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Abstract: Recent studies have underscored the potential elevation of Advanced Oxidation Protein
Products (AOPP) and uric acid following myocardial infarction, suggesting their involvement in
the development and progression of coronary artery disease and potentially influencing patient
outcomes. This study focuses explicitly on examining uric acid and AOPP in the same patients to
address the research gap in these biomarkers’ interplay. Recognizing the dual character of uric acid
as both an antioxidant and a pro-oxidant, this study delves into its complex biological implications.
An analysis was conducted on 40 patients who had experienced myocardial infarction. AOPP levels
were quantified using absorbance at 340 nm. Results demonstrated significantly increased AOPP
levels in myocardial infarction patients compared to healthy controls, especially in those with high
serum uric acid. The serum uric acid and AOPP relationship exhibits a J-shaped curve, indicating a
complex, multifactorial interaction. These findings offer new insights into the intricate relationship
between serum uric acid and AOPP in myocardial infarction patients, underscoring the significance
of these biomarkers in enhancing our understanding of clinical outcomes and informing targeted
management strategies for coronary artery disease.

Keywords: uric acid; cardiovascular diseases; myocardial infarction; advanced oxidation protein
products; reactive oxygen species

1. Introduction

Oxidative stress (OS) is defined as a disruption of the equilibrium between the gen-
eration of free radicals and the activity of antioxidant systems [1,2]. In a pathological
state, many activities of the organism are disturbed, which influences the level of antiox-
idants, making it difficult to detect the causes of OS. A lot of research indicates elevated
free radical production in many diseases [3–5]. Advanced oxidation protein products
(AOPP) are a marker of oxidative stress first detected in the plasma of chronic uremic
patients [3]. AOPP originates from reactions between free radicals, chlorinated oxidants,
and plasma proteins [6], mainly albumin [7]. They can either escalate the OS or reactive
oxygen species (ROS) generation [7–9]. AOPP is also associated with coronary artery
disease (CAD) [10], atherosclerosis [11], and comorbidities, such as diabetes mellitus (DM),
hypertension, metabolic syndrome [12], and lipid disorders (hypercholesterolemia and
hypertriglyceridemia) [13]. The relationship between the level of AOPP and monocyte
activation markers suggests that the oxidized proteins can contribute to the inflammatory
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process. An increased inflammatory response also causes an increased production of free
radicals, which enhance OS and stimulate the production of AOPP. However, AOPP may
be a valuable tool for measuring protein oxidative damage and a general level of OS.

Uric acid is a commonly known antioxidant detectable in human serum plasma [14,15];
however, some conditions can provoke and escalate OS [16]. This organic compound is
the end product of purine metabolism [17], mainly regulated by xanthine oxidoreductase,
converting hypoxanthine to xanthine and xanthine to uric acid. Many factors could increase
serum uric acid levels: diet (alcohol consumption, meat, high fructose intake) [18], uncom-
mon genetic disorders connected with enzymatic degradation pathways [16,18], metabolic
syndrome, DM, hypertension, women after menopause, race, renal diseases, inflammatory
process, diseases with high cell turnover, some drugs [19], obesity, and ischemia [16–18].
Evidence shows that the overproduction of uric acid by xanthine oxidase produces exces-
sive free radicals, such as ROS [20,21]. The main ROS generators are NADPH oxidase,
xanthine oxidase, mitochondrial enzymes, myeloperoxidase (MPO), lipoxygenase, and
uncoupled nitric oxide (NO) synthase [22]. Myocardial infarction (MI), as well as post-
infarction, is one of the most urgent situations in the health system, and needs follow-up
due to the possibility of developing heart failure (HF) [23]. In this context, seeking thera-
peutic markers and links that can prevent or help in the control and management of the
patient is of great importance. The pathophysiological interaction between acute coronary
syndromes (ACS), including MI, and the appearance of inflammatory cells that produce
oxygen radicals, proteases, and proinflammatory cytokines leading to endothelial damage
and plaque rupture was proved [24,25]. The increase in OS likely reflects the effect of the
accumulation of inflammatory cells in unstable atherosclerotic plaques. Moreover, free
radicals are generated due to acidosis, decreased blood flow to heart muscle, and sodium
and calcium pump dysfunction. Thus, the status of antioxidant defense systems in patients
after MI could provide potentially relevant prognostic information [26]. This, however,
needs to be verified. Still, there are no tests to measure OS in individual patients, nor are
there effective methods to counteract these processes. The correct interpretation of markers
of OS may be the basis for assessing prognosis and making appropriate treatment decisions.

This study aimed to evaluate the interplay of uric acid and AOPP in patients after MI,
and verify the correlation between uric acid and AOPP as the markers of OS in patients
with MI.

2. Materials and Methods
2.1. Study Design and Population

The study group consisted of 40 patients diagnosed with myocardial infarction hos-
pitalized at the Department of Cardiology and Internal Medicine at University Hospital
No. 1 in Bydgoszcz. Upon admission, all patients underwent a comprehensive series of
basic laboratory tests to assess the progression of inflammation, cardiac function, lipid
profiles, and protein levels, following the hospital’s established standard procedures. To
ensure the accuracy and relevance of our findings, blood samples were collected explicitly
within the first 24 h post-admission, a critical period for assessing the acute phase of MI
and its impact on biochemical markers. This timing was meticulously chosen to capture
the immediate physiological responses and biochemical changes triggered by the event.
During this pivotal phase, a portion of the blood samples were designated for the analysis
of AOPP and uric acid, allowing for a comprehensive evaluation of oxidative stress and its
correlation with the pathophysiological processes of MI. Patients with any stage of chronic
kidney disease (CKD) were excluded from the study to mitigate potential confounding
effects on serum uric acid and AOPP levels, as CKD significantly influences the body’s
ability to process and eliminate these compounds. Similarly, individuals presenting with
abnormal creatinine levels were also excluded, given that creatinine is a crucial marker
of renal function, and its abnormal levels could indicate underlying renal impairment
not previously classified as CKD. This exclusion criterion was essential for ensuring the
homogeneity of the study population and the validity of the association between uric acid,
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AOPP levels, and myocardial infarction outcomes. The complete list of inclusion/exclusion
criteria is presented in Table 1.

Table 1. A list of inclusion and exclusion criteria for participation in the study.

Inclusion Criteria Exclusion Criteria

Men or women Diabetes mellitus
Age 18–80 years Obesity (BMI > 30)

Provision of informed consent before any
study-specific procedures Pregnancy

Diagnosis of Myocardial Infarction Active bleeding
History of moderate or severe hepatic

impairment
History of major surgery or severe trauma

(within three months)
Kidney disease requiring dialysis

Respiratory failure
History of severe chronic heart failure (NYHA

class III or IV)
Taking drugs increasing uric acid production:

diuretics, antitubercular drugs,
immunosuppressant agents, testosterone,

xylitol, nicotinic acid, and lactate infusion.
BMI: body mass index; NYHA: New York Heart Association Classification.

The control group consisted of 30 healthy volunteers who routinely donated blood
at the local blood donation center (Bydgoszcz, Poland). A licensed physician rigorously
assessed the determination of a participant’s health status. Based on these comprehensive
health evaluations, the decision to forward a patient’s blood sample for inclusion in our
study was made solely by the assessing physician. We established a control group without
coexisting diseases to examine the relationship between uric acid and AOPP. This decision
aimed to minimize confounding variables, such as age-related changes and unrelated
health conditions that could influence uric acid and AOPP levels, potentially masking the
specific interaction we sought to examine. The protocol of the study was approved by the
Ethics Committee of the Nicolaus Copernicus University in Toruń, Collegium Medicum
in Bydgoszcz (approval number KB 406/2010). Each patient provided written informed
consent to participate in the study before recruitment.

2.2. Methods

Blood samples were added to standard sterile polystyrene tubes containing ethylene-
diaminetetraacetic acid (EDTA) and centrifuged at 4000 rpm for 5 min. Plasma was stored
at a temperature of −20 ◦C until AOPP was measured. All samples were assayed on the
same day. A spectrophotometer UV-Vis JASCO V-550 was used to measure absorbance.
The concentration of AOPP was determined by measuring absorbance at 340 nm according
to the modified method described for the first time by Witko-Sarsat [3]. This method has
been described previously [27]. Figure 1 shows the method of determining the AOPP
concentration. Briefly, the reactant mixture for the AOPP assay contains 1.875 mL of 0.2 M
citric acid and 0.025 mL of 1.16 M potassium iodide. Then, 1.9 mL of this mixture was
added to 100 µL of the test sample, and after 30 min, the absorbance was recorded. The
results were expressed as chloramine T equivalents and divided by the level of proteins.
Compared to the original method, citric acid was used instead of acetic acid. This modified
method is characterized by excellent stability over time.
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Figure 1. Method of determination of the advanced oxidation protein products concentration;
A: Absorbance; RM: Reactant mixture; P: Plasma; PLP: protein level in plasma.

The Benecheck PLUS Multi Monitoring Device measured serum uric acid (SUA)
for both the healthy group and post-myocardial infarction patients. Our study aimed
to investigate the potential relationship between uric acid and AOPP among patients
experiencing MI. Grounded in the hypothesis that varying serum uric acid levels could
differentially correlate with oxidative stress, we strategically categorized MI patients based
on their serum uric acid concentrations. To conduct a nuanced analysis, patients were
divided into two groups: those with serum uric acid levels greater than 8 mg/dL and
those with levels less than 8 mg/dL. This categorization criterion was determined by
reviewing the existing literature and our preliminary observations, which suggested a
significant shift in the relationship between uric acid levels and AOPP beyond the 8 mg/dL
threshold. The threshold of 8 mg/dL was specifically chosen as it is generally recognized
as the upper limit of normal, with values exceeding this point considered indicative of
hyperuricemia, a condition associated with increased risk for various pathological states,
including cardiovascular diseases.

2.3. Statistical Analysis

In the study, the normality of data was initially assessed using the Shapiro–Wilk test.
For variables that demonstrated a normal distribution (indicated by Shapiro–Wilk p > 0.05),
students’ t-tests were applied to compare means. Conversely, the Wilcoxon rank sum test
was utilized for median comparisons for variables not adhering to a normal distribution
(Shapiro–Wilk p ≤ 0.05). Additionally, regression analysis was conducted, employing
either the Pearson correlation coefficient or Spearman’s rank correlation, depending on the
normality of the data.

3. Results
3.1. Population Characteristics

The place of recruitment of patients was the Department of Cardiology and Internal
Medicine, Antoni Jurasz University Hospital No. 1 in Bydgoszcz, Poland. Baseline charac-
teristics are presented in the table below (Table 2). There were no significant differences in
blood test results between MI patients with elevated and normal uric acid levels. It can
be seen that parameters related to myocardial damage, such as troponin I (5.04 ± 7.505)
and CK-MB (28.23 ± 20.917), are elevated in these patients. No correlation was observed
between uric acid levels, AOPP and CRP, or troponins and CK-MB in patients with MI.
Still, patients in the acute phase of infarction were not recruited.

The control group comprised 30 donors from Bydgoszcz Regional Blood Donation and
Blood Treatment Centre. The baseline characteristics of the control group are as follows:
age 45.33 ± 6.348, with 63% being male and 37% being female.
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Table 2. The baseline characteristics of the study group included patients with post-myocardial infarction.

Characteristic Mean ± SD Reference Values

Age 69.36 ± 12.175 not applicable
Gender (male) 60% not applicable

Troponin I 5.04 ± 7.505 <0.04 ng/mL
CK-MB 28.23 ± 20.917 <25 U/L

Total protein 6.49 ± 0.702 6–8 g/dL
CRP 30.85 ± 44.303 <5.00 mg/L

Cholesterol 204.09 ± 62.687 <190 mg/dL
LDL cholesterol 125.58 ± 48.677 <115 mg/dL
HDL cholesterol 45.12 ± 12.538 >40 mg/dL

Triglycerides 127.30 ± 108.171 <150 mg/dL
Data are presented as mean ± standard deviation. SD: standard deviation; CK-MB: creatine phosphokinase-MB;
CRP: C-reactive protein; LDL cholesterol: low-density lipoprotein; HDL cholesterol: high-density cholesterol.

3.2. AOPP Results

Figure 2 shows the values of AOPP for healthy people and patients with MI. Patients
with MI were divided into groups because of the concentration of uric acid. Blood sam-
ples from people after MI have higher levels of AOPP in comparison to healthy people
(0.696 ± 0.187 vs. 0.342 ± 0.048 µmol/g, p < 0.001), especially for samples with high
concentrations of serum uric acid (0.822 ± 0.223 µmol/g).
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Figure 2. Levels of advanced oxidation protein products for healthy people and patients after
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The values of AOPP in dependence on serum uric acid for healthy subjects and patients
with MI are shown in Figure 3A,B, respectively. Considering the normal distribution of
the data, Pearson’s correlation was employed for regression analysis to investigate these
relationships further. A weak negative correlation between AOPP and uric acid was found
in healthy people (r = −0.36, p = 0.05) and patients with MI with uric acid levels less than
8 mg/dL (r = −0.40, p = 0.083). For patients with MI with higher values of serum uric acid
(>8 mg/dL), a positive correlation was observed (r = 0.53, p = 0.012).
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Figure 3 also indicates that the relationship between AOPP and uric acid shows a
“J-shaped curve” in all uric acid ranges instead of a weak negative correlation for smaller
uric acid values and a strong positive correlation for higher values. The values of AOPP
in patients after MI were significantly higher than in healthy subjects and were associated
with the concentration of uric acid. A J-curve showing the relationship between uric acid
and AOPP obtained for people after an MI was observed. This observation may have
important clinical implications and will allow us to determine the valid value of uric acid.

4. Discussion

Our study elucidates the connection between uric acid levels and AOPP in patients
with MI, revealing significant insights into the oxidative stress mechanisms underlying
cardiovascular diseases. Notably, we observed that AOPP levels are elevated in MI patients
compared to healthy subjects, with a pronounced increase in individuals presenting high
concentrations of serum uric acid. However, the crux of our investigation extends beyond
comparing AOPP levels between healthy individuals and MI patients; it delves into the
intricate dynamics of the relationship between uric acid and AOPP. To precisely examine
the relationship between uric acid and AOPP, we established a control group of younger
individuals without coexisting diseases. This strategic decision aimed to minimize con-
founding variables, such as age-related changes and unrelated health conditions that could
influence uric acid and AOPP levels, potentially masking the specific interaction we sought
to examine. Studying the relationship between uric acid and AOPP in healthy individuals
is essential, as it could provide valuable data that will aid in interpreting results post-MI.
This methodological choice was informed by the need to establish a clear baseline for the
SUA-AOPP interaction in a relatively homogeneous group.

While it is well acknowledged that a subset of post-MI patients presents elevated uric
acid levels and AOPP due to the influence of coexisting diseases and other factors, these
increments are generally more pronounced as a direct result of the MI itself [28–30]. Nonethe-
less, we recognize the need for further investigation to substantiate this presumption and
differentiate the specific impacts of MI on uric acid and AOPP levels from those attributed
to coexisting conditions. To ensure the observed changes in uric acid were primarily
associated with MI rather than other health conditions or medication use, we diligently
strived to exclude patients with elevated uric acid due to pre-existing diseases or drug
intake. However, it is essential to acknowledge that despite our rigorous approach, the
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possibility remains that some illnesses influencing uric acid levels may have evaded de-
tection. Moreover, the challenge of identifying uric acid as an independent risk factor for
MI is compounded by the variety of confounding factors, such as hypertension, dyslipi-
demia, smoking, and alcohol consumption, which can all independently affect the risk and
outcomes of heart attacks [31,32]. This acknowledgment underscores the complexity of
disentangling the multifaceted influences on uric acid levels in the context of our study.

The relationship between uric acid levels and AOPP after MI appears to assume a
J-curve form (Figure 3B), which can be explained by the dual role of uric acid as both an
antioxidant and a pro-oxidant, depending on its concentration [33]. At the left side of the
J-curve, where uric acid levels are low, we often observe high AOPP levels. This reflects an
insufficient antioxidant defense due to the lower availability of uric acid. At physiological
levels, uric acid is a scavenger of free radicals, protecting tissues from oxidative damage.
Thus, its lower levels might lead to an inadequate response to the heightened oxidative
stress that typically follows MI, resulting in increased oxidative protein damage indicated
by elevated AOPP levels. Moving towards the bottom of the J-curve, where uric acid levels
are moderate, there tends to be a correlation with lower or middle AOPP levels. This part
of the curve suggests a balanced state where the antioxidant properties of uric acid are
optimally utilized. In this state, uric acid effectively neutralizes free radicals, reducing OS
and lowering AOPP levels. This balance might indicate better cellular functioning and an
optimal response to the post-MI oxidative challenge. However, as we ascend the right side
of the J-curve, characterized by high uric acid levels, we again observe an increase in AOPP
levels. In this situation, the excessive concentration of uric acid may shift its role from being
an antioxidant to a pro-oxidant. High uric acid levels can contribute to the production of
ROS, increasing protein damage, as reflected by higher AOPP levels [33,34]. Elevated uric
acid can induce inflammation and endothelial dysfunction, further contributing to the OS
and the subsequent increase in AOPP levels [35,36]. In summary, the J-curve relationship
between uric acid and AOPP post-MI reflects the complex balance between uric acid’s
protective and harmful effects in oxidative stress. This interplay is crucial in understanding
the pathophysiology of myocardial infarction and highlights the importance of maintaining
an optimal level of uric acid for the best post-MI outcomes.

Elevated range of AOPP may potentially identify a group of people at high risk of
death from cardiovascular causes [11]. However, recently, the relationship between the in-
crease of uric acid by diuretics and the risk of ischemic heart disease was demonstrated [37].
Inflammation and OS are established risk factors for the formation of atherosclerosis. Some
studies show that AOPP can accelerate the progression of atherosclerosis through OS and
inflammation [38] by inhibiting high-density lipoprotein (HDL) receptor scavenger receptor
class B type I-mediated HDL cholesterol reverse transport, leading to metabolic distur-
bances [39]. Some studies have suggested that AOPP can be involved in cardiovascular
diseases (CVD) [40,41]. AOPP are capable of triggering oxidative responses in neutrophils,
amplifying the generation of ROS, and facilitating the secretion of cytokines, which can con-
tribute to the acceleration of damage to endothelial cells [42,43]. It has also been observed
that AOPP can harm cardiomyocytes by increasing the expression of TRAF3 Interacting
Protein 2 (TRAF3IP2), which plays a crucial role in activating signaling pathways associated
with the apoptosis of heart cells [44].

According to our results in healthy people and patients after MI (serum uric
acid < 8 mg/dL), uric acid is an antioxidant, which is confirmed by low AOPP levels.
Ames et al. [45] proposed the antioxidant properties of uric acid; they demonstrated in
their in vitro experiments that uric acid is a potent scavenger of peroxyl radicals, hydroxyl
radicals, and singlet oxygen. Increasing the synthesis of serum uric acid is also associated
with forming oxygen free radicals, which damage the heart’s structure. The consequence
of growing the free radicals is an increase in damaged proteins. The rise in AOPP and
uric acid in studied MI patients may have clinical significance because the decrease in OS
or the serum uric acid level could probably improve the state of patients after MI. Uric
acid contributes to vascular damage through a series of complex interactions. Key among



Appl. Sci. 2024, 14, 1983 8 of 14

these is its role in promoting oxidative stress and inflammation within the vascular system.
This process involves the generation of ROS, which in turn triggers inflammation and
proliferation in both endothelial and vascular smooth muscle cells [46]. Previous studies
reported that exposure to serum uric acid in cells can lead to generation of ROS [47,48].
Uric acid can also impact vascular endothelial function significantly, largely through the
downregulation of nitric oxide (NO) production [49]. This reduction in NO, a critical
molecule for maintaining vascular health, can contribute to thrombosis [50].

A study designed by Omidvar et al. [51] shows that the role of uric acid depends on
its concentration by assessing the relation between serum uric acid level and in-hospital
and short-term mortality rates. Patients were divided into four groups according to gender
and serum uric acid level. The mortality rate of male patients with serum uric acid
concentrations of more than 7 mg/dL was 3.76 times higher than those with serum uric
acid concentrations below 7 mg/dL during the 30 days after admission. Results of this
study indicate that serum uric acid levels might have a prognostic role in in-hospital and
short-term mortality. In another study, Ndrepepa et al. [52] included 5124 patients with
ACS who underwent PCI (1629 with acute STEMI, 1332 with NSTEMI, and 2163 with
unstable angina). All patients were divided into quartiles according to serum uric acid
concentration. The primary endpoint was 1 year of mortality. Table 3 presents data on
this study.

Table 3. Summary of the studies: Ndrepepa et al. [52] and Ioachimescu et al. [53] (own preparation
of statistical data).

Variable
Ndrepepa et al. [52] Ioachimescu et al. [53]

Q 1 Q 2 Q 3 Q 4 Q 1 Q 2 Q 3 Q 4

Number of patients 1271 1261 1300 1292 755 802 751 790
UA level, [mg/dL] 1.3–5.3 5.3–6.3 6.3–7.5 7.5–18.4 0.4–4.9 5.0–5.9 6.0–7.0 7.1–13.9

Primary endpoint, [1 year
mortality] 80 deaths 77 deaths 72 deaths 221 deaths 20 deaths 28 deaths 36 deaths 71 deaths

Q: quartiles; UA: uric acid.

This study showed that elevated serum uric acid levels are an independent predictor of
1 year of mortality across the whole spectrum of patients with ACS. Ioachimescu et al. [53]
obtained similar results from their study, which created a database cohort study with
high-risk CVD patients (n = 3098). All patients were divided into quartiles according to
serum uric acid concentration (Table 3). In this study, the mortality rates were also the
highest in quartile 4. Moreover, they estimated that for every 1 mg/dL elevation in the
serum uric acid level, the risk of death from all causes increased by 39%. Recently, there
were established cut-off values for the optimal prediction of fatal MI and all-cause mortality
of 5.7 mg/dL and 4.7 mg/dL, respectively. As previously mentioned, a J-curve showing
the relationship between uric acid and AOPP was observed in individuals after an MI. This
observation may have significant clinical implications, enabling the determination of a
desirable value for uric acid in this context.

However, it is also necessary to consider other explanations. This part of the curve
may be associated with an effect of the increase in uric acid and AOPP, directly resulting
from severe MI. The intricate mechanisms involved in MI are not limited to direct cardiac
tissue damage, but also encompass a series of biochemical and cellular responses. MI,
commonly known as a heart attack, is characterized by the death of cardiac muscle cells,
primarily due to the occlusion of coronary arteries [54]. This blockage initiates a cascade
of events at the cellular level, central to the release of intracellular components from
necrotic cardiac cells [55]. A key component among these is extracellular mitochondrial
DNA (mtDNA), which is released significantly during cell death [56–59]. Due to its
structural similarity to bacterial DNA, mtDNA is adeptly recognized by the immune
system as a damage-associated molecular pattern (DAMP) [56,60]. This recognition triggers
immune responses designed to mitigate the injury, a vital process in the body’s attempt
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to cope with the damage. Neutrophils play a noteworthy role in the immune response as
early responders to damaged cardiac tissue in MI. Upon encountering extracellular DNA,
including mtDNA, neutrophils undergo NETosis, releasing neutrophil extracellular traps
(NETs) [61,62]. However, this also leads to the release of multiple cellular components,
including DNA and several enzymes. In this context, myeloperoxidase (MPO) is a heme-
containing enzyme abundantly found in the azurophilic granules of neutrophils [63]. MPO
is crucial for the oxidative burst, generating ROS [64,65]. During MI, excessive MPO release
can exacerbate oxidative stress within the cardiac tissue, leading to further cellular damage
and initiating inflammatory responses. This oxidative stress is intimately linked to forming
AOPP, primarily through the action of hypochlorous acid (HOCl) produced by MPO [66,67].
Our in vitro studies using human serum albumin (HSA) demonstrated that chloramine T, a
source of active chlorine substituting unstable HOCl, induces the formation of AOPP-HSA
in a dose-dependent exponential manner [68]. It is important to note that the breakdown of
extracellular DNA, particularly mitochondrial DNA (mtDNA) released during necrotic and
apoptotic cell processes and DNA liberated during the formation of NETs, can contribute
to an increase in serum uric acid levels [69]. While this correlation suggests an essential
intersection between cellular death processes and metabolic alterations after cardiac injury,
the exact mechanisms by which mtDNA from necrotic cells influences uric acid levels
are not fully understood. Continued research in this domain may reveal crucial insights
into the metabolic and cellular responses activated during myocardial infarction and other
forms of cardiac stress. One study has posited that uric acid may promote myocardial
infarction injury by activating specific inflammatory pathways [70]. Hence, the reactions
leading to AOPP formation and increased serum uric acid might establish a feedback loop,
intensifying cardiac damage and complicating the inflammatory response. In summary, the
relationship between extracellular DNA, serum uric acid, AOPP formation, and oxidative
stress appears to form a complex network of responses following cardiac injury. This
interconnectedness highlights the complexity of the immune response to cardiac tissue
damage and its implications for inflammation and oxidative stress in the context of MI, as
suggested by this hypothesis.

The increase in AOPP in this clinical situation may also be related to the mechanism
of cardiomyocyte ischemia. During myocardial ischemia, oxygen supply to the heart mus-
cle is significantly reduced or completely cut off due to blocked or narrowed coronary
arteries [71]. Without sufficient oxygen, cardiac myocytes switch from aerobic metabolism,
which utilizes oxygen, to anaerobic glycolysis, a less efficient form of energy production.
Hypoxia-inducible factors (HIFs) are crucial in cellular responses to low oxygen levels
during myocardial ischemia and reperfusion injury where HIF-1 alfa, a specific isoform
of HIF, exerts a notable influence on neutrophil function, significantly impacting inflam-
mation and tissue damage [72,73]. HIF-1 alfa’s role in modulating neutrophil function
is noteworthy because it can potentially prolong the lifespan of neutrophils by affecting
apoptosis (programmed cell death) and cell survival pathways [74]. This can lead to an
increased number of neutrophils in the affected tissue. Consequently, the elevated presence
of neutrophils, which are closely associated with inflammation and immune responses,
may contribute to the rise of AOPP. Some studies suggest that the accumulation of AOPP
may accelerate the progression of chronic kidney disease [75,76]. It has been shown that an
increase in plasma AOPP levels in the remnant kidney model leads to kidney damage. This
is manifested by increased tubular fibrosis and glomerulosclerosis, worsening proteinuria,
and overall deterioration of renal function [75]. Furthermore, one study suggests that
AOPP may disrupt the process of autophagy in renal tubular epithelial cells (RTECs) by
activating the PI3K/AKT/mTOR signaling pathway. This inhibition of autophagy plays a
significant role in AOPP-induced RTEC injury, potentially contributing to the deterioration
of kidney function and the development of kidney diseases [76]. Consequently, uric acid
levels may also rise due to impaired renal function, as the kidneys cannot excrete uric
acid effectively.
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Regrettably, our study did not reveal a significant correlation between uric acid or
AOPP and CRP or other markers of cardiac injury, namely C troponins and CK-MB, in
patients who have experienced an MI. This observation might stem from the distinct
kinetics of release into the bloodstream post-infarction exhibited by troponins and CK-MB,
which are established biomarkers for cardiac injury [77]. Their release patterns and the
temporal dynamics of their elevation may differ significantly from those of oxidative stress
markers, such as uric acid and AOPP. It is important to note that troponins and CK-MB are
primarily utilized to confirm the occurrence of myocardial infarction [78,79].

5. Conclusions

Our study elucidates a nuanced J-curve relationship between serum uric acid levels
and AOPP in the aftermath of myocardial infarction, underscoring the intricate interplay
between oxidative stress and cardiovascular pathology. The dual role of uric acid, as both a
protective antioxidant at physiological levels and a harmful pro-oxidant when elevated,
highlights the complexity of its impact on post-MI outcomes. The findings suggest that
both extremely low and high serum uric acid levels are associated with increased oxidative
protein damage, as reflected by AOPP levels, pointing towards the need for a balanced
uric acid level to mitigate post-MI oxidative stress. Future studies with larger cohorts and
more refined methodologies are essential to validate these findings, explore the mechanistic
pathways in greater depth, and assess the clinical applicability of modulating uric acid
levels in myocardial infarction management.
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Abbreviations

A absorbance
ACS acute coronary syndrome
AOPP advanced oxidation protein products
BMI Body mass index
CAD coronary artery disease
CHD coronary heart disease
CK-MB creatine phosphokinase-MB
CRP C-reactive protein
CVD cardiovascular diseases
DAMPs damage-associated molecular patterns
DM diabetes mellitus
DNA deoxyribonucleic acid
EDTA ethylenediaminetetraacetic acid
HDL high-density lipoprotein
HF heart failure
HIF hypoxia-inducible factors
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HIF-1 alfa hypoxia-inducible factors-1 alfa
HOCl hypochlorous acid
LDL low-density lipoprotein cholesterol
MI acute myocardial infarction
MPO myeloperoxidase
mtDNA mitochondrial deoxyribonucleic acid
NETs neutrophil extracellular traps
NO nitric oxide
NSTEMI Non-ST elevation MI
NYHA New York Heart Association Classification
OS oxidative stress
P plasma
PCI percutaneous coronary intervention;
PPC plasma protein concentration
PLP protein level in plasma
RM reactant mixture
ROS reactive oxygen species
SD standard deviation
STEMI ST-segment elevation MI
SUA serum uric acid
UA uric acid
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58. Gaál Kovalčíková, A.; Janovičová, L.; Hodosy, J.; Bábíčková, J.; Vavrincová-Yaghi, D.; Vavrinec, P.; Boor, P.; Podracká, L.; Šebeková,
K.; Celec, P.; et al. Extracellular DNA Concentrations in Various Aetiologies of Acute Kidney Injury. Sci. Rep. 2022, 12, 16812.
[CrossRef] [PubMed]

59. Barbalata, T.; Scarlatescu, A.I.; Sanda, G.M.; Toma, L.; Stancu, C.S.; Dorobantu, M.; Micheu, M.M.; Sima, A.V.; Niculescu, L.S.
Mitochondrial DNA Together with MiR-142-3p in Plasma Can Predict Unfavorable Outcomes in Patients after Acute Myocardial
Infarction. Int. J. Mol. Sci. 2022, 23, 9947. [CrossRef]

60. Wang, L.; Zhang, Q.; Yuan, K.; Yuan, J. MtDNA in the Pathogenesis of Cardiovascular Diseases. Dis. Markers 2021, 2021, 7157109.
[CrossRef]

61. Korabecna, M.; Zinkova, A.; Brynychova, I.; Chylikova, B.; Prikryl, P.; Sedova, L.; Neuzil, P.; Seda, O. Cell-Free DNA in Plasma as
an Essential Immune System Regulator. Sci. Rep. 2020, 10, 17478. [CrossRef] [PubMed]

62. Singel, K.L.; Grzankowski, K.S.; Khan, A.N.M.N.H.; Grimm, M.J.; D’Auria, A.C.; Morrell, K.; Eng, K.H.; Hylander, B.; Mayor, P.C.;
Emmons, T.R.; et al. Mitochondrial DNA in the Tumour Microenvironment Activates Neutrophils and Is Associated with Worse
Outcomes in Patients with Advanced Epithelial Ovarian Cancer. Br. J. Cancer 2018, 120, 207–217. [CrossRef] [PubMed]

63. Papayannopoulos, V. Neutrophil Extracellular Traps in Immunity and Disease. Nat. Rev. Immunol. 2017, 18, 134–147. [CrossRef]
[PubMed]

64. Arnhold, J. The Dual Role of Myeloperoxidase in Immune Response. Int. J. Mol. Sci. 2020, 21, 8057. [CrossRef] [PubMed]
65. Rizo-Téllez, S.A.; Sekheri, M.; Filep, J.G. Myeloperoxidase: Regulation of Neutrophil Function and Target for Therapy. Antioxidants

2022, 11, 2302. [CrossRef] [PubMed]
66. Descamps-Latscha, B.; Witko-Sarsat, V. Importance of Oxidatively Modified Proteins in Chronic Renal Failure. Kidney Int. Suppl.

2001, 78, S108–S113. [CrossRef] [PubMed]

https://doi.org/10.1046/j.1523-1755.2003.00044.x
https://www.ncbi.nlm.nih.gov/pubmed/12787398
https://doi.org/10.1016/j.freeradbiomed.2013.12.023
https://www.ncbi.nlm.nih.gov/pubmed/24384524
https://doi.org/10.1074/jbc.M116.724138
https://www.ncbi.nlm.nih.gov/pubmed/27466370
https://doi.org/10.1073/pnas.78.11.6858
https://www.ncbi.nlm.nih.gov/pubmed/6947260
https://doi.org/10.1097/HJH.0b013e3282f240bf
https://www.ncbi.nlm.nih.gov/pubmed/18192841
https://doi.org/10.1016/j.biopha.2020.110990
https://doi.org/10.1074/jbc.M112.399899
https://doi.org/10.3109/10715762.2012.747677
https://doi.org/10.3390/jcm10102062
https://doi.org/10.1016/j.jsha.2012.01.005
https://doi.org/10.1016/j.amjcard.2011.12.018
https://www.ncbi.nlm.nih.gov/pubmed/22325088
https://doi.org/10.1002/art.23121
https://www.ncbi.nlm.nih.gov/pubmed/18240236
https://doi.org/10.12688/f1000research.15096.1
https://www.ncbi.nlm.nih.gov/pubmed/30228871
https://doi.org/10.1177/1089253211436350
https://www.ncbi.nlm.nih.gov/pubmed/22368166
https://doi.org/10.14744/ANATOLJCARDIOL.2016.7209
https://www.ncbi.nlm.nih.gov/pubmed/27721319
https://doi.org/10.1177/2048872618823405
https://www.ncbi.nlm.nih.gov/pubmed/30632383
https://doi.org/10.1038/s41598-022-21248-7
https://www.ncbi.nlm.nih.gov/pubmed/36207374
https://doi.org/10.3390/ijms23179947
https://doi.org/10.1155/2021/7157109
https://doi.org/10.1038/s41598-020-74288-2
https://www.ncbi.nlm.nih.gov/pubmed/33060738
https://doi.org/10.1038/s41416-018-0339-8
https://www.ncbi.nlm.nih.gov/pubmed/30518816
https://doi.org/10.1038/nri.2017.105
https://www.ncbi.nlm.nih.gov/pubmed/28990587
https://doi.org/10.3390/ijms21218057
https://www.ncbi.nlm.nih.gov/pubmed/33137905
https://doi.org/10.3390/antiox11112302
https://www.ncbi.nlm.nih.gov/pubmed/36421487
https://doi.org/10.1046/j.1523-1755.2001.59780108.x
https://www.ncbi.nlm.nih.gov/pubmed/11168994


Appl. Sci. 2024, 14, 1983 14 of 14

67. Capeillère-Blandin, C.; Gausson, V.; Descamps-Latscha, B.; Witko-Sarsat, V. Biochemical and Spectrophotometric Significance of
Advanced Oxidized Protein Products. Biochim. Biophys. Acta Mol. Basis Dis. 2004, 1689, 91–102. [CrossRef]

68. Wybranowski, T.; Napiórkowska, M.; Bosek, M.; Pyskir, J.; Ziomkowska, B.; Cyrankiewicz, M.; Pyskir, M.; Pilaczyńska-Cemel, M.;
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