𝛼𝑦2𝑡 − 𝑌𝐵2 [
𝜋

2𝑧
−

2𝑥𝑡 𝑡𝑎𝑛𝛼0𝑡

𝑧
+ 𝑖𝑛𝑣𝛼𝑦2𝑡 − 𝑖𝑛𝑣𝛼0𝑡] = 0
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𝑌𝐵2 
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The relations (54) and (56) result in the equation:

rBsin
(

π

2z
− 2xttanα0t

z
+ tanαyt − invα0t

)
+

1
2

mz
cosα0t
cosαyt

cos
[

π

2z
− 2xttanα0t

z
+ (invαyt − invα0t)

]
=

D − 2rB
cosψup + cosψdown

(57)

Now, considering the Equations (52) and (57), the following system is obtained:rBcos
(

π
2z −

2xttanα0t
z + tanαyt − invα0t

)
= 1

2 mz cosα0t
cosαyt

sin
[

π
2z −

2xttanα0t
z + (invαyt − invα0t)

]
rBsin

(
π
2z −

2xttanα0t
z + tanαyt − invα0t

)
+ 1

2 mz cosα0t
cosαyt

cos
[

π
2z −

2xttanα0t
z + (invαyt − invα0t)

]
= YB

(58)

The unknowns of the system are

• the frontal module mt;
• the frontal pressure angle αyt on the circle passing through the contact points;
• the frontal profile shift coefficient of the gear xt;
• The frontal pressure angle α0t on the pitch cylinder of the gear.

Considering that the method is applied using two sets of balls of radii rB1 and rB2
positioned at the angles ψdown1, ψup1, ψdown2, and ψup2, respectively, the system (58) written
for the two cases leads to a system of four equations which, after some calculations, takes
the form 

mz
2YB1

cosα0t − cos
[
asin

(
rB1
YB1

cosαy1t

)
+ αy1t

]
= 0

rB1cosαy1t − YB1

[
π
2z −

2xttanα0t
z + invαy1t − invα0t

]
= 0

mz
2YB2

cosα0t − cos
[
asin

(
rB2
YB2

cosαy1t

)
+ αy2t

]
= 0

rB2cosαy2t − YB2

[
π
2z −

2xttanα0t
z + invαy2t − invα0t

]
= 0

(59)

A system of two transcendental equations (from the first and third equation of system
(59) and, respectively, from the second and fourth equation) of unknowns αy1t and αy2t
results in YB1cos

[
asin

(
rB1
YB1

cosαy1t

)
+ αy1t

]
− YB2cos

[
asin

(
rB2
YB2

cosαy2t

)
+ αy2t

]
= 0

invαy1t − asin
(

rB1
YB1

cosαy1t

)
− invαy2t + asin

(
rB2
YB2

cosαy2t

)
= 0

(60)
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The two unknowns αy1t and αy2t are found via a numerical method. After the two
pressure angles are found, two equations of system (59) are considered (either the first two,
or the last two equations). We consider here the first two equations of system (59) and with
the relations (25), (33), and (39) between the geometrical parameters from the normal and
frontal section; the next system of equations results in

mtz
2YB1

cosα0t − cos
[
asin

(
rB1
YB1

cosαy1t

)
+ αy1t

]
= 0]

rB1cosαy1t − YB1

[
π
2z −

2xttanα0t
z + invαy1t − invα0t

]
= 0

(61)

Now, we recall Equations (25), (39), and (54) and have
mcosβ0

2YB1
zcos

(
atan tanα0

cosβ0

)
− cos

[
asin

(
rB1
YB1

cosαy1t

)
+ αy1t

]
= 0

rB1cosαy1t − YB1

[
π
2z −

2xcosβ0
tanα0
cosβ0

z + invαy1t − inv
(

atan tanα0
cosβ0

)]
= 0

(62)

The resulting system (62) has three unknowns:

• The normal module m, which takes standard values;
• The helix angle of the flank β0 on the pitch cylinder of the wheel;
• The normal profile shift coefficient x of the wheel.

A further equation is needed to solve the system. To this end, we accept the hypothesis
(justified in Appendix A) that the helix angle βa of the flank on the addendum cylinder
does not differ substantially from the helix angle from the pitch cylinder β0. This remark
is extremely important because the slant of the tooth on the addendum cylinder can be
measured relatively easily, since the addendum surface exists physically while the pitch
surface is fictive. Supposing that the inclination angle of the tooth on the addendum
cylinder βa is found, this value is replaced into the first equation of system (62):

mcosβa

2YB1
zcos

(
atan

tanα0

cosβa

)
− cos

[
asin

(
rB1

YB1
cosαy1t

)
+ αy1t

]
= 0 (63)

and then, the equation is solved with respect to m:

m = 2YB1cos
[

asin(
rB1

YB1
cosαy1t)

]
cosβa

z

√
1 +

tan2α0

cos2βa
(64)

The closest standard value is adopted for the normal module:

mn = mnstd

and using this value, it is replaced in Equation (63) and then the equation is solved with
respect to the angle β0:

β0 = acos

√√√√√ z2m2
nstd{

2cos
[

asin( rB1
YB1

cosαy1t)
]
YB1

}2 − tan2α0 (65)

Now, the helix angle on the pitch cylinder is known and this value is replaced in
the second Equation (62), obtaining an equation of unknown x, the normal profile shift
coefficient. The solution is

x =
z

2tanα0

[
π

2z
+ invαy1t − inv

(
atan

tanα0

cosβ0

)
− asin(

rB1

YB1
cosαy1t)

]
(66)
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3. Exemplification of the Methodology

The methodology we use with the measuring device is as follows: For the teethed
wheel to be measured as 1, the axis of measurement is found; it is defined by two spaces
between teeth or by two teeth diametrically opposite. For an odd number of teeth, the axis
is defined by a space and a tooth placed diametrically opposite. Then, two pairs of balls 2
are introduced in the spaces placed symmetrically with respect to the measuring axis. One
of the pairs of balls is brought into contact with the surface of the fixed prism 3, which is
assembled by screws on the base plate 4. Next, the mobile prism 5 is carefully moved until
its surface meets the second pair of balls. In order to diminish the risk of locking the mobile
prism, it has ball bushings which ensure a smooth and noiseless motion along the guiding
rods 7, fixed on the base plate by the support parts 8. When all the balls have made firm
contact with the prisms, the assembly is fixed using the screw 9. Then, the distance D is
measured and the angles ψup and ψdown are calculated. The methodology is repeated for
another configuration of the balls, symmetrically placed with respect to the measuring axis.
Next, Table 1 is completed and the relations presented in the paper are applied.

Table 1. Measurements results.

rB
[mm]

ψup
[deg]

ψdown
[deg]

D
[mm]

YB
[mm]

entry 1 5.760 2π/z 0 91.27 41.952
entry 2 4.75 π/z π/z 87.51 40.008

The method is exemplified by applying it to an actual teethed wheel with the number
of teeth z = 14. The device presented in [25] is used, but the pins were replaced by balls
of radii rB1 and rB2; for the two sets of balls (Figure 14), the dimension over balls D1 and
D2 were measured. The values of the involved parameters for two values of the radii at
which the balls’ centres are positioned— the radii of balls rB1 and rB2, distances D1 and
D2, positioning angles ψup and ψdown—and the values resulting from the calculation with
relations (55) and (56) are presented in Table 1.
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With these values, a system of transcendental Equation (60) is obtained which is solved
using the Newton–Raphson method. The convergence of the solutions of the system as
function of the number of iterations is presented in Figure 15. It can be observed that the
method is rapidly convergent and conducts to the values of the pressure angles of the
involute profile on the circles where the ball–tooth flank contact points are placed.
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Figure 15. The fast convergence of the Newton–Raphson method applied for finding the pressure
angles αy1 and αy2 on the circles of the contact points.

In order to find the helix angle βa of the teeth on the addendum cylinder, two methods
were used: first, the wheel was scanned using a laser profilometer (Nanofocus µscan),
shown in Figure 16, and then, a photo of the wheel was taken from the side, shown in
Figure 17. The helices from the addendum cylinders and the helix angles with respect to
the axis of the gear are identified in both images.
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By comparing the measured angles from the two figures, equal values βa = 23o were
found. Taking a photo is a much simpler method compared to scanning. Now, with found
values βa and αy1t one can apply Equation (64) and the normal module of the gear results
in m = 4.949. Next, the standard normal module is adopted mstd = 5; angle β0 is obtained
by applying relation (65), β0 = 21.344o, and next, by applying relation (66), the profile shift
coefficient is found x = 0.105. Subsequently, it is proven that the values αy1t, αy2t, mstd, β0,
and x verify the system of Equation (59).

4. Conclusions

The paper is a progression of a recent work of the authors [25] concerning the accurate
determination of the three basic parameters of an actual spur gear with involute teeth
(number of teeth, module, profile shift coefficient) where an expedited method and the
related measuring device are presented.

The current study introduces a rapid, straightforward, and inexpensive approach
for identifying the basic parameters of helical gears. In addition to the three parameters
mentioned above, for helical teeth, another basic parameter occurs: the angle of tooth
inclination—the helix angle on the pitch cylinder.

For helical gears, due to the inclination of the teeth, the method proposed for the spur
gear is inapplicable. Therefore, the rolling bodies introduced between the teeth of the gear
to be measured are no longer pins, but balls; thus, the contact with the surfaces of the
measuring device is of the point type.

Another consequence of the slanted tooth of the gear is the existence of two profiles: a
normal one, where the module has standard values identical to the values of the module of
the basic rack, and a transverse one, defined in a section normal to the axis of the wheel.
The entire gearing can be studied in the frontal section, similarly to a spur gear, but without
the necessity of a standard module. Concerning the control method, the condition that
the centre of the ball occupies an imposed position is required. Additionally, we have the
condition of positions of the contact points between the balls and the flanks of the teeth.
Two sets of balls of different sizes are necessary for a measurement, and the selection of
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the radii of the balls is made in a manner to ensure the contact point with the flanks on the
involute surface of the flank.

Subsequent to the measurements, a system of four equations is obtained, with five
unknowns: the pressure angles of the involute profile on the circles passing through the
contact point ball–flank, the normal module, the normal profile shift coefficient, and the
helix angle on the pitch cylinder.

The research demonstrates that for gears with a typical number of teeth and profile
shift coefficient, the helix angle of the tooth on the pitch cylinder can be approximated to be
the angle from the top land, which can be conveniently determined through experimental
measurements. Therefore, the system becomes compatible and allows for finding, with
some approximation, all the basic parameters of the gear. Then, the normal module is
adopted as the closest standard value compared to the solution obtained from the system.
Further, by employing the standard value for the module, the system of four equations is
resolved, leading to the precise determination of the fundamental parameters: the profile’s
pressure angle at the points of ball–tooth contact, the helix angle on the pitch cylinder, and
the normal profile shift coefficient.

The method is then exemplified for a concrete situation.
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Appendix A

The appendix is meant to justify the assumption that for gears with z > 10, the helix
angle from the addendum cylinder is practically the same as the helix angle from the
pitch cylinder.

Next, it is considered a helical gear having the following parameters: number of teeth
z; normal module m; and normal coefficient of profile shift m. The helix angle on the
addendum cylinder β0 is

βa = atan
(

da

d
tanβ0

)
(A1)

where d is the pitch diameter:

d = z
m

cosβ0
(A2)

and da is the addendum diameter:

da = d + 2(h∗a0 + x)m = m
(

z
cosβ0

+ 2h∗a0 + 2x
)

(A3)

where h∗a0 = 1. Then, the following equation is obtained:

βa = atan

m
(

z
cosβ0

+ 2h∗a0 + 2x
)

z m
cosβ0

tanβ0

 = atan

( z
cosβ0

+ 2h∗a0 + 2x

z
sinβ0

)
(A4)

The number of teeth and the profile shift coefficient affect the helix angle on the
addendum cylinder. These aspects are presented in Figures A1 and A2 for z = 10 ÷ 80.
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