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Abstract: When performing classification tasks on high-dimensional data, traditional machine
learning algorithms often fail to filter out valid information in the features adequately, leading to
low levels of classification accuracy. Therefore, this paper explores the high-dimensional data from
both the data feature dimension and the model ensemble dimension. We propose a high-dimensional
ensemble learning classification algorithm focusing on feature space reconstruction and classifier
ensemble, called the HDELC algorithm. First, the algorithm considers feature space reconstruction
and then generates a feature space reconstruction matrix. It effectively achieves feature selection and
reconstruction for high-dimensional data. An optimal feature space is generated for the subsequent
ensemble of the classifier, which enhances the representativeness of the feature space. Second, we
recursively determine the number of classifiers and the number of feature subspaces in the ensemble
model. Different classifiers in the ensemble system are assigned mutually exclusive non-intersecting
feature subspaces for model training. The experimental results show that the HDELC algorithm has
advantages compared with most high-dimensional datasets due to its more efficient feature space
ensemble capability and relatively reliable ensemble operation performance. The HDELC algorithm
makes it possible to solve the classification problem for high-dimensional data effectively and has
vital research and application value.

Keywords: classification ensemble; feature selection; high dimensional; space reconstruction; ensemble
learning

1. Introduction

Various multi-dimensional heterogeneous data, such as low signal-to-noise ratio, can
be collected through simultaneous access to information sources and used to comprehen-
sively solve classification problems. For example, in gene expression [1] data, each sample
may contain the expression levels of thousands of genes, which will be used as features for
disease diagnosis, drug-response classification prediction, and other studies. In financial
analysis [2], the basic features of each stock include opening price, closing price, high price,
low price, volume, etc., and also have features such as macroeconomic indicators, company
fundamental information, etc., which are used to construct complex stock market classifica-
tion prediction models. Multiple data such as physiological signal data (heart rate, blood
pressure, blood glucose level), electronic health records, diagnostic records, medication
usage records, etc., are involved in the health and disease screening task [3], and data
such as air quality sensor data, water quality monitoring data, meteorological data, and
satellite remote sensing data are acquired through multiple sensors in an environmental
monitoring [4] classification task. How to fully extract valid and interpretable information
from these high-dimensional data has become a hot topic widely studied by scholars nowa-
days. Another issue is too much redundant information and the insufficient extraction of
crucial information. This kind of high dimensional data with different independence and
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relevance increases the difficulty of information search and model matching and leads to
poor classification results.

Ensemble learning [5–7] algorithms can combine a variety of typical conventional
classifiers organically and overcome the limitations of traditional single classifiers for high-
dimensional-data classification tasks. The overall ensemble model is built by fully using
various valid information regarding high-dimensional data. It can improve the robustness
and generalization performance of the learning model. Many ensemble learning algorithms
have been proposed in recent years, such as bagging [8], random forest [9], a fuzzy classifier
ensemble [10,11], and a neural network-based classifier ensemble [12,13].

However, most ensemble algorithms are implemented directly on the original feature
space, which must be revised in classification tasks for high-dimensional data with redun-
dancy and noise. For sample space-based Adaboost algorithms [14], they do not provide
substantial diversity for high-dimensional data containing redundancy; for feature space-
based methods, such as random subspace algorithms [15], they do not provide effective
filtering for high-dimensional features, and fusion on subspaces can lead to information
loss and degrade classifier performance. Therefore, for high-dimensional data, although
traditional integrated learning algorithms can accomplish the data classification task better,
they still have the following shortcomings: 1. Simple math-driven methods make it difficult
to compress the high-dimensional-data space, which makes it challenging to construct
an accurate and reliable classification model. 2. Considering feature selection and model
integration separately and independently will lead to the low robustness and scalability of
the task of high-dimensional data.

In order to overcome the above limitations, we propose a high-dimensional ensemble
learning classification algorithm based on feature space reconstruction, called HDELC algo-
rithm (HDELC is the abbreviation of high-dimensional ensemble learning classification),
which selects and combines features more intelligently through feature space reconstruction
to reduce dimensionality effectively instead of applying simple mathematical compression
techniques on high-dimensional data, and retain the information crucial to the classifica-
tion task. It focuses on data feature space and model integration, which can improve the
diversity of models and accuracy in learning high-dimensional data to a certain extent.

Precisely, the HDELC algorithm first reconstructs the original feature space, establishes
the feature space reconstruction matrix through the two thresholds of the mean value of
information entropy and the screening factor of feature attributes, splits the original feature
space, and obtains the optimal feature space scale. Based on the optimal feature space scale,
PCA is used to downscale the original feature space to obtain a new high-dimensional
feature reconstruction space. The high-dimensional feature reconstruction space is defined
as the set of solid feature spaces divided by the average information entropy and the set
of optimal weak feature spaces preserved by the screening coefficients. The scale of this
feature space is the dimension to which the PCA downscaling needs to be reduced. The
feature subspace is a smaller set of features chosen from the original feature space; the set of
feature subspaces after dimensionality reduction is used as the best feature subspace and as
the feature set for subsequent subspace integration work. Secondly, based on the Stacking
model [16], the feature space is divided into several mutually exclusive non-intersecting
feature subspaces to determine the optimal number of classifiers in the integrated system
to achieve the goal of the overall integration model: “good but different”. “Good but
different” means that by assigning different feature subspaces to different classifiers, the
performance of the integrated model is improved while ensuring the diversity of classifiers
in the integrated system.

The contributions of this paper are twofold. Firstly, it focuses on exploring helpful
information in the feature space of high-dimensional data and proposes a high-dimensional
feature space reconstruction strategy based on the feature space (partition) selection matrix;
secondly, a selective subspace ensemble algorithm is designed to optimize the ensemble
model and ensure model accuracy and diversity.
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The rest of the paper is organized as follows. Section 2 introduces some preliminary
knowledge of integration learning in previous work related to high-dimensional data en-
semble models; Section 3 details the specific process of the high-dimensional data ensemble
classification algorithm (HDELC algorithm) based on the reconstruction and ensemble of
high-dimensional feature space; Section 4 evaluates the performance of our proposed model
through comparative experiments and ablation experiments; and Section 5 summarizes the
work of this paper, provides a summary future work and the outlook of the future work.

2. Related Work

Ensemble learning (EL) is an advanced machine learning technique that aims to im-
prove model accuracy, stability, and generalization by combining the predictive power of
multiple learners (also known as models). The technique is based on the core premise that
integrating multiple models can produce superior predictive performance than a single
model. By integrating the classification predictions from multiple models, integrated learn-
ing can capture more complex patterns and relationships in the data and thus demonstrate
more robust generalization capabilities on unseen data.

Integrated learning techniques have been widely used in several practical application
scenarios and have achieved significant results, such as financial risk assessment, image
recognition, speech recognition, and natural language processing, etc., which can synthesize
multiple models to adapt to the complexity of the data and achieve significant performance
improvement in multiple tasks.

A large number of excellent approaches have been proposed by scholars for the
classification problem of high-dimensional data.

Some studies focus on feature data selection by proposing a new feature dimensional-
ity reduction strategy for data lacking sparsity and interpretability, and then, iteratively
compute the model performance using mainstream classifiers to obtain the final classifica-
tion results.

For example, Xiaomeng Li et al. [17] performed dimensionality reduction on monitor-
ing data of mechanical conditions, introduced an autoencoder to mine the degraded feature
space, and provided a comprehensive representation of the degraded data in different
aspects, which verified the model validity. Jayaraju Priyadarshini et al. [18] employed
six physically inspired metaphorical algorithms for a K-nearest-neighbor analysis of fea-
ture selection, and the accuracy was about 8% higher than the meta-heuristic-algorithm
approach. Li Y et al. [19] proposed a framework for joint dimensionality reduction and
dictionary learning, using self-encoders to learn the non-linear mapping of the feature
space and optimizing the model performance through the mapping function and dictio-
nary simultaneously, and experimentally verified the effectiveness of the proposed model.
Wang Q et al. [20] first used both eigenvalue search and subspace sampling to process
high-dimensional data, and then designed an efficient random forest algorithm. Experi-
mental tests using the face dataset, the experimental results show that this algorithm can
guarantee prediction accuracy while significantly reducing the prediction error compared
with existing random forest algorithms with an accuracy of 95.7%. Khandaker Mohammad
Mohi Uddin et al. [21] developed a machine learning-based CAAD algorithm to explore
hyper-parameter tuning with feature scaling and optimization strategies, which resulted in
up to 98.77% accuracy of voting classifier in a breast cancer diagnosis task and validated
the effectiveness of the model.

Some algorithms focus on constructing a new ensemble learning model to improve the
model’s generalization performance and classification accuracy. They theoretically explore
and analyze the nature of the classifier ensemble and can improve the ensemble learning
algorithm framework and the model’s generalization ability.

Stéphane Cédric Koumétio Tékouabou et al. [22] improved the model performance by
combining integration methods such as bagging classifiers (BCs) with dynamic/static selec-
tion strategies (BC-DS/SS) in three-stage fusion. Che Xu et al. [23] considered the individual
accuracies of the base classifiers (BCs) and the diversity among classifiers and proposed a
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sequential instance selection framework based on genetic algorithms. They verified the
ability of the proposed framework to improve the convergence performance compared with
six benchmark integration learning methods. Kurutach T et al. [24] used a model-ensemble
trust-region policy optimization (ME-TRPO) strategy to integrate the model, ensuring
uncertainty in the model and regularizing the training process. Ahmed K et al. [25] pro-
posed a multi-model fusion strategy (MME) based on KNN and RVM for the predictive
classification task of weather data, and this strategy was able to determine the optimal
number of circulation models from a set of circulation models. Zhong Y et al. [26] first set
a dynamic threshold. They ensemble multiple learners under the threshold constraint to
propose the HELAD ensemble algorithm, and this ensemble framework can achieve better
competitiveness and accuracy in anomaly detection tasks for network traffic.

Although these algorithms can improve the model performance compared to tradi-
tional ensemble learning algorithms, most ensemble learning algorithms consider sample
space and feature space separately. On the other hand, ensemble learning systems do not
need to select all base learners for the ensemble, and some researchers suggest choosing
the appropriate learners to achieve better classification performance.

Although the ensemble learning strategy uses multiple classifiers to improve the
model generalization performance, it alleviates the limitation that training the optimal
classifier on high-dimensional data is challenging. However, most studies either perform
dimensionality reduction on features but do not assign proper classifiers to them, or,
alternatively, only a base classifier ensemble with diversity is considered and implemented
directly on the original feature space, and it is susceptible to noise and redundant features.

Therefore, these methods still have limitations when faced with classification tasks for
high-dimensional data:

(1) Most of the above feature selection algorithms are designed to obtain an optimal
subset of features. In contrast, the classifier calls an existing subset of features and
uses a fixed structure when evaluating the subset of features. Therefore, the classifier
used may not be the best.

(2) Different classifiers, such as decision trees, support vector machines (SVMs), etc.,
based on their unique learning algorithms, will produce different predictions on the
same dataset. These differences arise from the different ways in which individual
algorithms partition the feature space of the data and the trade-offs they make be-
tween model complexity, bias, and variance. In a numerical analysis, this prediction
variability can lead to a significant impact on the overall prediction results of the
integrated model.

3. HDELC Algorithm

The high-dimensional ensemble learning classification algorithm (HDELC algorithm)
can improve the model’s performance by using both global and local structural information
of high-dimensional data. Specifically, it is divided into two significant aspects. Firstly, the
data feature space is processed. The feature space is divided into multiple local feature
regions by constructing a threshold and feature reconstruction matrix. Second, the model
is trained using several single classifiers and subspace ensemble methods within different
local feature regions. The prediction results between different feature space regions use
ensemble to obtain more accurate prediction results. Figure 1 shows the flow chart of the
HDELC algorithm based on the feature space reconstruction matrix.

Given a training set, M = {(x1, y1), (x2, y2), . . . , (xL, yL)} with L samples, where
xi(i ∈ {1, 2, . . . , L}) is the training sample, yi(i ∈ {1, 2, . . . , k}) is the label of the ith training
sample, k is the number of classes, and each sample xi ∈ {xi1, xi2, . . . , xin} consists of
n features. φ̂ =

{
φ1, φ2, . . . , φH}

denotes all classifiers in the ensemble model. (See
Algorithm 1).
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Algorithm 1. Subspace ensemble strategy based on high-dimensional feature space reconstruction.

Require:
Input: Original high-dimensional dataset.
Procedure
1: Obtain the optimal feature space with Algorithm 2;
2: Find the feature-reconstructed dataset (final dataset);
3: Spilt the reconstructed dataset into training data and testing data;
4: Train the φ̂ =

{
φ1, φ2, . . . , φH}

using the training data;
5: Sort the training results for each classifier;
6: Divide feature subspaces;
7: Select the classifiers in the ensemble model using the Algorithm 3;
8: Build the first layer of the ensemble training model;
9: Train the model using the model prediction results as input to the second-layer learner.
Output: Predicted results of the HDELC model.
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3.1. High-Dimensional Feature Space Reconstruction Process

Reconstructing the high-dimensional feature space can maximize model diversity and
local optimization performance. It divides the original high-dimensional data into relatively
independent subsets of different feature spaces. Not only can the correlation between
individual base classifiers be reduced, but also the operations are executed relatively faster
due to the reduced size of the input feature space corresponding to each base classifier. The
algorithmic flow of high- dimensional feature space reconstruction is given using the FSR
algorithm (the abbreviation of feature subspace reconstruction strategy).

Algorithm 2. Feature subspace reconstruction strategy

Require:
Input: The feature space selection matrix X;
Procedure
1: For i in 1, . . . , n;
2: Calculate the information entropy Ent(xi);
3: Calculate the average value of information entropy AveEnt;
4: if Ent(xi) ≤ AveEnt
5: Place xi in the set XS;
6: Or;
7: Place xi in the set XW ;
8: Set the filter factor β;
9: Calculate the number of features

∣∣XW
del

∣∣ that are rejected in weak feature space;
10: Redivide and the weak feature space XW ;
11: Refactor the feature space X′;
12: Use X′ ∈

(
X1

′, X2
′, . . . , XB

′) to train the decision tree classifier (φ1, φ2, . . . , φB);
13: Select the attribute screening factor corresponding to the maximum precision as the optimal

attribute screening factor, and then determine the optimal feature selection set size
∣∣∣Xbest

∣∣∣;
14: Use PCA dimensionality reduction to reduce the original feature space X to

∣∣∣Xbest
∣∣∣ dimension.

Output: The optimal feature selection set size
∣∣∣Xbest

∣∣∣ and feature-reconstructed dataset.

For the reconstruction process of the high-dimensional feature space, first, the entropy
weight method [27] is used to obtain the information entropy of each feature and its weight.
In this way, the importance of the features is evaluated. The mean value of information
entropy of all features is calculated and used as the threshold value. The construction of
the feature space reconstruction matrix will be based on this threshold value.

Information entropy is directly related to the predictive uncertainty of the features, can
provide an objective method to assess the contribution of the features, and can accurately
quantify the uncertainty level of the features in the classification task. By measuring
features with low information (i.e., high uncertainty) based on the information entropy
mean, the complexity of the model can be effectively reduced, thereby reducing the risk
of overfitting and improving the model’s generalization ability. Using the mean value of
information entropy as the delineation boundary of feature importance, the set of features
with information entropy that is more significant than the threshold value is considered for
a partial optimization operation.

Second, the threshold value is used for feature importance classification. We optimize
the set of features whose partial information entropy is more significant than the threshold
value. In order to maximize the valuable information in the features and reduce the feature
space size, the redundant features are discarded to load the model computation. We set
the attribute screening factor β as the screening coefficient for the set of features more
significant than the threshold, β ∈ [0.1, 0.2, 0.3, 0.4, 0.5], and perform a sensitivity analysis
on it. The set of feature subspaces under each attribute rounding factor constraint is used
to construct the feature space reconstruction matrix. When training on the samples, it is
convenient to locate the target selected features quickly. A set of decision tree classifiers are
trained using the set of feature subspaces under each attribute discard factor constraint.
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The features used for decision tree branching are selected by comparing the information
gain [28] φ of different features. The information gain φ is defined as follows:

φ(M, X) = Ent(M)− Ent(M|X) (1)

Ent(M) = −
K

∑
k=1

Ck
M

log2
Ck
M

(2)

Ent(M|X) = −
m

∑
i=1

|Mi|
|M|

K

∑
k=1

|Mik|
|Mi|

log2
|Mik|
|Mi|

(3)

where φ(M, X) is the information gain of feature X on the training dataset M, Ent(M)
is the empirical entropy of the dataset M, and Ent(M|X) is the empirical conditional
entropy of feature X on the dataset M. The sample size of dataset M is |M|, k is the
number of classification labels, |Ck| is the number of samples belonging to category Ck,

∑K
k=1

∣∣∣Ck

∣∣∣= |M| . The values of feature X are a1, a2, . . . , am, and according to the values
of A, M is divided into m subsets M1, M2, . . . , Mm. |Mi| is the number of samples of Mi,
∑m

i=1|Mi|= |M| . The set of samples belonging to Ck in the feature subset Mi is Mik, |Mik|
is the number of samples of Mik.

For each node of the decision tree, the information gain of each feature is calculated,
and the maximum information gain feature is selected as the basis for splitting the nodes.
After branching continuously recursively, all training samples are assigned to the child
nodes according to the branching condition. The feature space size corresponding to the
feature space matrix under the constraint of the optimal attribute screening factor is the
optimal feature selection set size.

Finally, since the PCA dimensionality reduction method can filter the noisy data, while
retaining the essential features, the number of features corresponding to the optimal feature
selection set size is used as the basis for PCA dimensionality reduction to optimize the size
of the original feature space, which ensures the rigor of the dimensionality reduction scale
as well as ensures that the original information is not lost. The optimized original feature
space is used for subsequent research of classifier integration.

3.1.1. Construction of the Feature Space Reconstruction Matrix

In order to solve the problem that high-dimensional data will reduce the model’s
computational efficiency in the model training process, it is necessary to select the feature
domain before training the high-dimensional data model. The features with high relative
importance are selected as feature subsets for classifier training. The optimal subset size of
the feature space is selected through the construction of the feature selection space matrix.
It can retain the valuable information in the original data as much as possible in the feature
selection stage and improve the efficiency and accuracy of the model operation.

Suppose that the input of the decision tree is the training dataset M with the number
of samples |M|, and z = [z1, z2, . . . , zn] represents a sample in the dataset of dimension
n. Meanwhile, X is the matrix representing the training dataset with size l rows and n
columns, Y is the label vector of the training dataset with length l, and Y = [y1, y2, . . . , yl ]

T .
In the feature selection phase, the information entropy of each feature is first calculated,

and the features in the original feature space are arranged in ascending order according
to the information entropy. Information entropy was introduced by Claude Shannon in
1948 to quantify the uncertainty or average content of information in a source. In the
concept of information theory, assuming that a source given using a discrete random
variable X = {x1, x2, . . . , xn} has a probability of occurrence pi = P(xi)(i = 1, 2, . . . , n) and
∑n

i=1 pi = 1, the information entropy of the source X is expressed as

Ent(xi) =
n

∑
i=1

pi log2
1
pi

= −k
n

∑
i=1

pi ln pi (4)
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where Ent(xi) is the characterization quantity for the overall characteristics of the source, it
is a measure of the uncertainty of the source metric output information and the randomness
of event occurrence.

In classifier integration, especially when using gradient boosting methods (e.g., gradi-
ent boosting trees) for model training, information entropy based on natural logarithms
can simplify gradient computation. Moreover, the derivative of the natural logarithm has a
concise form, which helps to compute the gradient and perform effective optimization. For
using natural logarithms to represent information entropy, where k = log2 e, we use the
Boltzmann constant [29].

Based on the information entropy of each feature, calculate its corresponding coeffi-
cient of variability αi and weight γi as follows.

αi = 1 − Ent(xi) (5)

γi =
αi

∑n
1 αi

(6)

The average information entropy AveEnt of each feature is calculated and used as a
basis for classifying the importance of features in the feature space, as shown in Equation (7):

AveEnt =
∑n

1 Ent(xi)

n
(7)

At this point, the average information entropy is used as the feature space division
threshold. This threshold divides the feature space into two major regions, with features
with information entropy less significant than the average information entropy marked as
AveEnt and features with information entropy higher than average marked as AveEnt and
weak features, as follows:

xi =

{
strong f eature(xi > AveEnt, xi ∈ X)
weak f eature(xi < AveEnt, xi ∈ X)

(8)

Strong features are often considered those with relatively low information entropy,
meaning they exhibit significant regularity or certainty in the dataset. Low entropy fea-
tures distinguish categories because they exhibit significantly different distribution pat-
terns across categories or outcomes. Secondly, strong features contribute significantly to
predicting or categorizing the target variable and can significantly improve the model’s
performance. Such features usually contain information crucial for problem-solving and
should be prioritized for retention in the feature selection process.

On the contrary, weak features tend to have high information entropy, indicating
that they are more evenly distributed in the dataset, with roughly the same probability of
occurrence for each state, which results in the features being less capable of distinguish-
ing between different classes or outcomes. High entropy features may contain a large
amount of noisy information and have limited contribution to the prediction of the target
variable. Moreover, weak features contribute less to improving the model performance
and even introduce errors that increase the model complexity without improving the
prediction ability.

This results in a feature subspace XS consisting of strong features and a feature
subspace XW consisting of weak ones. After that, the original feature space samples can be
redefined after the average information entropy division as

X = [X ∗ FS, X ∗ (I − FS)] = [XS, XW ] (9)

where “∗” is the product of the corresponding elements of the two matrices, i.e., the
Hadamard product of the two matrices. I is a unit matrix of l rows and n columns, and
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FS denotes the eigenspace reconstruction matrix obtained after the eigenspace has been
partitioned using a threshold, which is a matrix of l rows and n columns, defined as follows:

FS =


∂1

1 ∂2
1 · · · ∂n

1

∂1
2 ∂2

2 · · · ∂n
2

· · · · · · · · · · · ·
∂1

l ∂2
l · · · ∂n

l

 (10)

Of which,

∂i
j =

{
1
(
i ∈ {1, . . . , n}, j ∈ {1, . . . , l}, xi ∈ XS)

0
(
i ∈ {1, . . . , n}, j ∈ {1, . . . , l}, xi ∈ XW) (11)

Based on the division of the average information entropy, the feature space reconstruc-
tion matrix is established, the significance of which is able to divide the features with strong
and weak feature information, obtaining a feature space reconstruction matrix consisting of
1 and 0, representing strong and weak features, respectively. It is also possible to observe
the change in the importance of the feature space more clearly and to extract the selected
feature space more quickly when the model is trained for classification.

3.1.2. Feature Subspace Division and Reconstruction Process

After constructing the feature space reconstruction matrix in the previous section, the
attribute screening factor β is set as the screening coefficient to optimize the number of
features in the set of weak feature spaces (features more significant than the threshold), and
the original feature space is partitioned twice, i.e., to the set of weak feature subspaces XW

as follows: ∣∣∣XW
del

∣∣∣ = β·
∣∣∣XW

∣∣∣ (12)

where “·” is the product of the screening factor and each element of the matrix, XW
del is

the set of eliminated features in the set of weak feature space,
∣∣XW

del
∣∣ is the number of

eliminated features in the set of weak feature space XW ,
∣∣XW

∣∣ is the number of features in
the set of weak feature subspace XW . The product of the attribute screening factor β and
the number of features

∣∣XW
∣∣ in the weak feature subspace set XW is the number of features

that will be screened and optimized in the weak feature subspace, which corresponds to
the scale of PCA downscaling.

Let the number of features in the strong feature space be s. At this point, the weak
feature space is redefined as XW as follows:

XW =
[

XW ∗ FD, XW ∗ (I′ − FD

)
] (13)

where “∗” is the product of the corresponding elements of the two matrices, i.e., the
Hadamard product of the two matrices, and I′ is the unit matrix of l rows (n − s) columns.
FD denotes the weak eigenspace reconstruction matrix, which is a matrix of l rows (n − s)
columns, defined as follows:

FD = I − FS =


µ1

1 µ2
1 · · · µn

1

µ1
2 µ2

2 · · · µn
2

· · · · · · · · · · · ·
µ1

l µ2
l · · · µn

l

 (14)

Of which,

µi
j =

{
1
(
i ∈ {1, . . . , n − s}, j ∈ {1, . . . , l}, xi ∈ XW)

0
(
i ∈ {1, . . . , n − s}, j ∈ {1, . . . , l}, xi ∈ XW

del
) (15)
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At this point, the original feature space is reconstructed as the set of strong feature
spaces divided by the average information entropy and the set of weak feature spaces that
are not optimized by the constraints of the attribute screening factor, defined as follows:

X′ =
[

X ∗ FS, XW ∗ FD

]
=

[
XS, XW − XW

del

]
(16)

The attribute screening factor corresponding to the optimal accuracy in the group
of trained decision tree classifiers is selected as the optimal feature space optimization
coefficient. The original feature space is reconstructed as the set of strong feature spaces
divided by the average information entropy and the set of the best weak feature spaces that
are not constrained by the optimization coefficients to be optimized. The new feature space
is constructed using the selected 1 − |XW

del | principal components:

Xbest = PCA
(

X, 1 − |XW
del |

)
(17)

where PCA
(
X, 1 − |XW

del |
)

denotes the operation of applying PCA to the original feature
space X and retaining the first 1 − |XW

del | principal components.
The reconstructed feature subspace ensemble size is used as the optimal feature

subspace size and as the basis for PCA downscaling. The original feature space size is
optimized using PCA downscaling as the feature ensemble size for the subsequent subspace
integration work |Xbest|, as shown in Figure 2.
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Figure 2. Illustration of the process of feature space selection and reconstruction.

3.2. Classifier Selection and Ensemble Models

The classifier selection and ensemble part of the HDELC algorithm is firstly based
on the traditional Stacking ensemble strategy for the high-dimensional-data classification
problem to be solved in this paper, and secondly, it is optimized based on it. The basic
idea of the Stacking ensemble algorithm is to train the first-layer classifier with the initial
dataset. A new dataset is generated to train the second layer of classifiers. The output of
the first-layer classifier is the input feature of the second-layer classifier, while the original
labels are still used for the new dataset.

After the reconstruction of the feature space in the previous subsection, the classifier
selection and ensemble model in this chapter is based on the Stacking algorithm. The
main two parts are classifier selection and classifier ensemble. The subspace classifier
integration algorithm called CSE algorithm (CSE stands for subspace classifier ensemble
process) describes the process of subspace classifier integration for high-dimensional data.
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Algorithm 3. The process of high-dimensional data subspace classifier ensemble.

Require:
Input: The collection of feature spaces after reconstruction Xbest.
Procedure
1: For φi in φ̂ =

{
φ1, φ2, . . . , φH}

2: Calculate the accuracy of the base learner in the ensemble model;
3: Sort the accuracy of base classifiers from largest to smallest;
4: Find the optimal number of base learners;
5: Use the best classifier set as the base learner in the Stacking model;
6: Find the best training model.
Output: Predicted result.

3.2.1. Classifier-Selection Process

After reconstructing the original feature space in Section 3, we obtain the best feature
subspace that can be used for classifier selection. The primary ensemble parameter α is set
in this section. α, as the critical parameter for the subspace inheritance strategy proposed
in this paper, is an essential coefficient for partitioning the high-dimensional feature subset
and selecting the classifier size in this work, and will be presented in this section.

The input to the classifier ensemble algorithm based on high-dimensional data is the
original set of classifiers, and the size of the original set of classifiers is determined using
α. If the ensemble learning scale were to increase indefinitely, it would not improve the
classification prediction, so the number of classifiers is first bounded, defined as

|̂φ| = 2α, α ∈ [1, 2, 3] (18)

The number of classifiers in the original set of classifiers is the number of feature
subspaces to be partitioned under the feature space reconstruction:

|̂ω| = |̂φ| = 2α (19)

where ω is the set of characteristic subspaces, and |̂ω| is the number of subspaces in the set
of characteristic subspaces.

At the start of the model, the classifier with the highest accuracy φ1 is selected as the
first classifier:

φ1 = argmaxφ∈φ̂{AC1, AC2, . . . , ACH} (20)

The high-dimensional ensemble algorithm will continue to gradually assign feature
subspaces to classifiers until the second to Hth classifiers are all assigned (H is the pre-
defined number of selected classifiers). By ranking the feature information entropy in the
previous section, the set of feature subspaces with the highest information entropy ranking
in the reconstructed sample is initially assigned to the classifier with the highest accuracy,
where φ̂ =

{
φ1, φ2, . . . , φH}

denotes all classifiers in the ensemble model, and the mean
and mean square error of each classifier are calculated based on its performance on the
training set as follows:

ε =
1
H

. ∑n
n=1| f (xi)− yi|

n
(21)

where f (xi) is the model prediction, yi is the actual value, and n is the number of high-
dimensional data samples.

The trade-off between accuracy and diversity is controlled due to the need to ensure
high levels of accuracy in classifier integration, while increasing the diversity of classifiers
in the integrated system. Therefore, for each classifier in φ̂ corresponding to the feature
subspace ωj, we consider the following loss function ∆l(φ):

∆l(φ) = θ
1

Accj
+ (1 − θ)

1
ϑ
(
ωj, ωh

) (22)
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where θ is a weighted parameter between 0 and 1 that controls for the relative impor-
tance of accuracy and diversity in total losses. Accj is the accuracy of the jth classifier
for high-dimensional data samples, ϑ

(
ωj, ωh

)
denotes the similarity of the subspace ωj

corresponding to classifier φj, to the subspace ωh corresponding to classifier φh+1, and
classifier φh+1 is the classifier chosen for the next iteration.

Therefore, the total loss ∆l(φ) is a combination of the loss of accuracy and the loss
of diversity balanced by θ so that the model can reasonably balance these two aspects.
By adjusting the weighting parameters, it is possible to control the relative importance
of accuracy and diversity in the optimization process so that the model strikes a balance
between the two, training the model and evaluating its performance on a validation set.

Mutual Information (MI) [30], as a statistical measure of the amount of information
shared between two variables, can capture the nonlinear relationship between variables,
and is scale-independent, and helps in feature selection. Therefore, the feature subspace
similarity ϑ

(
ωj, ωh

)
is defined using the mutual information of two subspaces ωj, ωh with

feature display centers U j =
{

µ
j
1, µ

j
2, . . . , µ

j
kj

}
and Uh =

{
µh

1, µh
2, . . . , µh

kh

}
:

ϑ
(
ωj, ωh

)
= ∑

µ
j
t∈ωj

∑
µh

b∈ωh

p(µj
t, µh

b) log(
p(µj

t, µh
b)

p(µj
t)p

(
µh

b
) ) (23)

where p(µj
t, µh

b) is the joint probability distribution of ωj and ωh, and p(µj
t) and p(µh

b) are
the marginal probability distributions of ωj and ωh, respectively.

The loss function is set to ensure that the classifiers in the ensemble system can
guarantee high levels of accuracy and improve the diversity of classifiers in the ensemble
system. This approach not only integrates accuracy and diversity but also ensures the
consistency of the loss function throughout the training process, making the loss values
comparable between different training stages and θ values. Only one hyperparameter
θ needs to be adjusted, which reduces the number of hyperparameters that need to be
optimized for model tuning and simplifies the complexity of the model. In other words,
high-dimensional classifier integration algorithms based on the loss function ∆l(φ) tend to
select classifiers that improve model performance and increase the diversity of models in
the ensemble system.

3.2.2. Classifier Ensemble Process

Building a diverse set of base classifiers is critical for dealing with the problem of
classifying high-dimensional data. In general, inconsistency in base classifier predictions
increases the accuracy of ensemble learning without affecting the individual error rate [31].

According to the Error-Divergence Decomposition Theory framework [32], the gen-
eralization error for the ensemble learning model can be decomposed into three main
components: the average error (i.e., bias) of base learners, the variance among base learners,
and the covariance (reflecting the correlation) among base learners, which is simplified
as follows:

E = bias2 + Variance + Noise (24)

where bias represents the mean error, which reflects the difference between the mean and
the actual value predicted using the ensemble model; Variance is the inter-base learner
disagreement, which measures the difference between the base learner’s predictions; and
Noise represents the noise, which reacts to the random errors in the data themselves.

The framework explains the rationale for assigning non-overlapping feature subspaces
to classifiers and facilitates the understanding of how the generalization ability of the
ensemble learning model is affected by the errors of its constituent learners, the diversity
(divergence) among learners, and the correlation among learners.

(1) In ensemble learning, enhancing inter-model diversity is considered a critical factor
in improving the generalization ability of integration. By endowing each classifier



Appl. Sci. 2024, 14, 1956 13 of 25

with specific, non-overlapping feature subspaces, parsing of the dataset from different
dimensions can be achieved, thus enabling the integrated model to incorporate this multi-
dimensional information, and significantly improving the model’s overall performance.

(2) The low correlation between base learners is decisive for minimizing the overall error
of the ensemble learning model. Decorrelation of the error prediction can be achieved
by assigning different feature subsets to different classifiers, and this strategy naturally
reduces the dependency between base learners, thus enhancing the robustness of the
integrated model.

(3) Assigning non-overlapping feature subspaces to classifiers may increase the bias of
individual classifiers. However, by integrating these classifiers with high levels of
diversity, the variance of the overall model can be reduced. In essence, this approach
utilizes the ability of integrated learning to reduce variance while keeping bias as
constant as possible.

Therefore, the HDELC algorithm expects that multiple classifiers can increase the
diversity among base classifiers, and the output of the first layer is fused using the second
layer learning algorithm, whose effectiveness depends not only on the accuracy of individ-
ual learners but also on diversity among learners. In order to reduce the model load and
complexity, base learners in the classifier integration model in this paper are traditional
machine learning algorithms: decision tree, random forest, Adaboost, gradient boosting,
extra trees, and SVM. Based on the classifier selection, the Stacking ensemble method is
improved by assigning the reconstructed set of feature subspaces to different learners.

The core of the CSE algorithm lies in its dynamic allocation strategy of feature sub-
spaces, which considers the sensitivity of each classifier in integrating different data fea-
tures. The feature space after PCA dimensionality reduction is partitioned into several
feature subspaces.

(1) First, the algorithm picks an initial feature subspace for the first classifier of integration.
Then, it allocates mutually exclusive disjoint feature subspaces for each subsequent
classifier in turn (classifier) until all the preset classifiers have been configured. All
classifiers are level 1 classifiers, and each base learner is given a prediction. This
approach enables the complementary contribution of information, which in turn
enhances the ability of the overall integrated model to capture data diversity.

(2) Using multiple linear regression (MLR) as the secondary learner, the prediction
results and target values output from all models in the first tier are used as inputs
to the second-tier model to train the second-tier model. The second-layer model can
attenuate the effect of the error of a single model to improve the prediction accuracy
of the overall ensemble model.

3.3. Time Complexity Analysis

We have analyzed the time complexity of the HDELC algorithm. The time complexity
THDST of the HDELC algorithm is estimated as follows:

THDELC = TFSR + TFM + TCSE (25)

TFSR, TFM, and TCSE denote the computational cost of the original feature space
reconstruction set, the feature space matching classifier, and the cost of integrating the
model for classification prediction, respectively. Of these, TFSR is related to Algorithm 2
and TCSE is related to Algorithm 3.

TFSR is related to the number of samples l in the training set, the number of feature
attributes m, and the number of feature subspaces B:

TFSR = O(B·l·m log m) (26)
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The time complexity of TFM is influenced by the number of training samples l and the
number of feature subspaces B as follows:

TFM = O
(

B·l·√l + B· log B
)

(27)

TCSE is related to the number of classifiers G in the ensemble system and the number
of samples l in training set using the formula:

TCSE = O(G·l· log m) (28)

Since G and B are constants, the time complexity of the HDELC algorithm is approxi-
mately O(l·m· log m).

4. Experiments and Results
4.1. Experimental Data

The datasets in this paper were selected from 12 high-dimensional datasets in the
University of California, Irvine (UCI) repository [33], as shown in Table 1 of the high-
dimensional datasets in the UCI repository, most of which are from challenging high-
dimensional datasets. For example, the AsianReligionsData dataset in Table 1 is divided
into eight categories and features a high-dimensional feature space (8265 dimensions),
which makes the classification problem more challenging.

Table 1. Summary of the four datasets from the UCI machine learning repository.

Dataset Number of Instances Number of Attributes Number of Class

AsianReligionsData 590 8265 8
Arrhythmia 279 452 16

CNAE 1080 856 9
Gait 48 321 16
Ad 3279 1558 2

Parkinson 756 754 2
QSAR 1687 1024 2

QSAR_oral 8992 1024 2
REJAFADA 1996 6826 2

SCADI 70 206 7
Secom 1567 591 2
Urban 168 148 9

4.2. Experimental Setting

We use accuracy, recall, F1-score, and precision as the performance evaluation metrics
for the study in this paper, which are based on the four essential elements of the Confusion
Matrix (CM): true examples (TP, True Positives), false-positive examples (FP, False Positives),
true-negative examples (TN, True Negatives), and false-negatives (FN, False Negatives).

The classification accuracy (Acc) to evaluate the quality of predicted labels is defined
as follows:

Acc =
1

|M| ∑
xi∈M

1
{

yi
′ = yi

true} (29)

where M is the set of samples in the testing set, |M| is the cardinality of the set, and yi
′ and

yi
true denote the predicted label and the accurate label of sample xi, respectively. A 10-fold

crossover validation is adopted to reduce the random training/testing set partition effect.
Recall, F1-score, and precision metrics are defined below:

Recall =
TP

TP + FN
(30)
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precision =
TP

TP + FP
(31)

F1 − score = 2 ∗ precision ∗ Recall
precision + Recall

(32)

In the following experiments, we first perform parameter settings to analyze the
performance of the baseline model on high-dimensional data. Second, a sensitivity analysis
is performed for the attribute screening factor β proposed in Section 3 to visualize and
analyze the performance of the feature space with different attribute screening factor
constraints. Subsequently, ablation experiments are set up to explore the contributions of
the feature selection and classifier integration components and visualize the changes in
feature space reconstruction. Finally, the performance of the HDELC strategy proposed in
this paper is compared with other ensemble learning methods and advanced integration
techniques for high-dimensional data based on all the datasets in Table 1.

4.3. Experimental Results
4.3.1. Baseline Modeling and Parameterization

Using different traditional machine learning models as base classifiers introduces
diversity naturally, and using multiple simpler traditional machine learning models as base
classifiers can improve computational efficiency while maintaining high levels of accuracy.
Through integrated learning, the strengths of these models can be combined, e.g., decision
trees are easy to interpret, and support vector machines perform well on high-dimensional
data. In this paper, decision trees (DT), random forests (RF), Adaboost, gradient boosting
(GB), extreme trees (ET), and support vector machines (SVM) are selected as the initial set
of classifiers. The training set and test set are divided in the ratio of 8:2, the validation set is
divided 25% from the training set, and the validation set finally accounts for 20% of the
original dataset, which is used for adjusting the model parameters, and setting up multiple
sets of experiments to thoroughly investigate the effects of the model parameters.

Table 2 provides the parameter settings containing the parameter descriptions and
the range of available parameters. The parameters contain the attribute screening factor
β that constrains the feature space when the feature space is reconstructed, the number
of subsets of the feature subspace division, and the number of classifiers required for the
ensemble. The number of subsets of the feature subspace division is the same as the number
of classifiers required for the ensemble, as the feature spaces trained by different classifiers
in the HDELC ensemble model are one-to-one and do not intersect.

Table 2. The setting of the parameters.

Parameters Range

Attribute culling factors β in feature space 0.1, 0.2, 0.3, 0.4, 0.5
The number of subsets of feature subspace 2α, α ∈ [1, 2, 3]

The number of classifiers required for ensemble 2α, α ∈ [1, 2, 3]

Among them, β controls the feature reconstruction space’s degree of importance and
scale. The subset of feature subspace division and the number of classifiers required for
ensemble control the size of the ensemble model. All three together affect the accuracy of
the ensemble learning model to some extent.

4.3.2. Baseline Model Analysis

This paper first trains each classifier in the initial classifier set using the original
feature space, laying the experimental foundation for subsequent experiments to build
model ablation experiments and explore feature space reconstruction and the advantages
of ensemble classification techniques. Table 3 shows the performance of each dataset for
classification on six initial classifiers (decision trees (DT), random forests (RF), Adaboost,
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gradient boosting (GB), extreme trees (ET), and support vector machines (SVM)) using the
original feature space without reconstruction.

Table 3. Accuracy of training the model using all features in the dataset.

Dataset DT RF AdaBoost GB ET SVM

AsianReligionsData 0.7458 0.8475 0.5932 0.8220 0.8898 0.7881
Arrhythmia 0.6484 0.7582 0.6044 0.6923 0.7363 0.6044

CNAE 0.8333 0.8843 0.4768 0.9074 0.9074 0.8935
Gait 0.1000 0.8000 0.2000 0.6000 0.9000 0.6000
Ad 0.9695 0.9787 0.9695 0.9664 0.9741 0.9207

Parkinson 0.8146 0.8675 0.8808 0.8940 0.8940 0.7417
QSAR 0.8669 0.8935 0.8846 0.8876 0.8964 0.8905

QSAR_oral 0.96 0.9783 0.9988 0.9988 0.9900 0.9972
REJAFADA 0.9825 0.9900 0.9825 0.9875 0.9875 0.5965

SCADI 0.7143 0.8571 0.2143 0.7143 0.8571 0.8571
Secom 0.8694 0.9013 0.8822 0.9013 0.9013 0.9013
Urban 0.8333 0.8910 0.8889 0.8889 0.8941 0.6667

We observed that the 12 high-dimensional datasets performed differently under dif-
ferent classifiers, with differences in data dimensionality and size leading to varying
advantages of a single classifier. For example, the experimental precision of the SCADI
dataset (70 samples, 206 feature dimensions) under Adaboost is 0.2143. Compared to the
other five classifiers in the initial set of classifiers, the precision decreases by 50% to 64.41%.
The accuracy of the Gait dataset (number of samples 48, feature dimension 321) under the
decision tree and Adaboost, compared with the accuracy of the other four classifiers, also
differed by 40% to 80%.

4.3.3. Sensitivity Analysis of Attribute Screening Factors

In the feature space reconstruction stage, sensitivity analysis is performed on the
attribute screening factors to maximize the retention of helpful information in the features.
For each dataset, five sets of feature space scales are obtained according to five attribute
screening factors (β ∈ [0.1, 0.2, 0.3, 0.4, 0.5]), and the training is performed on the decision
tree classifier separately; based on the experimental results, the attribute screening of
different datasets on the decision tree classifier is analyzed using four model evaluation
metrics (accuracy, recall, F1-score, precision). The sensitivity of the factors is analyzed, and
the best attribute screening factor for the dataset is determined according to the sensitivity
analysis results. The spatial scale of the features under the constraint of the optimal attribute
screening factor is the spatial dimension to which the subsequent PCA dimensionality
reduction should be reduced.

The results of the attribute screening factor sensitivity analysis visualization are listed
in Figure 3a–d, respectively (taking the AsianReligionsData, Arrhythmia, Ad, QSAR dataset
as an example). The heatmaps visualize the changes and comparisons of the metrics, and
the shades of the color blocks indicate the magnitude of the values of the metrics (Accuracy,
Recall, F1-score and Precision) for different attribute screening factors. Darker colors
(usually toward the darker end) indicate higher values; lighter colors indicate lower values.
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gionsData dataset. (b) Arrhythmia dataset. (c) Ad dataset. (d) QSAR dataset.

Take (a) as an example to quantitatively analyze the performance of different indicators
under the attribute screening factor. The sensitivity is calculated as follows:

Sensitivity =
∑ ∆metric

n − 1
(33)

where ∆metric is the difference in performance metrics between successive attribute screen-
ing factors, and n is the number of attribute screening factors.

Accordingly, the sensitivity of all metrics on the AsianReligionsData dataset is ob-
tained. The Accuracy, Recall, F1-score, and Precision sensitivities are 0.0263, 0.0237, 0.0194,
and 0.0136, respectively. It shows that for the AsianReligionsData dataset, Accuracy and
Recall energy metrics are more sensitive to the changes in attribute screening factors.

4.3.4. Ablation Experiment

We observe that for most datasets, the reconstruction of the weak feature space using
different attribute screening factors primarily impacts the classifier’s performance. There-
fore, we conduct ablation experiments to explore the effectiveness of high-dimensional
feature space techniques in classification tasks.

(1) Ablation experiments based on feature space reconstruction scale

We have conducted ablation experiments to explore the contribution of the feature
space reconstruction scale to the model performance. Figure 4 shows the performance of the
12 UCI high-dimensional datasets under the initial classifier ensemble with the constraint
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of the attribute screening factor β, demonstrating the effect of different attribute screening
factors β on classifier performance. (The box-shaped rectangle represents the fluctuation
range of the data, and the upper and lower boundaries of the rectangle represent the third
quartile and first quartile of the corresponding accuracy, respectively. The solid red line
represents the median of the accuracy of each classifier in the classifier ensemble sorted
in order, and the blue dashed line represents the accuracy mean.) Figure 5 shows the
visualization of the variation of the reconstructed features.
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Figure 5. Visualization results of changes in feature space after reconstruction. (a) AsianReligionsData,
Ad and REJAFADA dataset. (b) Arrhythmia, CNAE and Gait dataset. (c) Parkinson QSAR and
QSAR_oral dataset. (d) SCADI, Secom and Urban dataset.

Under the constraint of the attribute screening factor β, some of the features are
optimized to be able to improve the model training accuracy to a certain extent; for example,
for the AsianReligionsData dataset, the highest accuracy is only 0.8898 when the initial
classifier set is trained using the original feature space in Table 2. In contrast, when β is
taken to the value of 0.5, discriminative optimization is performed to the feature space, and
the highest accuracy is up to 0.9062.

The possible reason for this is that optimizing some of the noisy, weakly discriminative
features is information unrelated to the current classification task, and when there are strong
interrelationships or repetitive information between the features, there will be multiple
covariance problems, and at this time, optimizing the features will eliminate the covariance
and reduce the bias in estimating the importance indices between the features. Secondly,
optimizing some features can reduce the degrees of freedom, shrink the model complexity,
and reduce the risk of overfitting.

Parts of the dataset for the box accuracy are more concentrated, for example, Ad,
QSAR, QSAR_oral, and Secom dataset. Take the Ad dataset as an example, its β = 0.1, and
the accuracy of the six classifiers is as low as 0.9228, the highest is 0.9750, the fluctuation is
small, but part of the dataset appeared to deviate from the data distribution of the “outlier
accuracy”. For example, when Adaboost is trained on the SCADI dataset, the highest accu-
racy is only 0.2555 when a different β is used to optimize the features, whereas the accuracy
of other classifiers can reach 0.8860, which may be because some of the classifiers’ structures
and preferences are unable to obtain the detailed feature information that is most useful for
the current task, and they are unable to deal with the high-dimensional data, which will
affect the classifiers’ performance. Therefore, we conduct ablation experiments to explore
the effectiveness of high-dimensional feature space techniques in classification tasks.

(2) Ablation experiment based on the classifier ensemble scale

After obtaining the feature reconstruction space for each high-dimensional dataset, we
explored the effect of the number of classifiers (2, 4, 6) on the HDELC ensemble algorithm.
The initial set of classifiers was decision tree (DT), random dorest (RT), Adaboost, gradient
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boosted (GB), extreme tree (ET), and support vector machine (SVM). Table 4 shows the
corresponding parameter settings for the 12 UCI high-dimensional datasets under the
HDELC algorithm, including the optimal attribute screening factor β corresponding to
different high-dimensional datasets and the order of selection of base classifiers for the
model ensemble.

Table 4. Optimal attribute screening factors and classifier ranking order.

Dataset The Best of β The Order of Selection for Base Classifiers

AsianReligionsData 0.5 ET > RF > GB > SVM > DT > Adaboost
Arrhythmia 0.4 RF > ET > GB > SVM > Adaboost > DT

CNAE 0.1 GB ≥ ET > SVM > RF > DT > Adaboost
Gait 0.3 ET > RF > GB > SVM > Adaboost > DT
Ad 0.4 RF > ET > Adaboost > DT > SVM > GB

Parkinson 0.4 GB > ET > Adaboost > RF > DT > SVM
QSAR 0.4 GB > ET > Adaboost > RF > DT > SVM

QSAR_oral 0.1 GB ≥ Adaboost > SVM > ET > RF > DT
REJAFADA 0.4 RF > ET > GB > DT > Adaboost > SVM

SCADI 0.2 SVM ≥ ET > RF > GB > DT > Adaboost
Secom 0.3 ET > GB > RF > SVM > Adaboost > DT
Urban 0.5 ET > GB ≥ Adaboost > RF > DT > SVM

For most datasets, the larger the β setting, the higher the classification accuracy tends to
be. The possible reason is that high-dimensional-data classification problems often contain
more redundant information. Moreover, optimizing some weak discriminative features will
enable the classifier to better capture the relationship between input and output variables
and help the model improve its generalization performance. It is further demonstrated that
the attribute screening factors β can somewhat improve the model’s robustness.

After the best attribute screening factors’ selection, the accuracy of the gradient boost-
ing tree and limit tree is relatively high. The possible reason is that random forest and
gradient boosting belong to ensemble algorithms. Both are based on decision trees, which
can better handle non-linear relationships, such as the classification of high-dimensional
data, and have a powerful fitting ability. In general, their performance is better than that of
traditional single classifiers. Moreover, from the perspective of deviation–variance analysis,
random forest mainly reduces the variance term of error, while gradient boosting can
reduce both variance and deviation.

Table 5 shows the accuracy, recall, F1-score and precision performance for the number
of ensemble classifiers. Regarding classification accuracy, most datasets have the best
performance in each category when the number of integrated classifiers is four, and better
performance is achieved on high-dimensional datasets. Meanwhile, the Recall, Precision,
and F1-score performances of HDELC-4 on Arrhythmia, Gait, SCADI, Secom, and other
datasets are also significantly improved. In summary, the effectiveness and robustness of
the HDELC algorithm proposed in this paper are verified.

Table 5. Accuracy, Recall, Precision and F1 Score for different numbers of ensemble classifiers, where
the bold values denote that the best value of the indicator under the dataset.

Dataset Model Accuracy Recall Precision F1-Score

AsianReligionsData
HDELC-2 0.8544 0.8187 0.8299 0.8243
HDELC-4 0.8593 0.8359 0.8168 0.8262
HDELC-6 0.8442 0.8366 0.8078 0.8219

Arrhythmia
HDELC-2 0.7214 0.7035 0.7072 0.7053
HDELC-4 0.7408 0.7229 0.7277 0.7253
HDELC-6 0.7351 0.7040 0.7258 0.7147
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Table 5. Cont.

Dataset Model Accuracy Recall Precision F1-Score

CNAE
HDELC-2 0.8888 0.9098 0.8915 0.9006
HDELC-4 0.9231 0.9110 0.9089 0.9099
HDELC-6 0.9437 0.9119 0.9080 0.9099

Gait
HDELC-2 0.7000 0.6838 0.6822 0.6830
HDELC-4 0.7000 0.7676 0.7512 0.7593
HDELC-6 0.6000 0.6172 0.5975 0.6072

Ad
HDELC-2 0.9548 0.9602 0.9630 0.9616
HDELC-4 0.9845 0.9653 0.9579 0.9616
HDELC-6 0.9802 0.9728 0.9732 0.9730

Parkinson
HDELC-2 0.8945 0.8882 0.8862 0.8872
HDELC-4 0.8941 0.8808 0.8863 0.8835
HDELC-6 0.8872 0.8721 0.8647 0.8684

QSAR
HDELC-2 0.9004 0.8969 0.8870 0.8919
HDELC-4 0.9152 0.9012 0.9217 0.9113
HDELC-6 0.9041 0.8991 0.9271 0.9129

QSAR_oral
HDELC-2 0.9921 0.9908 0.9910 0.9909
HDELC-4 0.9986 0.9961 0.9950 0.9955
HDELC-6 0.9959 0.9934 0.9949 0.9941

REJAFADA
HDELC-2 0.9844 0.9709 0.9724 0.9716
HDELC-4 0.9826 0.9697 0.9653 0.9675
HDELC-6 0.9733 0.9548 0.9429 0.9488

SCADI
HDELC-2 0.7842 0.7697 0.7539 0.7617
HDELC-4 0.7861 0.8009 0.8045 0.8027
HDELC-6 0.7622 0.7535 0.7463 0.7499

Secom
HDELC-2 0.9488 0.9409 0.9431 0.9420
HDELC-4 0.9593 0.9443 0.9457 0.9450
HDELC-6 0.9531 0.9441 0.9355 0.9398

Urban
HDELC-2 0.9452 0.9432 0.9305 0.9368
HDELC-4 0.9355 0.9490 0.9314 0.9401

4.3.5. Comparison of Advanced Aggregation Techniques for High-Dimensional Data

This chapter also compares HDELC with three primary traditional integrated classi-
fiers and three integration techniques for high-dimensional data that have performed well
in the existing research. Table 6 shows the performance of different integrated classifiers
for high-dimensional data. It shows that the HDELC algorithm performs well on most
datasets with an accuracy improvement of about 0.14% to 3.08% compared to the traditional
integrated classifiers. Compared to the three integration techniques for high-dimensional
data that have performed well in existing studies, the HDELC algorithm achieves better re-
sults, with an accuracy improvement of 2.2% compared to the best solution reported in the
literature [34] and a certain degree of accuracy improvement compared to the JMO-FSCD
algorithm proposed in the literature [35].

Meanwhile, compared with the current state-of-the-art integrated classification models,
the HDELC algorithm proposed in this study has a lower computational complexity,
which means that the HDELC algorithm is relatively efficient and performant and is more
effective and reliable in dealing with large-scale data. Table 7 shows the comparison of the
computational complexity of existing algorithms.



Appl. Sci. 2024, 14, 1956 22 of 25

Table 6. Accuracy of advanced aggregation techniques for high-dimensional data, where the bold
values denote that the best value of the indicator under the dataset.

Dataset HDELC Stacking Bagging Boosting BOA [34] JMO-FSCD [35] PCA-Decision Tree [36]

AsianReligionsData 0.8651 0.8361 0.8312 0.8367 0.8518 0.8633 0.8489
Arrhythmia 0.7397 0.7225 0.7411 0.7235 0.7361 0.7402 0.7296

CNAE 0.9444 0.9152 0.8600 0.9189 0.9102 0.9428 0.9225
Gait 0.7000 0.7000 0.7000 0.6000 0.6800 0.7000 0.6808
Ad 0.9842 0.9712 0.9534 0.9430 0.9847 0.9853 0.9823

Parkinson 0.8940 0.8921 0.8917 0.8932 0.8940 0.8944 0.8924
QSAR 0.9142 0.9108 0.9000 0.9000 0.9126 0.9132 0.9044

QSAR_oral 0.9989 0.9984 0.9802 0.9885 0.9892 0.9986 0.9989
REJAFADA 0.9844 0.9825 0.9813 0.9862 0.9837 0.9836 0.9840

SCADI 0.7857 0.7910 0.8427 0.7648 0.7829 0.7806 0.7844
Secom 0.9586 0.9562 0.9278 0.9531 0.9554 0.9546 0.9569
Urban 0.9444 0.9430 0.9301 0.9429 0.9355 0.9438 0.9381

Table 7. Comparison of computational complexity of existing algorithms.

Algorithm Computational Complexity

BEWOA [37] O(L·N·n)
LightTS [38] O(E·B·P·w)
AERF [39] O

(
D·d·m·K·n2)

HDELC O(l·m· log m)

4.3.6. Significance Test

We further used several non-parametric tests to determine the significance of the per-
formance differences between the HDELC algorithm and the different ensemble algorithms,
and the adjusted p-values associated with the various non-parametric tests are presented
in Tables 8 and 9.

Table 8. Adjusted p-values for nonparametric tests (Bonferroni-Dunn, Holm, Hochberg, and Hommel
tests; HDELC is the control; bold results indicate p > 0.0500).

Algorithm Unadjusted p pBonf pHolm pBoch pHomm

Stacking 0.0037 0.0158 0.0064 0.0064 0.0064
Bagging 0.0012 0.0069 0.0038 0.0038 0.0038
Boosting 0.0056 0.0298 0.0085 0.0085 0.0085
BOA [34] 2.3006 × 10−5 2.0887 × 10−4 5.9823 × 10−5 5.9823 × 10−5 5.9823 × 10−5

JMO-FSCD [35] 5.3924 × 10−10 2.4306 × 10−9 2.6731 × 10−9 2.6731 × 10−9 2.6731 × 10−9

PCA-Decision Tree [36] 1.4489 × 10−6 1.0351 × 10−5 1.0517 × 10−6 1.0517 × 10−6 1.0517 × 10−6

Table 9. Adjusted p-values in multiple tests (Nemenyi, Holm, Bergmann and Shaffer tests, where the
bold values denote that the results are not significant, where the bold values denote that the results
are not significant).

Algorithm Unadjusted p pNeme pHolm pBerg pShaf

HDELC vs. Stacking 0.0037 0.1052 0.0489 0.0396 0.0472
HDELC vs. Bagging 0.0012 0.0069 0.0038 0.0038 0.0038
HDELC vs. Boosting 0.0056 0.1398 0.0540 0.0481 0.0527
HDELC vs. BOA [34] 2.3006 × 10−5 6.4290 × 10−4 4.6833 × 10−4 3.5772 × 10−4 4.2085 × 10−4

HDELC vs.
PCA-Decision Tree [35] 1.4489 × 10−6 5.7897 × 10−5 4.9836 × 10−5 2.5539 × 10−5 4.6791 × 10−5

HDELC vs.
JMO-FSCD [36] 5.3924 × 10−10 1.2764 × 10−8 1.2273 × 10−8 1.0784 × 10−8 1.0784 × 10−8

Based on the adjusted p-values associated with the different nonparametric tests listed
in Tables 8 and 9, comparing each adjusted p-value with the significance threshold, most
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of the adjusted p-values are less than the significance threshold, and the corresponding
comparisons can be considered as statistically significant, which further confirms the
significant performance improvement and enhancement of the HDELC algorithm over
other current state-of-the-art classifiers ensemble algorithms. Nonparametric tests can
combine accurate, reliable statistics test references with complexity in multiple comparisons.

5. Conclusions and Future Work

In this paper, the classification problem for high-dimensional data is investigated.
According to the characteristics of the dataset and the requirements of the problem, a
subspace integration algorithm under high-dimensional spatial reconstruction (HDELC
algorithm) is proposed, which considers the feature space and the model integration and
solves the problem of the low computational efficiency of high-dimensional data in the
process of model training, and can obtain a more accurate, stable, and robust final result.
The feature reconstruction matrix and the HDELC algorithm cost function are designed
to eliminate redundant features, obtain a more helpful feature space, and optimize the
computational performance of the integrated system. In addition, ablation experiments
are set up to explore the contributions of the feature selection and classifier integration
components, and the sensitivity analysis of the attribute screening factors and the changes
in feature space reconstruction are visualized. Comparisons are made with six state-of-
the-art integration techniques targeting high-dimensional data on 12 benchmark datasets,
and the experimental results show that the HDELC algorithm outperforms the comparison
algorithms in terms of several metrics such as classification accuracy, recall, etc., with an
improvement in precision of about 3.08% or so and a maximum accuracy of 0.9989.

In the future, we will consider constructing artificial datasets that investigate ensemble
models for dealing with noise intensity, extreme outliers, and inhomogeneous distributions
of data points of predictor variables, alongside exploring the advantages of integrated
learning in data analysis and processing.
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