
Citation: Feng, C.; Hu, S.; Zhang, Y. A

Multi-Path Semantic Segmentation

Network Based on Convolutional

Attention Guidance. Appl. Sci. 2024,

14, 2024. https://doi.org/10.3390/

app14052024

Academic Editors: Xianghua Xie,

Gary KL Tam, Frederick W. B. Li,

Avishek Siris and Jianbo Jiao

Received: 1 February 2024

Revised: 22 February 2024

Accepted: 24 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Multi-Path Semantic Segmentation Network Based on
Convolutional Attention Guidance
Chenyang Feng, Shu Hu and Yi Zhang *

College of Computer Science, Sichuan University, Chengdu 610042, China; young_chenyang@163.com (C.F.);
hushu@scu.edu.cn (S.H.)
* Correspondence: yi.zhang@scu.edu.cn

Abstract: Due to the efficiency of self-attention mechanisms in encoding spatial information, Transformer-
based models have recently taken a dominant position among semantic segmentation methods. However,
Transformer-based models have the disadvantages of requiring a large amount of computation and
lacking attention to detail, so we look back to the CNN model. In this paper, we propose a multi-path
semantic segmentation network with convolutional attention guidance (dubbed MCAG). It has a multi-
path architecture, and feature guidance from the main path is used in other paths, which forces the
model to focus on the object’s boundaries and details. It also explores multi-scale convolutional features
through spatial attention. Finally, it captures both local and global contexts in spatial and channel
dimensions in an adaptive manner. Extensive experiments were conducted on popular benchmarks,
and it was found that MCAG surpasses other SOTA methods by achieving 47.7%, 82.51% and 43.6%
mIoU on ADE20K, Cityscapes and COCO-Stuff, respectively. Specifically, the experimental results prove
that the proposed model has high segmentation precision for small objects, which demonstrates the
effectiveness of convolutional attention mechanisms and multi-path strategies. The results show that the
CNN model can achieve good segmentation effects with a lower amount of calculation.

Keywords: convolutional attention; deep learning; feature guidance; multi-path; semantic segmentation

1. Introduction

Semantic segmentation is a long-standing topic in the computer vision domain that
has attracted increasing attention in both academia and industry. Semantic segmentation
models have undergone significant architectural revolutions, starting from the early convo-
lutional neural network (CNN)-based models (e.g., FCN [1] and the DeepLab series [2–4]) to
the more recently published Transformer-based methods (e.g., SETR [5] and SegFormer [6]).
Compared with image classification, semantic segmentation is a dense and more precise
prediction task that requires the handling of object boundaries and other details. CNN
frameworks emphasize multi-scale information interaction, utilizing multi-scale contextual
fusion and combining various dilated convolutions and pooling operations to aggregate
multi-scale contexts. However, they cannot aggregate global information. Transformer-
based models, on the other hand, address this problem effectively by splitting the input
image into patches and linearly embedding them into sequences. However, they require
higher computational complexity, especially when dealing with high-resolution images
(e.g., remote sensing images). Moreover, Transformer-based models lack some of CNNs’
inherent inductive biases, such as translation equivariance and locality, which can result in
some details being ignored during global extraction.

To overcome the above-mentioned problems, we propose a novel semantic segmenta-
tion network, which incorporates a multi-path encoder–decoder structure with convolu-
tional attention. Our model is partially inspired by SegNext [7]. Building upon the visual
attention network (VAN) [8], SegNext replaces the self-attention module with a multi-scale
convolutional module. To reduce the computational overhead, a simple element-wise mul-
tiplication is applied to implement spatial attention, which integrates multi-scale features.
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For the decoder, features from different layers are extracted, and a Hamburger model [9] is
implemented to extract the global context. In addition, a spatial and channel reconstruction
module is incorporated in the main path of our model to enhance feature interaction,
which also removes redundant features. Multi-path encoding allows the model to use
convolutional attention to extract overall features without ignoring details and boundary
information. The main contributions in this paper can be summarized as follows:

(1) A multi-path convolutional self-attention structure is proposed to enhance the learning
of advanced semantic information. It also integrates global information and focuses
more on the boundary information.

(2) A spatial and channel reconstruction module is developed to reinforce feature interac-
tion, which also eliminates redundant information.

(3) Extensive experiments are conducted on mainstream datasets, where our model
exhibits superior performances against other popular methods.

The rest of the paper is organized as follows: related works are discussed in Section 2.
The architecture of our model is described in detail in Section 3. The experimental results
an ablation studies are presented in Section 4. A final conclusion is drawn in Section 5.

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation is a fundamental task in computer vision. Since the introduction
of fully convolutional networks (FCNs) [1], convolutional neural networks (CNNs) [10–13]
have achieved tremendous success and have become a popular architecture for semantic
segmentation. Fully convolutional networks keep pushing forward this field forward via
their end-to-end, per-pixel classification paradigms. They capture multi-scale features, in-
corporate channel attention and introduce self-attention blocks to refine contextual priors.
More recently, Transformer-based methods [5,6,14–16] have demonstrated significant potential
and have outperformed CNN-based approaches. The general structure of a segmentation
network consists of an encoder and a decoder. ResNet [17] and DenseNet [18] are commonly
adopted backbones for the encoder. Meanwhile, different decoders are advised for different
emphases, including achieving multi-scale receptive fields [12], collecting multi-scale seman-
tics [4,6,19], expanding receptive fields [2,20], enhancing edge features [11] and capturing
global contexts [13,21].

2.2. Multi-Scale Blocks

Multi-scale blocks are usually employed in both the encoder and decoder [3,12].
DeepLabv3+ [4], for instance, utilizes dilated convolutions at different rates in the encoder
to achieve multi-scale feature extraction. However, feature extraction at different scales
lacks a well-defined fusion mechanism, often relying solely on simple concatenation.
Unlike previous methods, MCAG not only captures multi-scale features in the encoder
but also introduces spatial and channel reconstruction modules to better fuse features.
Additionally, two branches are introduced to further integrate features at larger scales.
These advancements enable our model to achieve higher performance than many existing
segmentation methods.

2.3. Multi-Path Structure

Multi-path structures often appear in the encoder. MPViT [22] introduces a multi-scale
embedding approach with a multi-path structure, aiming to simultaneously represent
coarse and fine features for dense prediction tasks. While self-attention in Transformers can
capture long-term dependencies, it overlooks structural information and local relationships
within each patch. Conversely, CNNs have an obvious advantage in identifying textures
over shapes during visual reasoning. Therefore, MPViT combines CNNs and Transformers
in a complementary manner. However, it does not highlight the individual roles of different
paths. In MCAG, the model relies on the main pathway to better learn high-level semantic
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information, details and boundary information and achieves global information fusion at
larger scales through other branches.

3. Method

In this section, we will describe our model in detail. The multi-path semantic segmenta-
tion network with convolutional attention guidance (MCAG) also adopts an encoder–decoder
structure with a three-path layout. The main path captures the multi-scale features, which are
then fused through the spatial and channel reconstruction modules. The other two paths not
only learn advanced semantic information but also delineate the object boundaries. Mean-
while, the model realizes the fusion of global information at larger scales. Section 3.1 will
outline the overall architecture of the encoder of MCAG. Section 3.2 focuses on the convolu-
tional attention mechanism. Section 3.3 describes the multi-path and attention-guided fusion
module. Finally, Section 3.4 describes the functionality of the decoder.

3.1. Overall Architecture

Figure 1 illustrates the architecture of MCAG. Unlike BiSeNetV2 [23] and CCNet [21]
which adopt single-path architectures, we propose a three-path architecture to explore a
robust semantic segmentation network with multi-path convolutional attention. Specifically,
we devise a four-stage, three-path structure in which the feature maps are generated with
different scales and channels starting from the second stage. Our proposed structure
better utilizes global and boundary information while maintaining a lower number of
parameters compared to the Transformer architecture, allowing for improved learning of
high-level semantic information. The central main path (MP) serves as the primary route
and incorporates the MSCAN structure. The image resolution is successively reduced to
1/4, 1/8, 1/16, and 1/32 of the original resolution across the four stages, with an increasing
number of channels. Each stage is composed of a convolutional attention structure and
introduces a spatial and channel reconfiguration module to enhance representative features
and suppress redundant spatial features. The MP is responsible for parsing long-range
dependencies, as detailed in Section 3.2.
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Figure 1. The encoder network architecture of MCAG. AGFM stands for attention-guided fusion
module; PFM stands for pyramid pooling module; and MP, DP and BP stand for main path, detail
path and boundary path respectively.

The results of the first stage of the MP are fed into two subsidiary paths: the detail
path (DP) and the boundary path (BP). The DP maintains the same high resolution across
all stages, emphasizing the extraction of detailed features. Starting from the second stage,
guided by the MP, the DP selectively learns high-level semantic information. The BP, on
the other hand, fuses with the lower-resolution MP at each stage, further integrating global
information and focusing on boundary details while maintaining the same high resolution
across all stages. Both paths utilize convolution-based feature extraction, with the resolution
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and number of channels remaining constant, but differing in how they leverage guidance
from the MP, as elaborated in Section 3.3.

After completing the fourth stage, a fusion module called the attention-guided fusion
module (AGFM) is employed to merge the results from the three paths, producing the final
result of the encoder section. For the decoder part, we adopt the lightweight Hamburger
model [9] to generate improved segmentation results, as detailed in Section 3.4.

3.2. Convolutional Attention

We employ a convolutional attention network as the main path. For the construction
of encoder blocks, a structure similar to ViT [6] is adopted. However, instead of using
the self-attention mechanism, a new multi-scale convolutional attention (MSCA) module
is introduced. As depicted in Figure 2b, MSCA comprises four components: depthwise
convolution for aggregating local information, multi-path convolution for capturing multi-
scale contexts, spatial and channel reconfiguration modules (SRU and CRU), and 1 × 1
convolution for modeling relationships between different channels. GELU represents
the activation function, BN denotes batch normalization and Add denotes an addition
operation. Here, k × k indicates the use of depthwise separable convolution with a kernel
size of k × k. The outputs of the 1 × 1 convolution are directly used as attention weights
to rebalance the input of MSCA. Mathematically, MSCA can be expressed as shown in
Equations (1)–(3):

Att = ∑3
i=0 Convi(Conv5×5(F)) (1)

Att_R = Conv1×1(Att + C(S(Att)))⊗ F (2)

Out = Att_R ⊗ F (3)

where Convi(i = 0, 1, 2, 3) represents the convolutional layers in the diagram, with kernel
sizes of 1 × 1, 7 × 7, 11 × 11 and 21 × 21, respectively. C and S represent CRU and
SRU, while F represents the input features. Att_R and Out denote the attention map
and output, respectively. In Equation (3), the symbol ⊗ denotes element-wise matrix
multiplication. Stacking a series of building blocks results in the proposed convolutional
encoder yields MSCAN (shows in Figure 2a). MSCAN adopts a hierarchical structure,
where the MP consists of four stages. Each stage consists of L MSCANs, and the spatial
resolution decreases as H

4 × W
4 , H

8 × W
8 , H

16 × W
16 , H

32 × W
32 , where H and W are the height

and width of the input image, respectively. Each stage includes a downsampling block
with a batch normalization layer [24], followed by a convolutional layer with a stride of
2 and a kernel size of 3 × 3. The third stage contains a stack of L = 12 MSCAN modules,
while the remaining stages are stacked three times each.

Additionally, spatial and channel recurrent units (SRUs and CRUs) are introduced
in our MSCA module. For the SRUs, our aim is to leverage spatial redundancy in the
features using a separate-and-reconstruct operation. The purpose of the separate operation
is to extract information-rich feature maps from those with less information. A scaling
factor from the group normalization layer is used to assess the information content of
different feature maps. Specifically, given an intermediate feature map X with dimensions
N × C × H × W, where N is the batch axis, C is the channel axis and H and W are the
spatial height and width axes, we firstly normalize the input as shown in Equation (4):

Xout = GN(X) = γ
X − µ√
σ2 + ε

+ β (4)

Wγ = {wi} =
γi

∑C
j=1 γj

(i, j = 1, 2, . . . , C) (5)

W = Gate(Sigmoid(Wγ(GN(X)))) (6)

where µ and σ are the mean and standard deviation of X, ε is a small positive constant
added for stability and γ and β are trainable affine transformations. The normalization-
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related weights are obtained using the trainable parameters γ in the group normalization
layer GN, as shown in Equation (5), representing the importance of different feature maps.
The weighted feature map is then mapped to the (0, 1) range through a Sigmoid function,
and a threshold gate Gate is applied to set weights above the threshold to 1 for informative
weights W1 and set those below the threshold to 0 for non-informative weights W2. The
entire process is represented by Equation (6).
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Finally, the input features X are multiplied by W1 and W2 to obtain two weighted
features: Xw

1 , with high information content, and Xw
2 , with low information content; fea-

tures Xw
2 with little or no spatial content information are considered as redundant. A cross

operation is then applied to thoroughly combine these two differently weighted infor-
mation features, enhancing the information flow between them. The cross-reconstructed
features Xw1 and Xw2 are concatenated to obtain spatially refined features Xw. The entire
reconstruction process is represented by Equation (7):

Xw
i = Wi ⊗ X, (i = 1, 2)

Xw
ij = Split

(
Xw

i
)
, (i, j = 1, 2)

Xw
11 ⊕ Xw

22 = Xw1 ,
Xw

21 ⊕ Xw
12 = Xw2 ,

Xw1 ∪ Xw2 = Xw.

(7)

where ⊗ denotes element-wise multiplication, Split denotes the operation of halving along
the channel dimension, ⊕ denotes element-wise summation and ∪ denotes concatenation.
After applying SRUs to the intermediate input features X, not only are the features with
high information content separated from those with low information content, they are also
reconstructed to enhance representative features and suppress redundant features in the
spatial dimension.

For CRU, the aim is to exploit channel redundancy in features, utilizing a split–
transform–merge strategy to further reduce redundancy along the channel dimension
of spatially refined feature maps. Initially, the split operation is applied. For a given
Xw ∈ Rc×h×w, its channel dimension is decomposed into αC and (1 − α)C components,
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where 0 ≤ α ≤ 1, denoted as Xup and Xlow, respectively. This process is expressed through
Equations (8) and (9):

Y1 = MGXup + MP1 Xup (8)

Y2 = MP2 Xlow ∪ Xlow (9)

where MG ∈ R
αC
2r ×k×k×C and MP1 ∈ R

αC
r ×1×1×C are learnable weight matrices, Xup ∈ R

αC
r ×h×w

and Y1 ∈ RC×h×w represent the input and output from the upper path, MP2 ∈ R
(1−α)C

r ×1×1×(1− 1−α
r )C

is a learnable weight matrix, ∪ denotes the concatenation operation, Xlow ∈ R
(1−α)C

r ×h×w

and Y2 ∈ RC×h×w are the input and output from the lower branch and r is the squeeze ratio,
controlling the feature channels to balance computational costs (set to 2 in the experiments).
Finally, in the fusion stage, after the transformation, there is no direct connection or addition
of the two types of features. Instead, a simplified SKNet [25] method is employed to
adaptively merge the output features Y1 and Y2 from the upper and lower branches.
Initially, global average pooling is applied to gather global spatial information with channel
statistics, as shown in Equation (10):

Sm = P(Ym) =
1

H × W ∑H
i=1 ∑W

j=1 Yc(i, j) (10)

Here, P represents the pooling operation (m = 1, 2). Next, the upper and lower global
channel descriptors, S1 and S2, are stacked together, and a channel-wise soft attention
operation is applied to generate a feature importance vector, as shown in Equation (11):

β1 = es1
es1+es2 ,

β2 = es2
es1+es2 ,

β1 + β2 = 1.
(11)

Finally, guided by the feature importance vector, the channel-refined feature Y can
be obtained by merging the upper feature Y1 and the lower feature Y2 in a channel-wise
partitioning manner, as expressed in Equation (12):

Y = β1Y1 + β2Y2 (12)

In summary, we employ the channel refinement unit (CRU) using a split–transform–
merge strategy to further reduce channel-wise redundancy in spatially refined feature maps.
Additionally, CRU extracts rich representative features through lightweight convolutional
operations while mitigating redundant features through simple operations and a feature
reuse scheme.

In conclusion, by sequentially arranging the spatial refinement unit (SRU) and channel
refinement unit (CRU), an efficient and interchangeable standard convolution operation
has been established.

3.3. Multi-Path and Attention-Guided Fusion Module

The two paths of the MCAG, as illustrated in Figure 1, include the following:
The detail path (DP) is the first path, which maintains a high resolution in earlier

stages and selectively learns high-level semantic information, guided by the main path. It
focuses on extracting detailed features.

The boundary path (BP) is the second path, which sums with the main path at each
stage, incorporating further fusion of global information and attention to boundary details.
Both paths take the output from the first stage of the main path as input and consistently
maintain the image resolution, aiming to fuse features at larger scales while preserving
fine details.
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The two paths collectively undergo three stages, each consisting of stacked modules
denoted as block_DP and block_BP, which are composed of convolutions followed by batch
normalization and rectified linear unit (ReLU) activation, as depicted in Figures 3 and 4.
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Figure 4. The structure diagram of block_BP.

Each stage of DP consists of k = 2 block_DP modules. The initial input is the output
of the first stage of the main path (MP), and subsequently, the number of channels in
the DP remains unchanged (except for the output channels in the fourth stage, which
match those of the main path). The resolution is also consistently maintained, which better
preserves the details. In each stage, the DP learns higher-level semantic information under
the guidance of the main path to compensate for the loss of advanced information due to
the lower number of channels and smaller convolutional kernels. In block_DP, the upper
path employs a convolutional kernel with a size of 3 and a stride of 1, while the lower path
uses a kernel of size 1. The primary purpose of the lower path is to adjust the number of
channels (in the fourth stage) and add these to the original information from the upper path,
preserving the original features as much as possible for subsequent stages. Thus, block_DP
efficiently extracts features from high-resolution images with lower parameters (fewer
channels and smaller convolutional kernels) and selectively learns advanced semantic
information under the guidance of the main path.

Each stage of the BP consists of k = 1 block_BP module. Similar to the DP, the initial
input for the BP is the output of the first stage of the main path (MP). The number of
channels and resolution remain consistent in the second and third stages, and in the last
stage, the number of channels matches that of the main path’s fourth stage, maintaining a
lower parameter count (fewer channels and smaller convolutional kernels). In contrast to
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the DP, the upper path’s first convolution block in block_BP doubles the feature channel
count using a 1 × 1 convolutional kernel. The second convolutional block extracts features
from the high channel count, allowing the model to better capture details and patterns
in the input data, learn more types of features and improve the model’s generalization
ability to different samples, enhancing its robustness. The kernel size for the second
block is 3 × 3. The third convolutional block then restores the channel count to its initial
value using a 1 × 1 convolutional kernel. The lower path’s convolutional block, similar
to block_DP, primarily adjusts the number of channels (in the fourth stage) and adds
the original information from the upper path. Therefore, the BP, composed of block_BP,
effectively utilizes lower parameters (fewer channels and smaller convolutional kernels),
relies on guidance from the main path, pays more attention to boundary information, and
under the guidance of the main path, further integrates global information on a larger scale.
At the end of each stage, the main path guides and provides information to both pathways.

For the DP, due to its low number of stacked convolutional layers and small kernel
sizes, the main path guides its feature extraction at high resolution, allowing it to selectively
learn higher-level semantics. Specifically, the main path’s output from each stage starting
from stage two is combined with the corresponding output of the DP and then fed into the
AGFM module (attention-guided fusion module). The schematic diagram of this module
is shown in Figure 5, where “dp” represents the features from the DP; “mp” represents
the features from the main path; “S” represents the combination operation of sum and
Sigmoid; ⊗ denotes element-wise multiplication, which is the weight allocation; and ⊕
denotes element-wise summation. The main path’s high-level semantic information is
selectively incorporated into the pathway, and the DP retains a significant amount of
high-quality detailed information that ultimately enhances the segmentation results. The
lateral connections used in [26–28] strengthen the information flow between feature maps
of different scales, improving the model’s representational capacity. In the AGFM, the
outputs of the DP and the main path, both passed through convolutional blocks and
channel expansion, are adjusted to the same resolution. Denoting these as dp and mp, the
output of the Sigmoid function can be expressed as Equation (13):

S = Sigmoid(sum(dp ⊗ mp)) (13)

where the computed result S indicates the likelihood of these two pixels belonging to
the same object class, sum represents the summation along the channel dimension and ⊗
denotes element-wise multiplication. When S is higher, there is reason to trust the results
from the main path since it provides rich and accurate semantics, and vice versa. After
obtaining S, we adjust the number of channels and resolution of the main path to match
those of the DP and perform the final addition. Thus, the output of the AGFM module can
be written as Equation (14):

OutAGFM = S ⊗ mp + (1 − S)⊗ dp (14)

Therefore, in the case of deeper feature extraction, the main path can leverage higher
semantic information to guide the DP in selectively learning better semantic information
while preserving detailed information, ultimately optimizing the segmentation results.

For the BP, at the end of each stage, the output of the main path is directly added to the
output of the BP after adjusting the number of channels and the resolution. This integrates
global information and focuses on boundary information using the output features of the
main path (MP).
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To construct a better global scene prior, PSPNet introduces a pyramid pooling module
(PPM), concatenating multi-scale pooled representations before the convolution layers to
capture both local and global contexts. In MCAG, after the last stage of the main path, the
output is fed into a parallel fusion module (PFM) to prepare for the fusion of the final three
paths. This parallel fusion module enhances the context embedding capability, forming
a fusion of local and global contexts to analyze global correlations. PFM processes the
output of the last stage of the main path in parallel through four pooling paths, with kernel
sizes of 5, 9 and 17 for the first three paths and global average pooling for the last path. It
then passes through BN and ReLU layers, followed by a convolutional layer that doubles
the number of channels and concatenates the results. Finally, a residual connection is
established with the input features of PFM to obtain the final output of PFM, as expressed
in Equations (15) and (16):

P =
3

∑
i=0

Poolingi(input) (15)

OutPFM = input + Cat(Conv(P)) (16)

where input represents the input to the PFM; Poolingi represents the four pooling paths;
Conv represents the combined operation of convolution, normalization and activation;
and Cat denotes the concatenation operation. This output is further fused with the final
results of the two paths to obtain the output of the decoder. The fusion is performed using
the AGFM module, with the only difference being the fusion of three paths, as illustrated
in Figure 6.

Here, dp represents the features from the DP, mp represents the features from the
main path and bp represents the features from the BP. S denotes the Sigmoid operation,
⊗ represents element-wise multiplication, indicating weight allocation, and ⊕ represents
element-wise summation. The BP’s boundary spatial information can better optimize the
contextual information from the main path and the spatial details from the DP. In this case,
the BP is employed to guide the fusion of the DP and the main path. It is important to
note that the main path is accurate in contextual semantics but loses too much spatial and
geometric detail, especially for boundary regions and small objects. Since the BP is better
at capturing boundary spatial details, it forces the model to trust the BP more concerning
details and use the contextual features from the main path to fill in other regions. The
computation of the AGFM in this context can be expressed as Equations (17) and (18):

S = Sigmoid(bp) (17)
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i1 = Conv((1 − S)⊗ mp),
i2 = Conv(S ⊗ dp),
OutAGFM = Down(i1 + i2).

(18)

where Down represents the downsampled features, ⊗ denotes element-wise multiplication,
Conv represents the convolution operation and mp, dp, bp represent the features from the
main path, BP and DP, respectively, which are input to the AGFM.
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3.4. Architecture of the Decoder

The encoders of previous segmentation models [5,6,20] are often pre-trained on the
ImageNet dataset. To capture high-level semantics, it is common to employ a decoder on
top of the encoder. This paper aggregates features from the last three stages and utilizes
the lightweight Hamburger model [9] for further modeling of the global context. The
Hamburger model utilizes optimization methods to solve the matrix factorization prob-
lem, decomposes the input representation into submatrices and reconstructs the low-rank
embedding. When carefully handling the gradients backpropagated by matrix factoriza-
tion, the Hamburger structure with different matrix factorizations performs better than
self-attention in the process of modeling the global context module. Combining the pow-
erful convolutional attention encoder from the article, the use of a lightweight decoder
contributes to improved computational efficiency, as depicted in Figure 7. Here, Stagei
represents the outputs from the four stages of the main path (i = 1, 2, 3, 4). The encoder part
concatenates the results from the second, third and fourth stages of the main path. It further
incorporates a lightweight Hamburger module for additional global context modeling.

The concatenated features then pass through a simple convolution block (convolution,
normalization, activation) before being fed into a straightforward segmentation head to
obtain the final decoder output. The formulation is represented as (19) and (20):

f = Ham(Cat(S2, S3, S4)) (19)

Out = MLP(Conv( f )) (20)

where S2, S3, S4 represent the outputs of the main path in the second, third and fourth stages,
respectively. Here, we do not aggregate the features of stage 1 as well, because the features of
stage 1 contain too much low-level information, and the information fusion of the next three
stages is necessary. The operation Cat denotes concatenation; Ham represents the lightweight
Hamburger module; Conv is a convolution block comprising convolution, normalization and
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activation; and MLP signifies the fully connected layer of the segmentation head. With these
components, we obtain the final output of MCAG.
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4. Experiment
4.1. Datasets and Experimental Setup

Our network is evaluated on three popular datasets: ADE20K [29], Cityscapes [30]
and COCO-Stuff [31]. ImageNet [32] stands out as the most renowned image classification
dataset, featuring 1000 categories. Following a common practice in segmentation methods,
this study uses ImageNet to pre-train the main path (MP) of the MCAG encoder.

ADE20K [29] is a challenging dataset with 150 semantic classes, consisting of 20,210/2000/
3352 images for training, validation and testing sets, respectively. Cityscapes [30] focuses
on urban scenes, presenting 5000 high-resolution images with 19 categories. The dataset is
divided into 2975/500/1525 images for training, validation and testing. COCO-Stuff [31] is
another challenging dataset, encompassing a total of 172 semantic classes and 164,000 images.

The experiments in this paper were conducted using PyTorch [33] and the mmsegmen-
tation library [34]. The main route of the segmentation model’s encoder was pretrained on
the ImageNet-1K dataset [32]. The mean intersection over union (mIoU) was employed as
the segmentation evaluation metric. All models were trained on nodes equipped with two
RTX 3090 GPUs.

For the pre-training on ImageNet, the data augmentation methods and training set-
tings were consistent with DeiT [35]. Common data augmentation techniques, including
random horizontal flipping, random scaling (from 0.5 to 2) and random cropping, are
applied for segmentation experiments. The batch size for the Cityscapes dataset is set
to 4, while for the other datasets, it is set to 8. The AdamW optimizer [36] is used for
training. The initial learning rate is set to 0.00006, and a multi-learning rate decay strategy
is employed. The ADE20K model is trained for 160K iterations, and the Cityscapes and
COCO-Stuff models are trained for 80K iterations.

4.2. Comparison to State-of-the-Art and Analysis

In this section, our model is compared with the state-of-the-art semantic segmen-
tation methods, including SERT [5], SegNext [7], FLANet [37], etc., on three datasets
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(ADE20K [29], Cityscapes [30], and COCO-Stuff [31]) to demonstrate the superiority of the
proposed approach. The multi-scale flipping testing strategy (MS) is employed during the
comparison process.

On ADE20K, we compare MCAG with state-of-the-art semantic segmentation models.
As shown in Table 1, MCAG achieves a nearly 1.0% higher mIoU compared to the state-of-
the-art CNN-based model SegNext-B [7], and it outperforms the fully attentional network
FLANet [37] by 0.7% in mIoU. Additionally, MCAG achieves better mIoU values than the
Transformer-based models MPViT [22], FASeg [38] and TSG [39] with fewer parameters.
FASeg introduces a simple and effective query design for semantic segmentation called
dynamic focus-aware position query (DFPQ), which dynamically generates position queries
based on the cross-attention scores of the previous decoder block and the position encoding
of corresponding image features. TSG, on the other hand, utilizes internal attributes of the
attention map in Transformer for multi-scale feature selection in semantic segmentation.
TSG introduces TSGE and TSGD in the encoder and decoder of the Transformer, respectively,
to enhance the semantic segment localization performance. These results demonstrate that
MCAG achieves competitive segmentation performance while introducing a multi-path
self-attention mechanism at a lower computational cost than Transformer models. The
asterisk (*) denotes reproduced results.

Table 1. Comparison with SOTA on ADE20K. The asterisk (*) denotes reproduced results.

Method Params (M) Backbone mIoU (%)

Segformer-B0 [6] 3.8 MiT 38.0
MaskFormer [40] * 42 Swin 46.5
Segformer-B1 [6] 13.7 MiT 43.1
HRFormer-S [14] 13.5 - 45.1
HRFormer-B [14] * 56.2 - 45.9
AFFormer-base [41] 3.0 - 41.8
SegNext-B [7] * 27.6 MSCAN-B 46.72
SETR-MLA-DeiT [5] 92.59 T-Base 46.15
StructToken-PWE [42] * 38 ViT-S/16 46.6
FLANet [37] - HRNetW48 46.99
MPViT [22] * 52 MPViT-S 46.52
FASeg [38] * 51 R50 47.5
TSG [39] 72 Swin-T 47.5
MPCNet [43] - R101 38.04
MCAG (OURS) 36 MSCAN-B 47.7

On Cityscapes, we compare MCAG with state-of-the-art semantic segmentation mod-
els. As shown in Table 2, MCAG achieves a 0.51% higher mIoU compared to Segnext-B [7]
on Cityscapes, surpasses FLANet [37] by 2.81% in mIoU and outperforms the Transformer-
based models FASeg [38] and TSG [39] by 4.01% and 6.71% in mIoU, respectively. Moreover,
MCAG achieves a 1.91% higher mIoU than PIDNet-L [44] with a lower parameter count.
Additionally, StructToken [42] introduces a human-centric perspective to semantic segmen-
tation, proposing the StructToken with structural prior (StructToken-PWE) model, which
generates a coarse mask for each class based on structural priors and then progressively
refines the mask. MCAG outperforms StructToken-PWE by 0.44% in mIoU. These results
demonstrate that the multiple pathways in MCAG used for global information fusion and
the handling of boundary information and details are highly effective. With the guidance
from the main pathway, MCAG maintains excellent segmentation performance at a signifi-
cantly lower computational cost than Transformer-based models. The asterisk (*) denotes
reproduced results.
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Table 2. Comparison with SOTA on Cityscapes. The asterisk (*) denotes reproduced results.

Method Params (M) Backbone mIoU (%)

Segformer-B0 [6] 3.8 MiT 78.1
SETR [5] 311 ViT-L 79.3
MagNet [45] - - 67.57
HyperSeg-S [46] 10.2 EfficientNet-B1 78.1
AFFormer-base [41] 3.0 - 78.7
HRFormer-S [14] 13.5 - 81.0
SegNext-B [7] * 27.6 MSCAN-B 82.0
FLANet [37] - HRNetW48 79.7
FASeg [38] * 67 R50 78.5
StructToken-PWE [42] * 364 ViT-L/16 81.2
PIDNet-L [44] 36.9 - 80.6
MPCNet [43] - R101 78.24
LightSeg [47] 2.44 - 76.8
TSG [39] 72 Swin-T 75.8
MCAG (OURS) 36 MSCAN-B 82.51

On COCO-Stuff, as shown in Table 3, MCAG achieves a 0.9% improvement in mIoU
compared with SERT. The asterisk (*) denotes reproduced results.

Table 3. Comparison with SOTA on Coco-Stuff. The asterisk (*) denotes reproduced results.

Method Param (M) Backbone mIoU (%)

HRFormer-B [14] * 56.2 - 43.3
HRFormer-S [14] 13.5 - 38.9
AFFormer-base [41] 3.0 - 35.1
SegNext-B [7] * 27.6 MSCAN-B 43.5
SETR [5] * 311 ViT-L 42.7
MCAG (OURS) 36 MSCAN-B 43.6

Additionally, to highlight the good performance of MCAG concerning details and
boundaries, we compare the segmentation results (mIoU %) of MCAG and SegNext on
some small objects in ADE20K, including Mirror, Seat, Lamp, Box, Book, Pillow and Oven.
Due to spatial limitations in this paper, the remaining results are not shown, and the results
are presented in Table 4. The asterisk (*) denotes reproduced results. We believe that the
semantic segmentation results for small objects can demonstrate the role of our multi-path
structure to some extent. It can be observed that MCAG demonstrates its advantage in
segmenting small objects. This is attributed to the guidance provided by the main route to
the multiple paths in high-level semantics, as well as the emphasis on detail extraction by
the two paths at high resolution.

Table 4. Comparison of specific objects with Segnext on ADE20K. The asterisk (*) denotes repro-
duced results.

Method Mirror Seat Lamp Box Book Pillow Oven

SegNext-B [7] * 65.29 56.70 60.34 25.90 45.09 65.41 53.10
MCAG (OURS) 65.99 58.09 62.45 27.39 46.93 69.63 55.34

4.3. Visualization

In Figure 8, the visual results of MCAG on the Cityscapes dataset are presented. The
first column displays the input images, the second column represents the corresponding
ground truth and the third column shows the segmentation results of the MCAG method,
with black rectangular regions indicating detailed displays.
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It can be observed that MCAG is more effective at identifying both boundary details
and overall information. In the first set of images, MCAG successfully recognizes the
railing in front of the central part of the bicycle and the seat of the bicycle, as well as
pedestrians next to the utility pole. In the second set of images, above the cyclist, MCAG
adeptly identifies the less noticeable lamp posts, and effectively segments the two seated
individuals in the center of the image from the background bushes. In the third set of
images, MCAG achieves satisfactory results in segmenting pedestrians at the end of the
road, paying particular attention to details. In the fourth set of images, the model performs
outstanding segmentation between the pedestrians in front of the car and the car itself,
with clear distinction between the legs of the pedestrians and the road. These remarkable
results stem from the robust long-range dependency-parsing ability of MCAG’s main path,
the subsidiary paths’ exceptional focus on image details at high resolutions and the final
fusion mechanism’s appropriate handling of features extracted at multiple scales.

4.4. Ablation Experiment

An ablation study is conducted on the ADE20K dataset, investigating the impact of
different modules on MCAG. “Multi-path” refers to the multi-path mechanism, excluding
the main path; “Attention-guided” indicates the utilization of the AGFM (attention-guided
fusion module); and “Parallel Aggregation” signifies the use of the PFM (parallel fusion
module). The results are presented in Table 5.

Table 5. Ablation experiments of each module. ✓ indicates that the module is used.

Multiple Paths Attention Guidance Parallel Aggregation mIoU (%)

✓ ✓ ✓ 47.70
✓ ✓ 47.55

✓ 46.94
✓ ✓ 47.30

46.72
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Among the modules, “Multiple Paths without Attention Guidance” represents that the
guidance of the main route to the DP and the guidance to the BP are simply added together.
It can be observed that each component contributes to the model’s final performance. When
using both multiple paths and attention guidance, the mIoU is 0.84% higher than having
only one main route. If there is no attention guidance mechanism and a simple addition of
main route and branch results is performed, the result is lower by 0.4%. These two findings
indicate that the proposed multi-path and attention guidance from the main route are both
effective and necessary.

5. Discussion and Conclusions

In this paper, we propose a multi-path semantic segmentation network with convo-
lutional attention guidance (dubbed MCAG). It has a multi-path architecture and feature
guidance, which forces the model to focus on the object boundaries and details. It also
explores multi-scale convolutional features through spatial attention, and captures both
local and global contexts in spatial and channel dimensions in an adaptive manner.

The results of the ablation experiments show that the role of each module is indis-
pensable and that convolutional attention provides powerful global feature extraction
capabilities with low computational complexity. In the traditional convolution model, the
details of small objects and the features of boundaries are easily lost during multi-layer con-
volutional extraction, and they are difficult to recover. So, the multiple paths are particularly
important for the feature extraction of details and boundaries, which can be reflected in
Table 4 showing the semantic segmentation results of small objects, thanks to the extraction
ability of local features of our multi-path approach. Finally, a good fusion mechanism is
also necessary. This paper does not use the traditional simple fusion mechanism; a PFM
can better fuse global and local information. The experimental results indicate that MCAG
surpasses the performance of state-of-the-art Transformer-based methods to a certain ex-
tent with a lower parameter count. The study suggests that CNN-based approaches can
still outperform Transformer-based methods. It is hoped that this paper will encourage
researchers to further explore the potential of CNNs.

Author Contributions: Conceptualization, C.F.; Investigation, C.F.; Methodology, C.F.; Project admin-
istration, S.H. and Y.Z.; Resources, Y.Z.; Software, C.F.; Supervision, S.H. and Y.Z.; Validation, C.F.;
Visualization, C.F.; Writing—original draft, C.F.; Writing—review and editing, Y.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
2. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets

and fully connected crfs. arXiv 2014, arXiv:1412.7062.
3. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
4. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018;
pp. 801–818.

5. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a equence-to-sequence perspective with Transformers. In Proceedings of the 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.



Appl. Sci. 2024, 14, 2024 16 of 17

6. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. Segformer: Simple and effificient design for semantic
segmentation with Transformers. Adv. Neural Inform. Process. Syst. 2021, 34, 12077–12090.

7. Guo, M.H.; Lu, C.Z.; Hou, Q.; Liu, Z.; Cheng, M.M.; Hu, S.M. Segnext: Rethinking convolutional attention design for semantic
segmentation. Adv. Neural Inform. Process. Syst. 2022, 35, 1140–1156.

8. Guo, M.H.; Lu, C.Z.; Liu, Z.N.; Cheng, M.M.; Hu, S.M. Visual attention network. arXiv 2022, arXiv:2202.09741. [CrossRef]
9. Geng, Z.; Guo, M.H.; Chen, H.; Li, X.; Wei, K.; Lin, Z. Is attention better than matrix decomposition? In Proceedings of the 2021

International Conference on Learning Representations, Virtual, 3–7 May 2021.
10. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]
11. Bertasius, G.; Shi, J.; Torresani, L. Semantic segmentation with boundary neural fifields. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3602–3610.
12. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.
13. Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans.

Pattern Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef] [PubMed]
14. Yuan, Y.; Fu, R.; Huang, L.; Lin, W.; Zhang, C.; Chen, X.; Wang, J. Hrformer: High-resolution vision Transformer for dense predict.

Adv. Neural Inform. Process. Syst. 2021, 34, 7281–7293.
15. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for semantic segmentation. In Proceedings of the 2021

IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021;
pp. 7262–7272.

16. Ranftl, R.; Bochkovskiy, A.; Koltun, V. Vision Transformers for dense prediction. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 12179–12188.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

18. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

19. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

20. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

21. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 603–612.

22. Lee, Y.; Kim, J.; Willette, J.; Huang, S.J. Mpvit: Multi-path vision Transformer for dense predtion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 7287–7296.

23. Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking bisenet for real-time semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9716–9725.

24. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; pp. 448–456.

25. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; Volume 5, pp. 510–519.

26. Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes.
arXiv 2021, arXiv:2101.06085.
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