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Abstract: Video temporal grounding (VTG) aims to locate specific temporal segments from an
untrimmed video based on a linguistic query. Most existing VTG models are trained on extensive
annotated video-text pairs, a process that not only introduces human biases from the queries but also
incurs significant computational costs. To tackle these challenges, we propose VTG-GPT, a GPT-
based method for zero-shot VTG without training or fine-tuning. To reduce prejudice in the original
query, we employ Baichuan2 to generate debiased queries. To lessen redundant information in videos,
we apply MiniGPT-v2 to transform visual content into more precise captions. Finally, we devise the
proposal generator and post-processing to produce accurate segments from debiased queries and
image captions. Extensive experiments demonstrate that VTG-GPT significantly outperforms SOTA
methods in zero-shot settings and surpasses unsupervised approaches. More notably, it achieves
competitive performance comparable to supervised methods. The code is available on GitHub.

Keywords: video temporal grounding; generative pre-trained transformer; tuning-free strategy;
query debiasing

1. Introduction

Given a linguistic query, video temporal grounding (VTG) aims to locate the most
relevant temporal segments from an untrimmed video, each containing a start and end
timestamp. An illustrative example of VTG is shown in Figure 1a. This task [1,2] has
numerous practical applications in daily life, such as how it can help video platform users
easily skip to relevant portions of a video. The field of natural language has witnessed a
significant leap forward with the advent of GPT-4 [3]. This development has spurred the rise
of large language models (LLMs) such as LLaMA [4] and Baichuan2 [5]. Concurrently, GPT-
based (Generative Pre-trained Transformer) models like MiniGPT4 [6] and LLaVA [7] have
made significant strides in vision and multimodal applications. A recent work, LLaViLo [8],
reveals that training adapters alone can effectively leverage the video understanding
capabilities of LLMs. However, this method requires designing a sophisticated fine-tuning
strategy specifically for VTG, thereby introducing additional computing costs.

Existing VTG methods [1,9–12] primarily adopt supervised learning, which demands
massive training resources and numerous annotated video-query pairs, as illustrated in
Figure 1b. However, developing datasets for VTG is time-consuming and expensive;
for instance, Moment-DETR [1] spent 1455 person-hours and USD 16,600 to create the
QVhighlights dataset. Furthermore, ground-truth (GT) queries often contain human biases,
such as (1) Bias from erroneous word spellings, as depicted in Figure 2a. The misspelled
word “ociture” in original query would be tokenized by language models into “o”, “cit”,
“ure”, leading to model misunderstanding; (2) Bias due to incorrect descriptions, as shown
in Figure 2b. Here, the action “turns off the lights” mentioned in the query does not occur in
the video.
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Figure 1. (a) An illustrative example of a video temporal grounding (VTG) task. (b) Previous
methods require training for all modules. (c) Our proposed VTG-GPT operates without any training
or fine-tuning. Moreover, it employs GPT to reduce bias in human-annotated queries.

Figure 2. Human biases in ground-truth queries arise from (a) misspelled words and (b) incor-
rect descriptions. Our approach effectively mitigates these biases by leveraging GPT to optimize
raw queries.

In this paper, we propose a tuning-free zero-shot method named VTG-GPT to address
the above issues. As shown in Figure 1c, VTG-GPT completely satisfies zero-shot settings,
adopting a direct feed-forward approach without training or fine-tuning. To minimize
biases arising from human-annotated queries, we employ Baichuan2 [5] to rephrase the
original query and obtain debiased queries. As illustrated in Figure 2, the erroneous word
“ociture” in query (a) has been accurately revised to “image”, and the non-existent action
“turn off the lights” in query (b) has been effectively refined to “a darkened environment”.
Furthermore, considering that videos inherently contain more redundant information
than text, and inspired by the human approach to understanding video linguistically, we
apply MiniGPT-v2 [6] to transform visual content into more precise textual descriptions.
Finally, to generate accurate temporal proposals, we design a proposal generator that
models debiased queries and image captions in the textual domain. In summary, our main
contributions include:

(1) To the best of our knowledge, we are the first zero-shot method to utilize GPT on
VTG without training or fine-tuning.

(2) We present a novel framework, VTG-GPT, which effectively leverages GPT to
mitigate human prejudice in annotated queries. Furthermore, VTG-GPT distinctively
models debiased queries and video content within the linguistic domain to generate
temporal segments.

(3) Comprehensive experiments demonstrate that VTG-GPT significantly surpasses
SOTA (State-of-the-Art) methods in zero-shot settings. More importantly, this method
achieves competitive performance comparable to supervised methods.
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2. Related Work
2.1. Video Temporal Grounding

For fully-supervised VTG, prior works [1,9–11,13–16] typically employ encoders
to extract visual and textual features, followed by designing a VTG model (e.g., trans-
former encoder-decoder) to interact and align two modalities, as depicted in Figure 1b.
UniVTG [13] designs a multi-modal and multi-task learning pipeline, undergoing pre-
training or fine-tuning on dozens of datasets. To accelerate the training convergence
of VTG, GPTSee [14] introduces LLMs to generate prior positional information for the
transformer decoder. However, these supervised approaches inevitably rely on extensive
human-annotated data and training resources. To alleviate the dependence on annotations,
PSVL [17], DSCNet [18], and Gao et al. [19] propose unsupervised frameworks that employ
clustering to generate pseudo queries from video features. Similarly, PZVMR [20] and Kim
et al. [21] leverage CLIP [22] for pseudo query generation. Yet, the above unsupervised
methods unavoidably introduce biases from mismatched video-query pairs. In this paper,
we adhere to the definitions of unsupervised and zero-shot settings as discussed by Luo
et al. [23], classifying these approaches [17,20,21] as unsupervised.

To avoid any training or fine-tuning of the model, Diwan et al. [2] design the first zero-
shot framework utilizing CLIP, but its reliance on shot transition detectors for obtaining
temporal segments limits performance. Considering that CLIP (InternVideo [24]) pre-
trained on 400 M image-text (12 M video-text) pairs can align visual and textual inputs
in a shared feature space, Luo et al. [23] develop a bottom-up pipeline to leverage the
capabilities of vision-language models. Wattasseril et al. [25] employ the sparse frame-
sampling strategy and BLIP2 [26] to reduce the computational cost of inference. However,
these zero-shot methods [2,23,25] tend to generate redundant video features, introducing
new biases that impair model performance. A recent study [27] found that masking over
75% of the input images can effectively train large self-supervised models. Moreover,
SeViLA [28] demonstrates that transforming visual signals into textual representations
significantly reduces redundant information, thereby boosting performance in tasks such
as video question answering and VTG.

2.2. Generative Pre-Trained Transformer

The groundbreaking success of GPT-4 [3] in the language domain has led to the
development of a series of open-source LLMs [4,5,29,30]. Baichuan2 [5], containing 7 billion
parameters and 2.6 trillion tokens, excels in vertical domains such as technology and daily
conversation. MiniGPT4 [6,31] introduces a large multi-modal model (LMM) based on
GPT, adept at performing visual-linguistic tasks like image captioning and visual question
answering. Recent studies demonstrate that leveraging GPT models effectively reduces
prejudice originating from ground truth labels, while simultaneously enhancing model
performance in zero-shot multimodal tasks. This advancement is particularly notable
in areas such as relation detection and information extraction, showcasing the robust
generalization capabilities of GPT in these complex scenarios. To further capitalize on
GPT’s capabilities in video understanding, LLaViLo [8] designs specialized adapters for
VTG, but this method still necessitates model training. To overcome these limitations, this
paper proposes a novel zero-shot VTG pipeline aiming to eliminate human biases from GT
queries while fully harnessing the visual comprehension capabilities of GPT, achieving a
tuning-free framework.

3. Our Method

In this section, we first formulate the VTG task and then present the overall architecture
of our VTG-GPT. Subsequently, we provide details of each module in the model.

3.1. Overview

Given an untrimmed video V ∈ RNv×H×W×3 consisting of Nv frames and a natural
language query T ∈ RLt formed by Lt words, the objective of video temporal grounding
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(VTG) is to precisely identify time segments [ts, te] ∈ RNs×2 in V that semantically cor-
respond to T, where each segment starts at timestamp ts and ends at timestamp te. The
overview of our proposed VTG-GPT is illustrated in Figure 3.

Figure 3. An overview of our proposed VTG-GPT, the framework contains four key phases: query
debiasing (Section 3.2), image captioning (Section 3.3), proposal generation (Section 3.4), and post-
processing (Section 3.5).

The core aim of VTG-GPT is to implement a tuning-free framework while reducing
human bias in the process. To this end, our first step is employing Baichuan2 (Section 3.2)
to refine raw query T, resulting in debiased queries Q ∈ RNq×Lt . Then, we leverage
MiniGPT-v2 (Section 3.3) to convert visual content in each frame into image captions
C ∈ RNv×Lc , effectively reducing redundant information in video V. In Section 3.4, we
compute similarity scores Ss ∈ RNq×Nv between Q and C, which is to say, in the linguistic
domain via Sentence-BERT assess query-frame correlation. Following this, a proposal
generator is designed to yield temporal proposals P ∈ RNp×2. Finally, in the post-processing
stage (Section 3.5), we calculate final scores S f ∈ RNp for each proposal while removing
excessively overlapping proposals to produce predicted segments Seg ∈ RNs×2.

3.2. Query Debiasing

Mitigating biases in ground-truth queries represents a crucial and challenging problem
for VTG, as these biases often originate from inherent human subjectivity. Such biases often
include errors like misspellings and inaccurate descriptions of video content, as shown
in Figure 2. Moreover, different annotators may characterize the same video segment
in varying ways. A minority might opt for a formal language style, while others might
gravitate towards colloquial or slang expressions. This difference in descriptions can
inadvertently lead the model to prefer certain types of queries, thus introducing human
prejudice and potentially diminishing the model’s performance.

To address the aforementioned challenges, we utilize Baichuan2 to eliminate human
biases inherent in original queries, as demonstrated in Figure 4a. In line with human
linguistic comprehension [32], our first step is to rectify spelling and grammatical inaccura-
cies in original query T, thus producing the corrected version Tc. We direct GPT with the
instruction: Please correct spelling and grammatical errors in the original query. Subsequently,
we instruct Baichuan2 to rewrite Tc to remove incorrect descriptions. The corresponding
command is Please rephrase the corrected query using different wording while maintaining the
same intent and information. Finally, we generate five semantically similar yet syntactically
diverse queries Q to prevent the model from relying on a specific query type. The command
for this is Provide five different rephrasings. Although it is generally advisable to issue only
one command per message in GPT dialogues to avoid model errors, as noted in [30], we
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discover in our tests that aggregating all instructions into a single message to GPT proved
more effective, as shown in Figure 4a. It is important to note that the red font is not present
in the code. A case involving misspelled words is shown in Figure 5a, where the incorrectly
spelled word “ociture” is corrected to “image” or “picture”. Figure 5b demonstrates a sce-
nario involving a non-existent action, where “turn off the lights” is optimized to “lights off ”
or “a darkened environment”, where “a darkened environment” is more congruent with the
original video segment. In short, this debiasing strategy, featuring variations that differ in
structure and word choice, deeply explores semantic information and enables the model to
process various real-world queries effectively.

Figure 4. (a) An example of query refinement using Baichuan2. (b) An example of image captioning
using MiniGPT-v2. The red font employed here is for demonstration purposes only and is not present
in the actual code.

Figure 5. Visualization of predictions on QVHighlights val split. (a) misspelled words. (b) incorrect
descriptions. Our VTG-GPT achieves more precise localization compared to Moment-DETR [1], as it
can correct errors in the original queries through rewriting and generate debiased queries, thereby
facilitating more accurate grounding.



Appl. Sci. 2024, 14, 1894 6 of 15

3.3. Image Captioning

To retrieve corresponding video segments Seg based on the query, traditional zero-
shot methods [2,23] initially employ pre-trained multi-modal models [22,24] for feature
extraction from visual and textual modalities. These features are then used to calculate
similarities to derive Seg. However, our preliminary experiments utilizing CLIP and
InternVideo to assess cross-modal similarity, as shown in the upper part of Table 1, yielded
mediocre results. We attribute this to the over-reliance of traditional methods on directly
modeling raw frames, which is often influenced by background details, thereby reducing
the accuracy of primary content recognition. Some recent works [28,33] suggest that videos
contain abundant non-essential information and that translating visual signals into more
abstract descriptions can enhance VTG performance.

Inspired by the above research, we incorporate a large multi-modal model (LMM),
MiniGPT-v2 [6], to obtain more detailed image descriptions. As demonstrated in Figure 4b,
our initial instruction to MiniGPT-v2 is [image caption] Please describe the content of this image
in detail., where [] emphasizes the task to be performed. Subsequently, we sequentially send
frames in video V to MiniGPT-v2, which provides us with detailed captions C ∈ RNv×Lc .
Following this, we use the CLIP text encoder (CLIP-T) to extract linguistic features from
C and Q and calculate their similarities. As illustrated in the third row of Table 1, the
results are surprisingly effective, achieving significant gains with this straightforward
approach. We ascribe this to the LMM’s focus on capturing key image content, thereby
reducing irrelevant background interference and enhancing semantic similarities between
queries and frames. For instance, the last frame in Figure 4b, depicting “A blonde woman in
a white shirt is smiling at the camera, with a black background.”, is succinctly translated into
text, closely matching the query: “The blonde girl chooses to vlog in a darkened environment
alone.” semantically.

Table 1. Preliminary experiment with different similarity models on QVHighlights val split, using
proposal generator and proposal scorer but without NMS. CLIP-T is short for using CLIP [22] text
encoder only. Please refer to Section 4.1 for a detailed explanation of the evaluation metrics.

Similarity Models
R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.

CLIP [22] 45.59 26.03 45.56 23.14 24.91
InternVideo [24] 49.13 32.49 48.65 25.82 26.94

CLIP-T [22] 52.85 34.82 48.07 28.05 28.29
RoBERTa [34] 54.99 37.58 53.77 29.18 30.15

Sentence-BERT [35] 54.26 38.45 53.96 29.25 30.38

3.4. Proposal Generation

Computing query-frame similarity. In Section 3.3, we have articulated the signif-
icance of image captioning within VTG-GPT and employed CLIP-T to model debiased
queries Q and image captions C within the textual domain. Subsequently, taking into
account CLIP-T, as a multi-modal model, does not outperform specialized language models
in NLP (natural language processing) tasks, as outlined in previous research [36]. Therefore,
we explore the use of a language-specific model. We opt for RoBERTa [34] (Sentence-
BERT [35]) to extract normalized pooling features of Q ∈ RNq×Lt and C ∈ RNv×Lc , denoted
as fq ∈ RNq×d and fc ∈ RNv×d, respectively, where d represents the dimensionality. We
then compute the cosine scores between fq and fc as similarities Ss ∈ RNq×Nv :

Ss = cos( fq, fc) =
fq · fc

∥ fq∥∥ fc∥
(1)

As demonstrated in rows four to five of Table 1, the leverage of expert NLP models yielded
significant improvements, which also validates the viewpoints presented in the report [36].
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Proposal generator. After obtaining query-frame similarity scores Ss, we move to-
wards generating temporal proposals P ∈ RNp×2. A straightforward method would be to
apply a fixed threshold, considering frames with similarity scores exceeding this threshold
as potential start or end timestamps. However, each query-video pair exhibits a unique
similarity distribution. To adaptively obtain proposals, we introduce a dynamic mechanism
within our devised proposal generator. For clarity, we denote the similarity between the
i-th debiased query Qi and video V as Si

s ∈ RNv , and the similarity between Qi and the j-th
frame in V as Si,j

s ∈ R1.
To be specific, the generator begins by computing a histogram of Si

s with Nb bins. It
then selects the bins containing the top k highest similarities as the dynamic threshold θ:

θ = top_k(Si
s, Nb, k), (2)

where Nb and k are hyperparameters. For their specific values, please refer to the imple-
mentation details (Section 4.1) and ablations (Section 4.3). Next, we iteratively assess each
frame; if Si,j

s exceeds θ, its corresponding timestamp is considered the proposal’s starting
point. When more than λ consecutive frames are all lower than θ, the last frame with a
similarity greater than θ is marked as the end timestamp of this proposal. Here, λ denotes
the continuity threshold. Finally, we produce proposals for all debiased queries in the
same video using this process to form final temporal proposals P ∈ RNp×2 (representing
potentially relevant video segments).

3.5. Post-Processing

Proposal scorer. In Section 3.4, we generate a set of temporal proposals P through our
designed proposal generators. To identify the most fitting video segments from P, it is es-
sential to compute and rank each proposal’s confidence score. Intuitively, a straightforward
approach could be averaging the similarity scores for each frame within a proposal, or only
considering frames exceeding dynamic threshold θ. However, these methods overlook the
impact of proposal length on their scoring. In our experiments, we observe that within
certain ground-truth segments containing scene transitions, the similarity of some frames
significantly exceeded that of adjacent frames. This led to an excessively high dynamic
threshold, resulting in the predicted segments being truncated or fragmented. To address
this issue, we develop a length-aware scoring mechanism for proposals, encouraging the
model to generate longer segments. Specifically, the evaluation of each proposal consid-
ers both its duration and the query-frame similarity, and the final score of each proposal
S f ∈ RNp is calculated as follows:

S f = α × Sl + (1 − α)× Ss, (3)

where Sl = Lp/Ln. Here, Lp represents the count of frames within a proposal exceeding
θ, and Ln denotes the total number of frames exceeding θ across the entire video. The
balancing coefficient α is adjustable to optimize for the influence of length and similarity in
the final score calculation.

NMS. In the final stage, considering that multiple debiased queries will produce
numerous overlapping proposals, we employ non-maximum suppression (NMS) to reduce
redundant overlaps and derive the final predicted video segments Seg ∈ RNs×2:

Seg = NMS(P, S f , µ), (4)

where segments exceeding the intersection over union (IoU) threshold µ are selectively
eliminated. This method ensures that only the most representative and distinct video
segments are retained, enhancing the accuracy and relevance of our VTG-GPT output.
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4. Experiments
4.1. Experimental Settings

Datasets. To demonstrate the superiority and effectiveness of our proposed tuning-
free VTG-GPT framework, we conduct extensive experiments on three publicly available
datasets: QVHighlights [1], Charades-STA [37], and ActivityNet-Captions [38], as these
datasets encompass diverse types of videos. QVHighlights consists of 10,148 distinct
YouTube videos, each accompanied by human annotations that include a textual query,
a temporal segment, and frame-level saliency scores. Here, the saliency scores serve as
the output for the highlight detection (HD) task, quantifying the relevance between a
query and its corresponding frames. QVHighlights encompasses a wide array of themes,
ranging from daily activities and travel in everyday vlogs to social and political events in
news videos. For evaluation, Moment-DETR [1] allocates 15% of the data for validation
and another 15% for testing, with consistent data distribution across both sets. Due to
limitations on the online test server (https://codalab.lisn.upsaclay.fr/competitions/6937,
accessed on 1 September 2023) allowing a maximum of five submissions, all our ablation
studies are conducted on the validation split. Charades-STA, derived from the original
Charades [39] dataset, includes 9848 videos of human indoor activities, accompanied by
16,128 annotations. For this dataset, a standard split of 3720 annotations is specifically
designated for testing. ActivityNet-Captions, built upon the raw ActivityNet [40] dataset,
comprises 19,994 long YouTube videos from various domains. Since the test split is reserved
for competitive evaluation, we follow the setup used in 2D-TAN [16], utilizing 17,031
annotations for testing.

Metrics. To effectively evaluate performance on VTG, we employ several metrics,
including Recall-1 at Intersection over Union (IoU) thresholds (R1@m), mean average
precision (mAP), and mean IoU (mIoU). R1@m measures the percentage of queries in the
dataset where the highest-scoring predicted segment has an IoU greater than m with the
ground truth. mIoU calculates the average IoU across all test samples. For a fair comparison,
our results on the QVHighlights dataset report R1@m with m values of 0.5 and 0.7, mAP
at IoU thresholds of 0.5 and 0.75, and the average mAP across multiple IoU thresholds
[0.5:0.05:0.95]. For the Charades-STA dataset, we report R1@m for m values of 0.3, 0.5, and
0.7, along with mIoU. Finally, we employ mAP and HIT@1 to evaluate the results of HD,
thereby measuring the query-frame relevance. Here, HIT@1 represents the accuracy of the
highest-scoring frame.

Implementation details. To mitigate video information redundancy, we downsample
QVHighlights and Charades-STA datasets to a frame rate of 0.5 per second. Considering
the extended duration of videos in the ActivityNet-Captions, we extract one frame every
three seconds. In the image captioning stage, we utilize MiniGPT-v2 [6] based on the
LLaMa-2-Chat-7B [4]. For query debiasing, we employ Baichuan2-7B-Chat [5], also based
on LLaMa-2 [5], generating five debiased queries (Nq = 5) per instance. The temperature
coefficients for MiniGPT-v2 and Baichuan2 are set at 0.1 and 0.2, respectively. Drawing from
the preliminary experiments in Section 3.4, we select Sentence-BERT [35] as our similarity
model to evaluate query-frame correlations using cosine similarity. The histogram in
our proposal generator is configured with ten bins (Nb), with a selection of the top eight
values (k = 8) and a continuity threshold λ = 6. During the post-processing phase, the
balance coefficient (α) in the proposal scorer is set to 0.5, and the IoU threshold (µ) for non-
maximum suppression (NMS) is determined at 0.75. All pre-processing and experiments
are conducted on eight NVIDIA RTX 3090 GPUs. It is important to note that our VTG-GPT
is purely inferential, involving no training phase.

4.2. Comparisons to the State-of-the-Art

In this section, we present a comprehensive comparison of our VTG-GPT with state-of-
the-art (SOTA) methods in VTG. Firstly, we disclose results on the QVHighlights validation
and test splits, as shown in Table 2. The approaches are categorized into fully supervised
(FS), weakly supervised (WS), unsupervised (US), and zero-shot (ZS) methods. Notably,

https://codalab.lisn.upsaclay.fr/competitions/6937
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VTG-GPT significantly outperforms the previous SOTA zero-shot model (Diwan et al. [2]),
demonstrating substantial improvements across five metrics. Specifically, R1@0.7 saw an
increase of +7.49 and mAP@0.5 improved by +7.23. Remarkably, VTG-GPT also vastly
exceeds all WS methods. Most impressively, our approach surpasses the FS baseline
(Moment-DETR [1]) in most metrics, even achieving competitive performance compared
with FS methods. Unlike these methods, VTG-GPT requires only a single inference pass,
eliminating the need for training data and resources.

Table 2. Performance comparison on QVHighlights test and val split. FS means fully-supervised
method, WS means weakly supervised, and ZS means zero-shot.

Method Year Setup
QVHighlights Test QVHighlights val

R1 mAP R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg. @0.5 @0.7 @0.5 @0.75 Avg.

Moment-DETR [1] 2021 FS 52.89 33.02 54.82 29.40 30.73 53.94 34.84 - - 32.20
LLaViLo [8] 2023 FS 59.23 41.42 59.72 - 36.94 - - - - -

UMT [9] 2022 FS 56.23 41.18 53.83 37.01 36.12 - - - - 37.79
MH-DETR [10] 2023 FS 60.05 42.48 60.75 38.13 38.38 60.84 44.90 60.76 39.64 39.26

QD-Net [11] 2023 FS 62.32 45.61 63.15 42.05 41.46 61.71 44.76 61.88 39.84 40.34
EaTR [15] 2023 FS - - - - - 61.36 45.79 61.86 41.91 41.74

CNM [41] 2022 WS 14.11 3.97 11.78 2.12 - - - - - -
CPL [42] 2022 WS 30.72 10.75 22.77 7.48 - - - - - -
CPI [43] 2023 WS 32.26 11.81 23.74 8.25 - - - - - -

UniVTG [13] 2023 ZS 25.16 8.95 27.42 7.64 10.87 - - - - -
Diwan et al. [2] 2023 ZS - - - - - 48.33 30.96 46.94 25.75 27.96

VTG-GPT (Ours) 2023 ZS 53.81 38.13 54.13 29.24 30.50 54.26 38.45 54.17 29.73 30.91

Subsequently, we report the performance on the Charades-STA test set and ActivityNet-
Captions test set in Table 3. In Charades-STA, VTG-GPT surpasses the SOTA zero-shot
method (Luo et al. [23]) with a +5.81 increase in R1@0.7 and a +1.89 improvement in mIoU.
Furthermore, VTG-GPT significantly outperforms the best US method (Kim et al. [21])
across all metrics. However, on the ActivityNet-Captions dataset, our method falls slightly
behind Luo et al. in two metrics, which we attribute to the high downsampling rate used
for this dataset. Moreover, VTG-GPT approaches the performance of the fully supervised
Moment-DETR, validating its capacity to handle diverse and complex video contexts
without any training or fine-tuning. This underscores the robustness and adaptability
of VTG-GPT in zero-shot VTG scenarios, demonstrating its potential as a versatile and
efficient tool for video understanding.

Table 3. Performance comparison on Charades-STA test split and ActivityNet-Captions test split.
Where FS means fully-supervised setting, WS means weakly-supervised, US means unsupervised,
and ZS means zero-shot.

Method Year Setup
Charades-STA ActivityNet-Captions

R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

2D-TAN [16] 2020 FS 57.31 45.75 27.88 41.05 60.32 43.41 25.04 42.45
Moment-DETR [1] 2021 FS 65.83 52.07 30.59 45.54 - - - -

VDI [12] 2023 FS - 52.32 31.37 - - 48.09 28.76 -

CNM [41] 2022 WS 60.04 35.15 14.95 38.11 55.68 33.33 13.29 37.55
CPL [42] 2022 WS 65.99 49.05 22.61 43.23 55.73 31.37 13.68 36.65

Huang et al. [44] 2023 WS 69.16 52.18 23.94 45.20 58.07 36.91 - 41.02

PSVL [17] 2021 US 46.47 31.29 14.17 31.24 44.74 30.08 14.74 29.62
Gao et al. [19] 2021 US 46.69 20.14 8.27 - 46.15 26.38 11.64 -
DSCNet [18] 2022 US 44.15 28.73 14.67 - 47.29 28.16 - -
PZVMR [20] 2022 US 46.83 33.21 18.51 32.62 45.73 31.26 17.84 30.35

Kim et al. [21] 2023 US 52.95 37.24 19.33 36.05 47.61 32.59 15.42 31.85

UniVTG [13] 2023 ZS 44.09 25.22 10.03 27.12 - - - -
Luo et al. [23] 2023 ZS 56.77 42.93 20.13 37.92 48.28 27.90 11.57 32.37

VTG-GPT (Ours) 2023 ZS 59.48 43.68 25.94 39.81 47.13 28.25 12.84 30.49
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To qualitatively validate the effectiveness of our VTG-GPT model, we present visual
comparisons of grounding results from the Ground-Truth (GT), Moment-DETR, and VTG-
GPT in Figure 5. Observations indicate that the tuning-free VTG-GPT achieves more precise
localization than the supervised Moment-DETR. The primary reason is that Moment-DETR
relies solely on the original queries, which contain human-annotated errors, thus failing
to fully align with the video’s semantic information. In contrast, VTG-GPT can correct
erroneous queries and reduce the bias introduced by human annotations, leading to more
accurate grounding. To be more specific, in Figure 5a, our model detects a spelling mistake
in the query, where “ociture” is corrected to “image” or “picture”. In Figure 5b, the action
“turns off ” is refined to terms more congruent with the video context, such as “lights off ”,
“darkened environment”, and “no lights”. Additionally, the five rephrasings of each original
query, in contrast to the original phrasing, exhibit more flexible grammatical structures,
enabling the text encoder to comprehensively capture the semantic information of the
original query.

4.3. Ablation Studies

To demonstrate the effectiveness of each module within our VTG-GPT framework, we
perform in-depth ablation studies on the QVHighlights dataset.

Effect of debiased query. Firstly, we report saliency scores used to evaluate query-
frame correlation. As delineated in Table 4, row three corresponds to VTG-GPT without
debiasing, where we directly employ the similarity generated by Sentence-BERT as the
saliency scores. Conversely, row four is VTG-GPT with debiasing, wherein we average the
similarity of five debiased queries as saliency scores. The comparison reveals that row four
significantly outperforms row three, demonstrating the efficacy of our debiasing strategy
in mitigating human biases inherent in the original queries. Furthermore, comparing row
two (UMT [9]) and row four, our VTG-GPT achieves a notable increase in HIT@1, recording
a score of 62.29 (+2.3). This enhancement underscores VTG-GPT’s superior reasoning
capabilities in discerning challenging cases, affirming the value of our debiasing approach
in refining model performance.

Table 4. Comparison of video highlight detection (HD) on QVHighlights val split. VG is the
abbreviation of very good. ✓ and ✗ respectively represent the use and non-use of debiased queries.

Methods Setup Debiasing
HD (≥VG)

mAP HIT@1

Moment-DETR [1] FS ✗ 35.69 55.60
UMT [9] FS ✗ 38.18 59.99

VTG-GPT ZS ✗ 34.84 60.48
✓ 36.08 62.29

Then, we investigate the impact of different numbers of debiased queries (Nq) gener-
ated by Baichuan2 on the performance of the VTG-GPT model. Our findings, as depicted
in Figure 6a, indicate that the model achieves optimal results when utilizing five debiased
queries (Nq = 5). Compared to using solely the original biased query, implementing five
debiased queries resulted in a notable increase in R1@0.5 to 54.26 (+3.87) and an improve-
ment in mAP Avg. to 30.91 (+2.59). This evidence suggests that removing bias from queries
significantly enhances the model’s accuracy. However, an intriguing observation emerged:
the performance metrics decline when Nq exceeds 5. This pattern suggests that excessive
rephrasing does not continually yield improvements, likely due to the finite number of
synonymous rewrites and syntactic variations available to maintain the original intent of
the query. Over-rephrasing can introduce irrelevant content, deviating from the semantic
intent of the raw query, and potentially diminishing model performance. This finding un-
derscores the critical need to balance the number of query rewrites, ensuring that debiased
queries capture a spectrum of semantic nuances while retaining the essence of the original
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query. Future research should focus on developing advanced query debiasing techniques
to enhance this equilibrium.

Figure 6. Ablation experiments on the QVHighlights val split focus on R1@0.5 and mAP Avg.
(a) Utilizing debiased queries can enhance model performance, yet increasing the number of debiased
queries (Nq) does not always lead to better results. The model achieves optimal performance when
Nq is set to 5. (b) In the proposal scorer, proposal length significantly impacts the final outcomes,
with the model performing optimally when α = 0.5.

LLMs and LMMs. In Table 5, we evaluate the capabilities of LLMs (LLaMA-v2 [4]
and Baichuan2 [5]), alongside LMMs (MiniGPT-4 [31] and MiniGPT-v2 [6]) in handling
biased queries and generating image captions. A comparison between rows two and
five reveals that Baichuan2 outperforms LLaMa-v2, since it is trained on a more diverse
dataset and tasks based on LLaMa-v2, enhancing its sentence rewriting capabilities. As
illustrated in row three, MiniGPT-v2, also developed on the foundations of LLaMa-v2,
shows moderate results in text dialogue. Comparing rows four and five, we observe an
improvement in the performance of MiniGPT-v2 over MiniGPT-4. Overall, the results
suggest that the integration of Baichuan2 for query debiasing combined with MiniGPT-v2
for image captioning emerges as the most effective strategy. This effectiveness stems from
their complementary capabilities: Baichuan2 excels in handling complex multi-turn text
dialogues, while MiniGPT-v2 is adept at detailed multimodal dialogues. This synergy
maximizes the text comprehension ability of LLMs and the video understanding capacity
of LMMs, thereby enhancing the overall performance of our framework.

Proposal generator. In our study, top-k and the continuity threshold λ within the
proposal generator play a critical role. The parameter k, acting as a count threshold in
our dynamic mechanism, directly influences the identified length of relevant proposals.
In contrast, λ determines the number of irrelevant consecutive frames. To optimize these
parameters, we conducted a series of ablation experiments on the proposal generator,
as illustrated in Figure 7. The visualized results indicate that a combination of k = 8
and λ = 6 yields the most favorable outcomes. This specific pairing strikes a balance
between segment length and threshold sensitivity. It skillfully avoids the drawbacks of
excessively low thresholds, which could incorporate irrelevant frames into prediction
results. Simultaneously, it averts the "tolerance trap" where an overly high number of
discontinuous frames makes it difficult to determine when the segment ends.

Proposal scorer. To balance the quality and length of segments, we conduct experi-
ments on our proposal scorer, as shown in Figure 6b. We explore integrating the length
score Sl into the scoring mechanism. Initially, without including the length score (α = 0),
mAP Avg. is 30.45. Upon incorporating Sl , mAP Avg. peak at 30.91. Similarly, R1@0.5 in-
creases from 51.21 to 54.24, indicating that incorporating a length-based scoring mechanism
is crucial for generating the final segment scores.
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Table 5. Ablation study of different LLMs and LMMs (Large Multi-modal Models) on QVHighlights
val split.

Debiasing Captioning R1@0.5 R1@0.7 mAP Avg.

LLaMA-v2 [4] MiniGPT-4 [31] 50.78 30.56 27.20
LLaMA-v2 MiniGPT-v2 [6] 54.65 34.08 30.15

MiniGPT-v2 MiniGPT-v2 50.46 29.87 27.48
Baichuan2 [5] MiniGPT-4 52.78 33.84 28.54

Baichuan2 MiniGPT-v2 54.26 38.45 30.91

Figure 7. Ablation experiments for top-k and continuity threshold (λ) in proposal generator on
QVHighlights val split. When k = 8 and λ = 6, the model achieves the best performance (red
triangle).

IoU threshold µ. Finally, we assess the effectiveness of IoU thresholds µ in the NMS
process, focusing on their role in reducing segment overlap. It is important to note that
NMS does not alter the values of R1@0.5 and R1@0.75. Therefore, we report only the mAP
metrics in Table 6. As illustrated in Table 6, setting µ to 0.75, compared to not employing
NMS (µ = 1), results in an increase of +0.53 in mAP Avg. This increment underscores the
significance of eliminating excessively overlapping segments, affirming that reducing such
overlaps can notably enhance the model’s performance.

Table 6. Comparison of different IoU thresholds (µ) in NMS on QVHighlights val split.

µ mAP@0.5 mAP@0.75 mAP Avg.

0.6 53.71 28.48 30.06
0.7 54.12 29.60 30.54

0.75 54.17 29.73 30.91
0.8 54.02 29.87 30.68
0.9 53.81 29.63 30.41
1.0 53.96 29.25 30.38

5. Conclusions

This paper proposes a tuning-free framework named VTG-GPT for zero-shot video
temporal grounding. To minimize the bias from mismatched videos and queries, we employ
Baichuan2 for refining human-annotated queries. Recognizing the inherent redundancy in
video compared to text, we utilize MiniGPT-v2 to transform visual inputs into more exact
descriptions. Moreover, we develop the proposal generator and post-processing to produce
temporal segments from debiased queries and image descriptions. Comprehensive experi-
ments validate that VTG-GPT significantly surpasses current SOTA methods in zero-shot
settings. Remarkably, it achieves a level of performance on par with supervised approaches.

6. Discussion

Limitations. In our study, constrained by computational resources, we downsample
frames in the long-video dataset ActivityNet-Captions, which adversely affected perfor-
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mance. Future work should focus on developing a more efficient and rapid GPT model
to address this challenge. Moreover, due to the limitations imposed by the context length
in video-based GPT, our framework relies solely on image-based GPT, thus needing more
temporal information modeling.

In future work, we will explore applying video-based GPT (such as VideoChat-
GPT [45]) to enhance the capabilities of zero-shot VTG. In addition, crafting a more efficient
module for query debiasing and proposal generation is paramount. Finally, leveraging
GPT to implement a zero-shot framework on other data-driven tasks (such as video sum-
marization [13], depth estimation [46,47] and transformer diagnosis [48]) is very promising.

Ethical considerations. Our work is based on open-source LLMs and LMMs which re-
quire direct inference without training, thereby reducing the carbon footprint. Additionally,
we utilize common and safe prompts, and have not observed the generation of harmful or
offensive content by the model.
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