
Citation: Biernacki, A. Throughput

Prediction of 5G Network Based on

Trace Similarity for Adaptive Video.

Appl. Sci. 2024, 14, 1962. https://

doi.org/10.3390/app14051962

Academic Editor: Luis Javier

Garcia Villalba

Received: 5 February 2024

Revised: 21 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Throughput Prediction of 5G Network Based on Trace Similarity
for Adaptive Video
Arkadiusz Biernacki

Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 16,
44-100 Gliwice, Poland; arkadiusz.biernacki@polsl.pl

Abstract: Predicting throughput is essential to reduce latency in time-critical services like video
streaming, which constitutes a significant portion of mobile network traffic. The video player
continuously monitors network throughput during playback and adjusts the video quality according
to the network conditions. This means that the quality of the video depends on the player’s ability to
predict network throughput accurately, which can be challenging in the unpredictable environment of
mobile networks. To improve the prediction accuracy, we grouped the throughput trace into clusters
taking into account the similarity of their mean and variance. Once we distinguished the similar trace
fragments, we built a separate LSTM predictive model for each cluster. For the experiment, we used
traffic captured from 5G networks generated by individual user equipment (UE) in fixed and mobile
scenarios. Our results show that the prior grouping of the network traces improved the prediction
compared to the global model operating on the whole trace.

Keywords: traffic prediction; adaptive video; LSTM; clustering

1. Introduction

Cellular networks have been improving rapidly over the last few decades. The latest
5G systems are designed to offer faster data transfer speeds and lower network latency
than earlier generations. However, some experts say that limitations in the underlying
technology, including devices and wired internet access, may reduce these potential bene-
fits [1]. Additionally, current wireless protocols are not optimized for the unique conditions
of cellular networks, leading to the underutilization of available bandwidth [2]. This can be
particularly problematic for multimedia applications like dynamic adaptive streaming over
HTTP (DASH), where demand often exceeds available resources.

The predictability of network throughput can improve the performance of upper-
layer protocols and network applications. In the abovementioned DASH, a video player
periodically downloads segments, concatenates them, and delivers a continuous video
stream to the user. During video playback, the player can request different segment versions
to adjust the bit rate based on predicted network conditions. If the prediction is not accurate,
the streaming algorithms will either be too conservative and download a lower-quality
video than necessary or be too aggressive and download a video of higher quality, which
will result in the video freezing at a certain time point in the future. Therefore, the more
accurate the prediction, the better the quality of the user’s experience [3].

Typically, a DASH application measures the throughput after downloading each video
segment. Hence, the video player decides on the video quality at intervals longer than the
length of a downloaded video segment, which is usually between 2 and 10 s of video. For
example, the Microsoft Smooth Streaming algorithm uses 2–5 s [4]. Therefore, to make our
results suitable for this type of service, we tried to predict the average throughput in the
next 4 s, with a trace of historical throughput measured every 4 s.

The variability of wireless transmission, such as changes in signal strength, interfer-
ence, noise, and user movement, can result in highly unpredictable data transfer rates.

Appl. Sci. 2024, 14, 1962. https://doi.org/10.3390/app14051962 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14051962
https://doi.org/10.3390/app14051962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5274-4250
https://doi.org/10.3390/app14051962
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14051962?type=check_update&version=1


Appl. Sci. 2024, 14, 1962 2 of 18

The radio environment is dynamic, and even small changes in distance can significantly
alter its properties [5]. Because of this, the throughput of wireless networks can fluctuate
rapidly due to various random factors, including environmental conditions. Traditional
models such as ARIMA cannot accurately predict the relationship between these factors
and throughput. Additionally, prediction algorithms based on ANNs may not outperform
simpler models unless the underlying data are extensive enough to fit complex models.
Even if we capture sufficient amounts of past network throughput, its statistical properties
and patterns can be altered by, e.g., a changing user equipment (UE) location, other UE
joining the same cell, moving objects, or changing weather [6]. In this environment, the
predictive model struggles with non-stationarity and concept drift. It repeatedly needs to
reformulate its decision boundaries, to the detriment of the prediction accuracy.

Our contribution is to overcome this shortcoming by the following:

• Building separate models for the groups of times series representing the throughput;
• Constructing automatically the subgroups using similarities in the trace measured by

a moving average and a variance.

Contrary to the works employing clustering and prediction, we do not compare or
group multiple traces but search for similarities within each trace separately. Also, contrary
to other research, to cluster the traces, we do not compare them directly but use for this
purpose their statistical features. Then, we train separate LSTM ANNs for each group
individually. When predicting a new value, before we feed data into an LSTM unit, we
select the model that best matches the characteristics of the input vector.

In the Section 2, we describe the problems of network traffic prediction with examples
from selected works. In Section 3, we present the workflow of our experiment, which
includes capturing the network traffic, feature extraction, clustering, and developing an
LSTM-based predictive model. Finally, in Section 4, we show and discuss the results. The
Section 5 concludes the paper.

2. Related Works

Network traffic prediction is a useful solution that can help with various challenges
in networking such as resource provisioning, congestion detection, and fault tolerance. In
the past two decades, researchers have shifted their focus from predicting Internet traffic
generated by a range of applications to predicting single or multiple flows within mobile
wireless networks. However, predicting single traffic flows in an unstable mobile environ-
ment presents a significant challenge due to the high variability and outliers compared to
an aggregated trace smoothed by statistical multiplexing [7]. In addition, DASH systems
that stream video segments in an ON–OFF fashion create bursts in transmission, leading to
even more complex patterns.

Traffic prediction involves using different models and techniques depending on the
type of network and its purpose. In the past, researchers and network engineers used
statistics-related techniques to analyse data patterns without prior knowledge or model
training. These techniques are simple to use, have low computational overhead, and can
handle a limited number of features. They usually compare the current data pattern with
the last identified pattern to determine possible changes or predict future points in the
time series based on the lagged data. However, these traditional methods cannot capture
complex dependencies in large datasets and have limitations when dealing with non-
stationary time series. Nowadays, machine learning (ML) methods are used in conjunction
with or in opposition to traditional methods. However, there is still room for improvement
in terms of efficiency, performance, computational burden, and training. There is also an
ongoing debate about their accuracy and computational requirements [8]. A comprehensive
overview of statistical and ML approaches to network traffic prediction can be found in [9].

In the past decade, deep learning models have made significant progress and have
achieved remarkable success in various areas. With a sizeable and diverse dataset, ma-
chine learning algorithms can learn to recognize intricate non-linear patterns and discover
unstructured relationships without having to make assumptions ahead of time. This



Appl. Sci. 2024, 14, 1962 3 of 18

means that ML algorithms are not constrained by preconceived notions or predetermined
data-generating procedures, which allows the data to reveal their insights. However, the
superiority of ML is not apparent when it comes to network traffic forecasting, as some re-
search has reported that feed-forward ANNs and ARIMA could provide better performance
than deep ANNs [10].

The literature on network throughput prediction is extensive and can be classified
into several domains. Firstly, we can distinguish between low and high time aggregation
scales for the network traffic. The boundary between the scales is subjective, and there are
works that set the prediction horizon to milliseconds [7,11], seconds [3], minutes [12], and
hours [13]. We focus on the seconds scale, where the LSTM ANN and its variant are often
selected for prediction. Most works have focused on higher aggregation scales because the
prediction is simpler, as the traffic is smoother, has seasonal components, and has fewer
outliers. An example of a work incorporating low aggregated traffic is [14], which analysed
downlink and uplink throughput generated by remotely controlled vehicles in LTE and
5G networks. Besides LSTM networks, another popularly employed method for the low
aggregation scale is Random Forest. As per the study conducted by Labonne et al. [15], the
Random Forest model is more effective in flow throughput prediction as compared to a
deep ANN. The study tested various time windows ranging from 0.03 s to 4 s on nearly one
million flows consisting of traces from various networks and applications. In addition to
flow history data, the study also considered other attributes related to TCP such as window
size, window scale, and segment retransmissions.

Secondly, prediction can also be a single step, e.g., [16], or multiple steps, e.g., [13].
Multistep analysis is more challenging and is usually applied to forecast more aggregated
traffic with a longer time horizon. In this paper, we use single-step prediction. Multistep
prediction would be more beneficial, as a DASH system could make more far-fetched
decisions and avoid too frequent changes in video quality. However, such a prediction
would be very challenging and subjected to a significant error.

Thirdly, many works have considered the spatial characteristics of mobile networks,
including traffic generated by multiple base stations (BSs). This approach aims to enhance
traffic prediction by exploiting the correlation between traffic flows across neighbouring
BSs generated by users’ continuous movement within the network [17–19]. The spatial
modelling of traffic flow has several challenges. One issue is data collection. The point
of the network at which to capture the traffic in order to obtain the characteristics of the
traffic flow in the system is an open question. It is important to note that relying on a few
fixed measurement points may not accurately capture the radio environment at different
locations [20]. The radio environment can vary significantly within just a few meters, so it
is unclear how reliable these measurement points are in predicting throughput for mobile
devices that frequently change radio environments [21]. While monitoring multiple UE
devices can help, it also has limitations. For example, reporting UE geographic coordinates
raises privacy concerns, and transmitting radio measurements from a UE to a BS would
increase system traffic, leading to less accurate predictions.

Many works have considered both upper- and lower-layer information when pre-
dicting link bandwidth, as relying solely on historical throughput can result in inferior
performance. Using all available features is known as multivariate prediction, while
only considering a single feature, such as throughput, is univariate prediction. Therefore,
combining multiple features is crucial for accurate link bandwidth prediction. From the
statistical point of view, the approach that considers only a single feature, e.g., throughput,
is univariate prediction, while using more features is multivariate prediction. Therefore,
the fourth criterion concerns whether authors use only application layer data or support
their models with network layer information. Due to the better prediction accuracy, many
works fall into the latter category. For example, the authors of [22] presented a cooperative
data rate prediction technique that incorporates information from the client and network
domains. They used a Software-Defined Radio (SDR)-based control channel sniffer to
emulate the behaviour of possible network-assisted information provisioning within future



Appl. Sci. 2024, 14, 1962 4 of 18

6G networks. The results indicated that the proposed cooperative prediction approach
could reduce the average prediction error by up to 30%. The study in [23] analysed correla-
tions between lower-layer data and link bandwidth in cellular networks. The authors then
utilized a machine-learning-based prediction framework to identify important features and
forecast link bandwidth. In [24], the authors predicted the bandwidth, firstly recognizing
the type of network to which a UE was connected: 3G, 4G, or 5G. They also used a handover
detection algorithm, which caused the bandwidth variance. The researchers applied a
dedicated bidirectional LSTM model for each type of network. Raca et al. in [25] compared
a few predictive models, including Support Vector Machines, Random Forest, and an LSTM
ANN. Using data gathered from the signal-to-noise ratio (SNR), channel quality indicator
(CQI), reference signal of received quality (RSRQ), and device velocity, the authors stated
that these cell-level measurements improved throughput prediction accuracy compared to
solely throughput-based prediction. However, the network-side information is unavailable
for application-level protocols like DASH, which relies on measurements gathered by a
client-side video player. Thus, a web application cannot employ these measurements
directly unless the future mobile networks go beyond the network-focused paradigm and
start to push load information to UE [22].

In most surveyed studies, the authors preprocessed the traffic traces before passing
them to the prediction model. For this purpose, they used various techniques such as stan-
dardization and data scaling, including min–max normalization. Sometimes, researchers
have applied more elaborate preprocessing. One approach is to break down a network
trace into smaller parts and apply a distinct model to each part. This helps to avoid model
degeneration and leads to better prediction accuracy. For example, if a network trace
has seasonal components, the preprocessing separates them and applies the predictive
model to each separately. The final prediction combines the results generated by these
separate models. The decomposition technique can be used in either the frequency or
spatial domain. The authors of [26] employed discrete wavelet transform, in [27] tensor
completion was used, while the authors of [28] applied Fourier analysis. In [26], a traffic
trace was decomposed into two components using a discrete wavelet transform: one with
high frequencies and another with low frequencies. Various prediction models can be
utilized based on the statistical properties of each component. In [28], the cellular traffic
series was decomposed into three components and further modelled with three different
models. For the largest periodic component, the least-squares method was used, while
the middle component and residual were modelled using LSTM and Gaussian process
regression, respectively. The authors of [29] investigated wireless traffic on an hourly scale.
From the original series, they extracted a fluctuation pattern, which they called the baseline
feature, while retaining the noise component, called the residual feature. The fluctuations
corresponded to a daily scale and were analysed in the context of weekends and working
days. The patterns were identified by hierarchical clustering, while for the prediction a
bidirectional LSTM network was used.

Clustering is often used in the case of spatio-temporal traffic models where BSs
form groups based on either the geographical (spatial) location or temporal behaviour of
transmitted traffic. However, the spatial clustering indirectly assumes that the geographical
location of a BS influences the properties of traffic in this BS. The research employing this
concept focuses on high aggregated traffic, measured in hours or days, and aims at the
performance optimization of 5G network infrastructure. For example, in [30], the authors
clustered the traffic coming from multiple BSs to forecast the load in the network. The
authors of [31] used a convolutional ANN (CNN) combined with LSTM for clustered traffic
prediction. The CNN model received input sequences and extracted significant features.
Meanwhile, the LSTM network captured the short-term and long-term dependencies of
temporal features.

Overall, the presented categorization is far from complete and extensive but simulta-
neously shows how broad the topic of throughput prediction is. There are comprehensive
surveys available that provide an in-depth analysis of various ML models presented and



Appl. Sci. 2024, 14, 1962 5 of 18

evaluated by the authors, e.g., [32,33]. Regarding the abovementioned criteria, in our work,
we apply an LSTM ANN and implement a single-step, short-time prediction of 4 s. Our
prediction uses only the network throughput measured at a UE device. Table 1 summarizes
the abovementioned criteria of our predictive model compared to other research.

As was mentioned in Section 1, due to the characteristics of the wireless environ-
ment, network throughput is not stationary and changes its statistical properties with
time, leading to so-called concept drift [34]. Concept drift occurs when the underlying
data distribution changes over time. Extensive research has been conducted on managing
concept drift, including using an ensemble learning approach, concept-drift-aware feder-
ated averaging, and model updating mechanisms. For a more detailed review, see [35].
In this work, we developed multiple forecasting models using the ensemble approach to
generate the final forecasts. This technique should improve the prediction accuracy, as
multiple dedicated models do not need to repeatedly reformulate their decision bound-
aries, in contrast to a single global model. To the best of our knowledge, no research has
considered concept drift when predicting 5G traffic. This idea has only been considered for
classification problems in a few studies, with the latest being [36]. As concept drift can be
applied for general time series prediction [37], we were motivated to explore this technique
for network traffic prediction.

Table 1. Criteria of our predictive model (underlined) compared to other research.

Prediction Criterion Options

Methods Statistical vs. machine learning
Traffic type Aggregated traffic vs. single flow
Traffic aggregation Low vs. high
Time steps Single vs. multiple steps ahead
Dataset Spatio-temporal vs. temporal
Measurements Multivariate vs. univariate
Traffic capture point Base station vs. UE

3. Theoretical Background

We divided our experiment into several stages, which are outlined as follows: (1) data
acquisition from a 5G system; (2) data preprocessing; (3) feature extraction; (4) the grouping
of similar features in throughput traces into clusters; (5) training a separate LSTM model
for every clustered trace; and (6) the prediction of the next throughput value, including
data postprocessing to ascertain the final forecasts. Figure 1 illustrates the workflow of our
data processing and forecasting. In the following sections, we discuss the individual stages
in more detail.

5G measurements

Preprocessing

Features extraction

Clustering

LSTM models for

Cluster 1 ... Cluster N

Predictions

Figure 1. The experiment workflow. We preprocess the captured network traffic and extract its
features. To generate the final prediction, we cluster the features and apply LSTM predictive models
to each cluster separately.



Appl. Sci. 2024, 14, 1962 6 of 18

3.1. Traffic Characteristics

For our prediction, we used two traffic datasets. The first dataset came from a large
telecommunication operator, which collected roughly 21 h of traces in Ireland. We divided
them into a fixed scenario, where the UE remained in the same position, and a mobile one,
where the UE changed its position. A detailed traffic generation and capture methodology
is available in [38].

Cellular system operation has diverse characteristics that depend on the specific net-
work deployment details, e.g., antenna heights or cell numbers in an area. Furthermore,
the geographical environment also impacts the system. For example, in a city, radio waves
are more obstructed by infrastructure than in rural areas. These factors can contribute to
unique properties in the collected network traffic. Therefore, we also conducted measure-
ments of a 5G system. For the collection of the network throughput data, we employed
G-NetTrack Lite. This is a network monitor and a test tool for mobile networks that runs
on a smartphone. To obtain the throughput, we repeatedly downloaded from a server
a 1 GB file. The large file allowed the TCP sending window to extend to its maximum
size. The network monitor logged the throughput with 1 s granularity. In the case of the
mobile scenario, denoted as M2, we drove a car between multiple locations separated by
an average distance of 2 km. In each location, we stayed for a random time interval, with
an average duration of 5 min. This simulated a typical bus or car drive in an urban area
with crossroads, traffic lights, traffic jams, and bus stops. We captured the traffic, and after
data cleaning, we had 600 min for a fixed scenario and another 600 min for a mobile one.

Our traces, F2 and M2, had a higher spread between the minimum and maximum
values but lower average throughput than the public traces F1 and M1, as shown in
Table 2. When examined more closely, both traffic traces had high variability and no clear
repeating patterns, as shown in Figure 2. The mobile scenario trace (M2) had slightly
higher oscillations and achieved higher throughput as some measurement points were
closer to the BS compared to the fixed scenario trace (F2). These high-throughput times
were separated by lower-throughput periods where the UE was farther from the BS or
was moving. Both traces could be divided into multiple regimes that could be statistically
described based on their periods of low and high throughput, as well as periods of low and
high variability. The M2 trace exhibited these regimes more clearly, which can be attributed
to the switching of the measurement points.

0

20

40

60

0 100 200 300 400 500 600
Time [min]

0

20

40

60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 [M

B/
s]

Figure 2. Throughput measured in 5G network. Upper figure—traffic for a fixed UE scenario
(F2 trace); Bottom figure—traffic for a mobile UE scenario (M2 trace).



Appl. Sci. 2024, 14, 1962 7 of 18

Table 2. Network throughput traces used in the experiments.

Trace Activity Length
(min)

Average
(MB/s)

Min and Max
(MB/s)

Source

F1 Fixed 260 5.6 2.7–25 [38]
F2 Fixed 600 5.1 0–37 Author’s measurements
M1 Mobile 459 2.1 0.4–11 [38]
M2 Mobile 600 1.9 0–57 Author’s measurements

3.2. Feature Extraction

The captured traffic traces required preprocessing before being subjected to the predic-
tion stage. There are many rules regarding preprocessing, but it remains an experiment-
intensive art. In our case, the decent amount of data did not mean that the LSTM ANNs
provided more accurate prediction. For example, large quantities of data can be relatively
similar or correlated, which limits their contribution to ANN learning. As mentioned in
Section 3.1, the statistical characteristics of our data changed over time, which is called
concept drift. Hence, our task was to identify and group segments of the traces that had
similar characteristics to build separate models for them. The individual trace segments
could be labelled based on the location of the measurements to facilitate grouping accord-
ing to additional domain knowledge. However, in reality, there are no such labels, so we
propose an automatic mechanism based on feature extraction.

A feature is a lower-dimensional representation mapping

ϕ : Rw → R, ϕ(Xi,w) = ϕ([xi−w+1, . . . , xi]),

which captures a specific aspect of the time series X = {x1, x2, . . . , xi, . . . }. In our work, we
used the mean and variance of ϕ(Xi,w) because they are the primary measures applied in
data analysis. The optimal feature selection and number is a complex topic. It depends
on the dataset, clustering method, and predictive model. While there are some methods
regarding feature selection for a few selected clustering algorithms [39], no such guidelines
exist for an ANN ensemble. In other words, the optimal clustering produced by a set of
features may not necessarily be the optimal training set for a predictive model. Other
examples of features are maximum/minimum, the number of peaks with a certain steep-
ness, their periodicity, or a global trend. For the feature extraction, we used tsfresh [40].
According to the technical documentation, tsfresh provides 63 time series characterization
methods and computes a total of 794 time series features.

3.3. Clustering

The purpose of clustering is to group the different segments of network traces based on
their implicit similarity. The traces, represented here as time series, can be clustered in many
different ways, whose description is beyond the scope of our paper. The most intuitive
approach is to compare the whole time series. The series is divided into overlapping
segments, which are represented as vectors. Then, each pair of vectors is compared using a
distance measure, see Figure 3a. However, defining a suitable measure for distance between
unprocessed time series can be a difficult task. The definition must take into account various
factors such as high-dimensional space, noise, varying series lengths, different dynamics,
and different scales. Therefore, it is recommended to use a clustering algorithm for an
interpretable, extracted feature vector; see Figure 3b. Feature-based clustering techniques
employ a set of global features that summarize the transient characteristics of time series.
This approach is more resilient to noisy data and easier to interpret [41]. We apply the
features identified in Section 3.2, namely the mean and variance. Clustering should present
less computational burden than a single, more complicated model for the whole trace.



Appl. Sci. 2024, 14, 1962 8 of 18

...

...

Comparison
matrix

Comparison
matrix

Vectors

a

b
Features ...

...

Figure 3. Finding similarities in a univariate time series. Consecutive sliding windows are represented
as the vectors {X1, X2, . . . , Xn}. The vectors are compared (a) directly and (b) through the computed
vectors’ features.

Besides the similarity metrics, the clustering method also affects the result [33]. Hence,
we employed three algorithms, namely KMeans, OPTICS, and AutoClass. These algorithms
represent different clustering approaches. KMeans is a partition-based algorithm, OPTICS
is density-based, and AutoClass is probabilistic. The complexity of the algorithms is
similar, increasing the chances of obtaining an independent final prediction and making the
experiment easier to reproduce. With this selection, we aimed to compare the algorithms’
classes instead of the algorithms themselves.

KMeans is a popular partition-based algorithm, where each data point is assigned to a
single cluster. The algorithm defines k centroids, one for each cluster. Then, the centroids
absorb nearby data points by applying a specified distance measure. In this process, every
point in a dataset is assigned to the centroid closest to it. When all the points have been
assigned, the algorithm calculates k new centroids by taking into account the points that
were assigned to them. Once it has found the new centroids, it will reassign all the points
to the centroid closest to them. This process is repeated until the centroids no longer
move significantly.

Figure 4 shows a fragment of the F2 trace with highlighted segments possessing similar
statistical characteristics measured by the mean and variance. The segments were selected
from a cluster identified by KMeans. The segments have low throughput and variability
compared to the rest of the trace.

800 850 900 950 1000 1050 1100 1150 1200
Time [s]

0

5

10

15

20

Th
ro

ug
hp

ut
 [M

B/
s]

Figure 4. KMeans algorithm applied to the F2 trace. The traffic in the highlighted areas possesses
similar statistical characteristics measured by the mean and variance.



Appl. Sci. 2024, 14, 1962 9 of 18

Figure 5 presents feature clusters identified by KMeans and extracted from a fragment
of the M2 trace. The x-coordinates represent the mean feature, while the y-coordinates
represent the variance feature. The groupings have a Y shape. The clusters labelled
1–3 depict traffic fluctuations of different amplitudes—from the smallest ones in cluster
1 to the medium ones in cluster 3. Clusters 4 and 5 describe major increases or drops in the
throughput with a non-zero mean change and high variance.

4 3 2 1 0 1 2 3 4
Mean [MB/s]

10

20

30

40

50

60

70
Va

ria
nc

e 
[M

B/
s]

1

2

3

4 5

Figure 5. Exemplary two-dimensional clusters for mean and variance features extracted from a
fragment of the differenced M2 trace using KMeans algorithm. The clusters labelled 1–3 group
traffic fluctuations of different amplitudes. Clusters 4 and 5 describe more significant changes in the
network throughput.

The OPTICS algorithm identifies clusters as dense areas separated by less dense ones.
Density-based algorithms can discover clusters with arbitrary shapes—an advantage over
partition-based algorithms such as KMeans, which can only identify sphere-shaped clusters.
OPTICS is based on the same concept as DBSCAN [42], but it overcomes one of DBSCAN’s
weaknesses—the inability to identify meaningful data clusters with varying densities. This
is particularly relevant in network trace clustering because, as illustrated in Figure 5, the
density of data points varies among distinct clusters. To handle this problem, OPTICS uses
a reachability distance in addition to the core distance used in DBSCAN. These distances
depend on two input parameters: ϵ, the distance around an object that constitutes its
ϵ-neighbourhood, and minPts, a minimum number of points defining the ϵ-neighbourhood.

Deterministic clustering methods, such as KMeans and OPTICS, are standard tools
for finding groups in data. However, they lack the quantification of uncertainty in the
estimated clusters. AutoClass is a clustering algorithm based on the probabilistic model
that assigns instances to classes probabilistically. AutoClass is based on a mixture of models
and assumes that all the data points are generated from a mixture of a finite number
of probability distributions with unknown parameters. The mixture of models can be
compared to the generalization of KMeans clustering to incorporate information about
the covariance of the data. To build the probabilistic model, the AutoClass algorithm
automatically determines the distribution parameters and the number of clusters.



Appl. Sci. 2024, 14, 1962 10 of 18

3.4. Long Short-Term Memory Networks

Artificial neural networks (ANNs) are a popular machine learning technique due to
their ability to learn complex non-linear relationships between multiple variables, making
them accurate and versatile. They can serve as universal function approximators, allowing
them to learn and solve complex problems. Initially, single-layered ANNs were more
popular than deep ANNs due to training difficulties. However, deep ANNs overcame
these issues and gradually replaced single-layered ANNs as a solution to more complex
problems. Deep ANNs added more complexity and non-linearity to network traffic models,
making them useful for time series prediction, including network traffic. As a result, ANNs
have become a universal tool for predicting time series data in various fields.

However, most ANNs have a feed-forward architecture that does not store a trace of
previous inputs. They process every input independently and do not memorize information,
which is sufficient in many areas, such as computer vision. Nevertheless, as they process the
whole input sequence at once, they miss the temporal dependency present in the time series.
Hence, Recurrent Neural Networks (RNNs) are better suited for processing time series
data. Contrary to feed-forward ANNs, RNNs’ connections form an internal loop. Such an
architecture allows one to treat sequences by iterating through their elements and to store
information about previously processed data. Training Recurrent Neural Networks (RNNs)
with a vanilla recurrent unit can be inefficient due to the vanishing gradient problem, which
hinders the ability to retain data from earlier computations. This is because RNNs miss
information about long-memory dependencies. However, an advanced type of RNN called
a Long Short-Term Memory (LSTM) ANN can overcome this shortcoming. LSTMs allow for
long-term memory storage in cells with self-connections, which helps to retain information
from earlier computations. LSTM has multiplicative gates in each cell. These gates—the
input, output, and forget gates—control information flow and can learn to open and close
as needed; see Figure 6. This allows memory cells to store data over long periods of time,
making them particularly useful in time series prediction with long temporal dependency.
Multiple memory blocks form a hidden layer, and an LSTM model typically consists of an
input layer, at least one hidden layer, and an output layer. Deep LSTM architectures with
multiple hidden layers can create increasingly higher levels of data representations due
to their greater capacity. In this architecture, multiple hidden layers are stacked in such a
way that the subsequent layer takes the output of the previous LSTM layer as its input; see
Figure 7. In this work, we applied such a multilayer architecture.

tanh
sigm,
forget
gate

sigm,
input
gate

sigm,
output
gate

tanh

Figure 6. Structure of LSTM memory block: xt is an input signal at the time t; ct and ct+1 denote
cell states at the actual t and future t + 1 times, respectively; ht and ht+1 are output signals of the
cell at t and t + 1 times, respectively; and b denotes the bias. The symbol + denotes the summation
and × the multiplication of signals. The signals xt and ht follow the same path but do not interact
when entering the cell. The cell output zt equals the state signal ht+1.



Appl. Sci. 2024, 14, 1962 11 of 18

Figure 7. Multilayer LSTM. Hidden layers are stacked in such a way that the output of an LSTM
hidden layer is provided to the subsequent LSTM hidden layer.

3.5. Prediction Accuracy

Network traffic prediction in the next time step depends on the historical traffic
volumes. Having measurements of the past throughput {rt−1, . . . , rt−n}, we aim to predict
the value of rt. Hence, we use a predictor r̂t, which takes the past throughput

r̂t = ϕ(rt−1, . . . , rt−n). (1)

The problem is to determine ϕ, which minimizes the difference between r̂t and rt. To
quantify the difference, we opted for the Normalised Root Mean Square Error (NRMSE) as
our metric:

NRMSE =
1
r

√
∑N

t=1(rt − r̂t)2

N
, (2)

The NRMSE is the squared difference between predictions r̂t and measured values rt
divided by the number of measurements N. The NRMSE value is an indicator of how well
a model fits empirical data. The lower the NRMSE value, the more accurate the prediction.
To allow for a comparison of the results across traces with different throughput levels, we
normalized the results by an average of observed values r.

4. Experiment and Results
4.1. Parameters

Table 3 shows the prediction models applied to the network traces. The first model,
LSTM, operated on traces without clustering. As the statistical characteristics of the traces
listed in Table 2 are too diverse to be described by a single model, we trained the LSTM
model separately on each trace (F1, F2, M1, and M2).

The next three listed models, LSTM + KMeans, LSTM + OPTICS, and LSTM + AutoClass,
applied LSTM to the traces clustered by the respective methods. The LSTM networks had
two hidden layers compared to three layers for the universal LSTM model—we wanted to
replace a single complex model with an ensemble of simpler ones. The models operated on
three to five clusters depending on the employed clustering algorithm and the trace. To
specify the optimal number of clusters, we employed the Silhouette index (SIL). The SIL
measures the distance between feature vectors and the cluster’s centroid compared to the
other clusters’ centroids. Its values range from −1 to 1. The closer the SIL value to +1, the
better the clustering. Unlike KMeans, OPTICS allows for specifying indirectly the number
of clusters by manipulating their input parameters, namely ϵ-neighbourhood and minPts.
AutoClass, as the name suggests, automatically adjusts the number of clusters to the data.

The last model—MA(1) (a moving average)—represents a naive estimator xt = xt−1 + ϵ,
where ϵ is white noise. We used the benchmark to check if the complex model could beat
the simplest one.



Appl. Sci. 2024, 14, 1962 12 of 18

While training the ANNs, we applied K-fold cross-validation. First, we divided our
dataset into K equal-sized parts {p1, p2, . . . , pK}. Next, we kept one of the parts as the
validation set and combined the remaining K − 1 parts to form the training set. We repeated
this process K times, each time leaving another one of the parts out, until we had K different
training sets and K different validation sets. For every set, we calculated the NRMSE (2),
obtaining its range for every trace. The training parameters for the employed ANNs are
listed in Table 4.

Table 3. Summary of the methods used in the experiments.

Method Clusters DescriptionF1 F2 M1 M2

Universal LSTM - Applied for every trace (F1, F2, M1, M2) separately

LSTM + KMeans 4 4 4 5
Clusters a trace then applies the predictive
model

LSTM + OPTICS 4 4 5 5
LSTM + AutoClass 3 3 4 4

MA(1) - Benchmark predictor xt = xt−1 + ϵ

Table 4. Values of LSTMs’ selected parameters.

Parameter Universal LSTM LSTM + Clustering

Input size 16 16
Batch size 4 4
LSTM hidden states 48 32
LSTM hidden layers 3 2
Initial learning rate 0.001
Optimization algorithm Adam
Loss function MAE

4.2. Results

In Figure 8, we present a fragment of the F2 trace, which helps to visualize the traffic
characteristics and prediction accuracy. The prediction generally followed the traffic pattern,
but sometimes, it overestimated the scope of oscillations in absolute values, particularly in
fragments where traffic fluctuations had a higher frequency. Similar to Figure 4, the trace
had an irregular structure with no identifiable patterns, which made the prediction difficult.
However, there were some periods, such as between 230 s and 300 s, where the trace had
more regular oscillations, aiding in clustering and giving the ANNs an edge in prediction.

0 50 100 150 200 250 300
Time [s]

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

B/
s]

Ground Truth
Prediction

Figure 8. One-step prediction for the F2 trace. The prediction tended to underestimate and overesti-
mate the traffic, especially when its oscillations had a higher amplitude.



Appl. Sci. 2024, 14, 1962 13 of 18

Figure 9 shows the distribution of prediction errors for the LSTM, LSTM + KMeans,
and MA(1) models using the M2 trace. The histogram for MA(1) is wider, indicating that
the errors were higher than in the LSTM-based models. The difference between LSTM and
the clustered approach was more subtle but still visible.

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pr

ob
ab

ilit
y 

de
ns

ity

a

4 2 0 2 4

b

4 2 0 2 4

c

0.0 0.2 0.4 0.6 0.8 1.0
Throughput [MB/s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. Comparison of prediction error distribution by (a) LSTM, (b) LSTM + KMeans, and (c) MA(1)
for the M2 trace. The narrower the histogram, the better the prediction accuracy.

The results presented in Figures 10 and 11 reveal that the clustering approach achieved
the lowest NRMSE in both fixed and mobile scenarios. Both the F1 and F2 traces showed
similar performance results for the fixed scenario, as illustrated in Figure 10. The error
achieved by the LSTM model trained on the whole continuous traces was moderately
higher than that of the specialized LSTM models. The MA(1) error was the highest. The
results were similar regardless of the applied clustering algorithms. However, a closer
examination of the results showed that KMeans obtained a slightly worse score than the
remaining two groupings.

In the case of the mobile scenario, shown in Figure 10, the NRMSE was higher for all
the models compared to the fixed scenario. Additionally, the universal LSTM model’s error
was significantly higher than that of the cluster-based model.

LSTM

LSTM + KMeans

LSTM + OPTICS

LSTM + AutoClass
MA(1)

LSTM

LSTM + KMeans

LSTM + OPTICS

LSTM + AutoClass
MA(1)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

NR
M

SE

F1 trace
F2 trace

Figure 10. NRMSE of different prediction models for a fixed UE device generating F1 and F2 traces.



Appl. Sci. 2024, 14, 1962 14 of 18

LSTM

LSTM + KMeans

LSTM + OPTICS

LSTM + AutoClass
MA(1)

LSTM

LSTM + KMeans

LSTM + OPTICS

LSTM + AutoClass
MA(1)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

NR
M

SE

M1 trace
M2 trace

Figure 11. NRMSE of different prediction models for a mobile UE device generating M1 and M2 traces.

4.3. Discussion

The results show that the ensemble of LSTM ANNs could improve prediction accuracy,
especially for traffic generated by a mobile UE device. This finding can be explained in
two ways: either the clustering was better, or the clustered data provided to the LSTM
model was easier to predict. When considering the former case, the reason for better
clustering may have its roots in the mobility pattern of the M1 and M2 traces. In the case
of the M2 trace, the UE moved between several places, creating a closed trajectory, which
was repeated multiple times. This mobility pattern probably introduced a certain amount
of regularity into the trace. The clustering algorithms captured these recurring patterns;
however, the same patterns negatively impacted the training of the universal LSTM and
MA(1) models. Considering the latter case, some fragments of the UE’s movement path
may have had a better quality signal (measured as CQI), which resulted in stable and
more predictable throughput. Thus, some models may have achieved significantly better
prediction accuracy, and, consequently, they lowered the NRMSE for the whole ensemble.
In such a situation, the universal model would also have an adaptation problem when
switching repeatedly between relatively stable and irregular trace parts. Unlike in the
fixed scenario, the clustering algorithms impacted the result. For both M1 and M2 traces,
AutoClass achieved the lowest NRMSE, followed by OPTICS and KMeans. A possible
reason for this could be that the clusters generated in the mobile scenario were more
specific than those generated in the fixed scenario. With the more diverse groupings,
the performance differences among the clustering methods were more visible, and more
elaborate algorithms achieved better scores.

Although the prior clustering improved the prediction, the error for the traces gen-
erated by a mobile UE device was higher than for the traces from a fixed UE device. This
means that the proposed solution could not transform a complex traffic trace into several
groups containing simpler traces. After all, the mobile scenario was not a concatenation
of multiple fixed scenarios but contained time segments where the UE was on the move.
The methods applied, namely feature extraction, clustering, and the LSTM ensemble, were
sufficient to give a better result than a single LSTM network. Each of these methods requires
more tuning to work optimally, but they should also cooperate with the remaining elements
of the prediction workflow. Thus, our work leaves several open questions.

Firstly, which features should be selected to obtain the best clustering? Although
feature extraction methods are generic, extracted features often depend on the application
context. This means that one set of features that is significant for one time series may not
be important to another. The discovery of patterns in data is rarely a one-shot action but



Appl. Sci. 2024, 14, 1962 15 of 18

rather a process of finding clues, interpreting the results, transforming or augmenting the
data, and repeating the cycle. Therefore, another feature selection step is sometimes needed
to limit the number of feature dimensions. Although the importance of the selection can be
determined using built-in features of the tsfresh algorithm or principal component analysis,
these most important features do not necessarily guarantee the best clustering results.

Secondly, what is the optimal number of clusters to divide the traces and result in the
best LSTM performance? There are many measures of clustering performance, but do their
results translate automatically into a better ensemble of models? Therefore, it might be
worth exploring the algorithms that utilize time series information in more detail.

Thirdly, what would be the benefit of localized prediction in the case of more sophisti-
cated prediction models? The effectiveness of prediction models depends on their capacity
to match the complexity of the task at hand and the amount of training data they are given.
During training, will more complex models with higher capacities memorize the properties
of the clustered traces and overfit, leading to poor performance on test data?

Lastly, how much does the prediction depend on the network trace used? In the case
of the fixed UE scenario, the results were similar, but in the case of mobile UE devices, there
were differences in prediction accuracy. It would be interesting to find the contributory
features influencing these results—whether it be a mobility pattern; particular attributes of
the environment (e.g., antennas, location, landforms); or a particular UE model used for
the measurements.

Though we used the NRMSE (2), a comparison with other research results was almost
impossible because other authors have used different measures for prediction accuracy,
namely the MSE (Mean Squared Error), RMSE (Root MSE), or MAPE (Mean Absolute
Percentage Error). Some of these metrics, like the MSE or RMSE, are not normalized, and
the NRMSE is defined differently [11] and cannot be compared. It is worth noting that
NRMSE values can vary greatly between different studies. For instance, in [7], the NRMSE
ranged from approximately 0.1 to 5.5, depending on the dataset and LSTM ANN, while
in [13], the NRMSE was consistently below 0.1 across all experiments. Comparing the
results with our previous study [3], our approach obtained a slightly lower NRMSE than
the universal model based on bi-directional LSTM. Bi-directional LSTM, which considers
additional backward dependencies in data, is a more advanced version of an LSTM ANN.

The obtained results fit the needs of DASH systems. The relatively long video sessions
are susceptible to concept drift affecting network traffic. Environmental circumstances
like UE number fluctuation within a cell or UE location change are likely to periodically
impact the video trace characteristics. Replacing a single predictive model with several
simpler models facilitates adaptation to the video player’s streaming algorithm. Aside
from DASH systems, the presented results have several potential applications involving
short-term traffic prediction, such as network adaptive services; surveillance (e.g., traffic
anomaly detection); and 5G network optimization. However, the proposed solution’s
implementation in production systems would present a trade-off between accuracy and
the computational resources needed to train an ensemble of deep learning models.

5. Conclusions

Large datasets can enhance ANN training but negatively impact the prediction ac-
curacy of global models due to statistical diversity. On the other hand, large datasets are
statistically more diverse, which negatively impacts the prediction accuracy of a global
model trained on the whole trace. Hence, we clustered the network traces and grouped
them according to similar statistical features measured by the mean and variance. For
comparison purposes, we applied three clustering techniques, namely KMeans, OPTICS,
and AutoClass. For our analysis, we used four traces—two generated in an experiment,
and two from a public repository. These traces were collected from fixed and mobile UE
devices. To compare the groupings, we used three clustering techniques, namely KMeans,
OPTICS, and AutoClass, to assess the robustness of our framework. The experiment’s
results showed that prior traces clustering into more statically homogeneous improved the



Appl. Sci. 2024, 14, 1962 16 of 18

prediction accuracy. The local models—LSTM with different cluster variants—performed
better than the global baseline LSTM model, especially in the case of a mobile scenario. All
the ANN-based models, whether local or global, achieved significantly better scores than
the benchmark model MA(1), where the predictor was the time series’ previous value. In
the case of traces produced by stationary UE devices, the local models yielded comparable
outcomes. However, for the mobile scenario, the more advanced clustering techniques like
AutoClass and OPTICS showed a lower prediction error. A possible explanation for these
results may be that the traces generated in the mobile environment were more susceptible
to clustering and generated more specific groups, which were easier to capture by more
elaborate clustering algorithms. Overall, the results showed that the multiple local models
working on clustered data effectively exploited the similarities of the network traces and
consequently outperformed the single model approach. The proposed algorithm can be
used primarily in adaptive video streaming to improve the selection of a video’s bitrate.
The predictive models can be integrated into the client’s bitrate selection logic, replacing
the default decision mechanism based on the moving average of historical bit rates.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analysed in this study. This data can
be found at https://github.com/uccmisl/5Gdataset and https://github.com/arczello/5g_traces,
accessed on 1 February 2024.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Yuan, X.; Wu, M.; Wang, Z.; Zhu, Y.; Ma, M.; Guo, J.; Zhang, Z.L.; Zhu, W. Understanding 5G performance for real-world services:

A content provider’s perspective. In Proceedings of the ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands,
22–26 August 2022; pp. 101–113.

2. Yang, X.; Lin, H.; Li, Z.; Qian, F.; Li, X.; He, Z.; Wu, X.; Wang, X.; Liu, Y.; Liao, Z.; et al. Mobile access bandwidth in practice:
Measurement, analysis, and implications. In Proceedings of the ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands,
22–26 August 2022; pp. 114–128.

3. Biernacki, A. Improving streaming video with deep learning-based network throughput prediction. Appl. Sci. 2022, 12, 10274.
[CrossRef]

4. Famaey, J.; Latré, S.; Bouten, N.; Van de Meerssche, W.; De Vleeschauwer, B.; Van Leekwijck, W.; De Turck, F. On the merits of
SVC-based HTTP adaptive streaming. In Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), Ghent, Belgium, 27–31 May 2013; pp. 419–426.

5. Li, F.; Chen, W.; Shui, Y. Analysis of non-stationarity for 5.9 GHz channel in multiple vehicle-to-vehicle scenarios. Sensors 2021,
21, 3626. [CrossRef]

6. Liu, J.; Nazeri, A.; Zhao, C.; Abuhdima, E.; Comert, G.; Huang, C.T.; Pisu, P. Investigation of 5G and 4G V2V Communication
Channel Performance Under Severe Weather. In Proceedings of the 2022 IEEE International Conference on Wireless for Space
and Extreme Environments (WiSEE), Winnipeg, MB, Canada, 12–14 October 2022; pp. 12–17. [CrossRef]

7. He, Q.; Moayyedi, A.; Dan, G.; Koudouridis, G.P.; Tengkvist, P. A Meta-Learning Scheme for Adaptive Short-Term Network
Traffic Prediction. IEEE J. Sel. Areas Commun. 2020, 38, 2271–2283. [CrossRef]

8. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways
forward. PLoS ONE 2018, 13, e0194889. [CrossRef] [PubMed]

9. Lohrasbinasab, I.; Shahraki, A.; Taherkordi, A.; Delia Jurcut, A. From statistical- to machine learning-based network traffic
prediction. Trans. Emerg. Telecommun. Technol. 2022, 33, e4394. [CrossRef]

10. Santos Escriche, E.; Vassaki, S.; Peters, G. A comparative study of cellular traffic prediction mechanisms. Wirel. Netw. 2023,
29, 2371–2389. [CrossRef]

11. Na, H.; Shin, Y.; Lee, D.; Lee, J. LSTM-based throughput prediction for LTE networks. ICT Express 2023, 9, 247–252. [CrossRef]
12. Kim, M. Network traffic prediction based on INGARCH model. Wirel. Netw. 2020, 26, 6189–6202. [CrossRef]
13. Trinh, H.D.; Giupponi, L.; Dini, P. Mobile traffic prediction from raw data using LSTM networks. In Proceedings of the 2018

IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy,
9–12 September 2018; pp. 1827–1832.

14. Minovski, D.; Ogren, N.; Ahlund, C.; Mitra, K. Throughput Prediction using Machine Learning in LTE and 5G Networks. IEEE
Trans. Mob. Comput. 2021, 22, 1825–1840. [CrossRef]

https://github.com/uccmisl/5Gdataset
https://github.com/arczello/5g_traces
http://doi.org/10.3390/app122010274
http://dx.doi.org/10.3390/s21113626
http://dx.doi.org/10.1109/WiSEE49342.2022.9926867
http://dx.doi.org/10.1109/JSAC.2020.3000408
http://dx.doi.org/10.1371/journal.pone.0194889
http://www.ncbi.nlm.nih.gov/pubmed/29584784
http://dx.doi.org/10.1002/ett.4394
http://dx.doi.org/10.1007/s11276-023-03313-9
http://dx.doi.org/10.1016/j.icte.2021.12.001
http://dx.doi.org/10.1007/s11276-020-02431-y
http://dx.doi.org/10.1109/TMC.2021.3099397


Appl. Sci. 2024, 14, 1962 17 of 18

15. Labonne, M.; López, J.; Poletti, C.; Munier, J.B. Short-Term Flow-Based Bandwidth Forecasting using Machine Learning. arXiv
2020, arXiv:2011.14421.

16. Lin, C.Y.; Su, H.T.; Tung, S.L.; Hsu, W.H. Multivariate and propagation graph attention network for spatial-temporal prediction
with outdoor cellular traffic. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
Virtual Event, 1–5 November 2021; pp. 3248–3252.

17. Zhao, N.; Wu, A.; Pei, Y.; Liang, Y.C.; Niyato, D. Spatial-temporal aggregation graph convolution network for efficient mobile
cellular traffic prediction. IEEE Commun. Lett. 2021, 26, 587–591. [CrossRef]

18. Qiu, C.; Zhang, Y.; Feng, Z.; Zhang, P.; Cui, S. Spatio-Temporal Wireless Traffic Prediction With Recurrent Neural Network. IEEE
Wirel. Commun. Lett. 2018, 7, 554–557. [CrossRef]

19. Wei, B.; Kawakami, W.; Kanai, K.; Katto, J.; Wang, S. TRUST: A TCP throughput prediction method in mobile networks. In Proceed-
ings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018;
pp. 1–6.

20. Zhohov, R.; Palaios, A.; Geuer, P. One Step Further: Tunable and Explainable Throughput Prediction based on Large-scale
Commercial Networks. In Proceedings of the 2021 IEEE 4th 5G World Forum (5GWF), Montreal, QC, Canada, 13–15 October
2021; pp. 430–435. [CrossRef]

21. Narayanan, A.; Ramadan, E.; Mehta, R.; Hu, X.; Liu, Q.; Fezeu, R.A.; Dayalan, U.K.; Verma, S.; Ji, P.; Li, T.; et al. Lumos5G:
Mapping and predicting commercial mmWave 5G throughput. In Proceedings of the ACM Internet Measurement Conference,
Virtual Event, 27–29 October 2020; pp. 176–193.

22. Sliwa, B.; Falkenberg, R.; Wietfeld, C. Towards cooperative data rate prediction for future mobile and vehicular 6G networks. In
Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5.

23. Yue, C.; Jin, R.; Suh, K.; Qin, Y.; Wang, B.; Wei, W. LinkForecast: Cellular Link Bandwidth Prediction in LTE Networks. IEEE
Trans. Mob. Comput. 2018, 17, 1582–1594. [CrossRef]

24. Lee, H.; Kang, Y.; Gwak, M.; An, D. Bi-LSTM model with time distribution for bandwidth prediction in mobile networks. ETRI J.
2023, 1–13. [CrossRef]

25. Raca, D.; Zahran, A.H.; Sreenan, C.J.; Sinha, R.K.; Halepovic, E.; Jana, R.; Gopalakrishnan, V. On Leveraging Machine and Deep
Learning for Throughput Prediction in Cellular Networks: Design, Performance, and Challenges. IEEE Commun. Mag. 2020,
58, 11–17. [CrossRef]

26. Li, Y.; Ma, Z.; Pan, Z.; Liu, N.; You, X. Prophet model and Gaussian process regression based user traffic prediction in wireless
networks. Sci. China Inf. Sci. 2020, 63, 142301. [CrossRef]

27. Liu, C.; Wu, T.; Li, Z.; Wang, B. Individual traffic prediction in cellular networks based on tensor completion. Int. J. Commun.
Syst. 2021, 34, e4952. [CrossRef]

28. Wang, W.; Zhou, C.; He, H.; Wu, W.; Zhuang, W.; Shen, X. Cellular traffic load prediction with LSTM and Gaussian process
regression. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–6.

29. Xing, X.; Lin, Y.; Gao, H.; Lu, Y. Wireless Traffic Prediction with Series Fluctuation Pattern Clustering. In Proceedings of the
2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021;
pp. 1–6. [CrossRef]

30. Mahdy, B.; Abbas, H.; Hassanein, H.; Noureldin, A.; Abou-zeid, H. A Clustering-Driven Approach to Predict the Traffic Load of
Mobile Networks for the Analysis of Base Stations Deployment. J. Sens. Actuator Netw. 2020, 9, 53. [CrossRef]

31. Shawel, B.S.; Mare, E.; Debella, T.T.; Pollin, S.; Woldegebreal, D.H. A Multivariate Approach for Spatiotemporal Mobile Data
Traffic Prediction. Eng. Proc. 2022, 18, 10. [CrossRef]

32. Schmid, J.; Schneider, M.; Höß, A.; Schuller, B. A comparison of AI-based throughput prediction for cellular vehicle-to-server
communication. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference
(IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 471–476.

33. Jiang, W. Cellular traffic prediction with machine learning: A survey. Expert Syst. Appl. 2022, 201, 117163. [CrossRef]
34. Bayram, F.; Ahmed, B.S.; Kassler, A. From concept drift to model degradation: An overview on performance-aware drift detectors.

Knowl.-Based Syst. 2022, 245, 108632. [CrossRef]
35. Agrahari, S.; Singh, A.K. Concept Drift Detection in Data Stream Mining: A literature review. J. King Saud Univ.-Comput. Inf. Sci.

2022, 34, 9523–9540. [CrossRef]
36. Ge, J.; Li, T.; Wu, Y. Concept Drift Detection for Network Traffic Classification. In AI and Machine Learning for Network and Security

Management; IEEE: Piscataway, NJ, USA, 2023; pp. 91–108. [CrossRef]
37. Liu, Z.; Godahewa, R.; Bandara, K.; Bergmeir, C. Handling Concept Drift in Global Time Series Forecasting. In Forecasting with

Artificial Intelligence: Theory and Applications; Hamoudia, M., Makridakis, S., Spiliotis, E., Eds.; Springer: Cham, Switzerland, 2023;
pp. 163–189. [CrossRef]

38. Raca, D.; Leahy, D.; Sreenan, C.J.; Quinlan, J.J. Beyond throughput, the next generation: A 5G dataset with channel and context
metrics. In Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 303–308.
[CrossRef]

39. Hancer, E.; Xue, B.; Zhang, M. A survey on feature selection approaches for clustering. Artif. Intell. Rev. 2020, 53, 4519–4545.
[CrossRef]

http://dx.doi.org/10.1109/LCOMM.2021.3138075
http://dx.doi.org/10.1109/LWC.2018.2795605
http://dx.doi.org/10.1109/5GWF52925.2021.00082
http://dx.doi.org/10.1109/TMC.2017.2756937
http://dx.doi.org/10.4218/etrij.2022-0459
http://dx.doi.org/10.1109/MCOM.001.1900394
http://dx.doi.org/10.1007/s11432-019-2695-6
http://dx.doi.org/10.1002/dac.4952
http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473514
http://dx.doi.org/10.3390/jsan9040053
http://dx.doi.org/10.3390/engproc2022018010
http://dx.doi.org/10.1016/j.eswa.2022.117163
http://dx.doi.org/10.1016/j.knosys.2022.108632
http://dx.doi.org/10.1016/j.jksuci.2021.11.006
http://dx.doi.org/10.1002/9781119835905.ch5
http://dx.doi.org/10.1007/978-3-031-35879-1_7
http://dx.doi.org/10.1145/3339825.3394938
http://dx.doi.org/10.1007/s10462-019-09800-w


Appl. Sci. 2024, 14, 1962 18 of 18

40. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests
(tsfresh—A Python package). Neurocomputing 2018, 307, 72–77. [CrossRef]

41. Fulcher, B.D. Feature-based time-series analysis. In Feature Engineering for Machine Learning and Data Analytics; CRC Press:
Boca Raton, FL, USA, 2018; pp. 87–116.

42. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN.
ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2018.03.067
http://dx.doi.org/10.1145/3068335

	Introduction
	Related Works
	Theoretical Background
	Traffic Characteristics
	Feature Extraction
	Clustering
	Long Short-Term Memory Networks
	Prediction Accuracy

	Experiment and Results
	Parameters
	Results
	Discussion

	Conclusions
	References

