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Abstract: In coronary computed tomography angiography (CCTA), motion artifacts due to heartbeats
can obscure coronary artery diagnoses. In this study, we introduce a cycle-consistent adversarial-
network-based method for motion artifact correction in CCTA. Our methodology involves extracting
image patches and using style transfer for synthetic ground truth creation, followed by CycleGAN
network training for motion compensation. We employ Dynamic Time Warping (DTW) to align
extracted image patches along the artery centerline with their corresponding motion-free phase
patches, ensuring matched pixel correspondences and similar anatomical features for accuracy
in subsequent processing steps. Our quantitative analysis, using metrics like the Dice Similarity
Coefficient (DSC) and Hausdorff Distance (HD), demonstrates CycleGAN’s superior performance
in reducing motion artifacts, with improvements in image quality and clarity. An observer study
using a 5-point Likert scale further validates the reduction of motion artifacts and improved visibility
of coronary arteries. Additionally, we present a quantitative analysis on clinical data, affirming the
correction of motion artifacts through metric-based evaluations.

Keywords: coronary computed tomography angiography; motion artifact correction; deep learning;
generative adversarial networks; Dynamic Time Warping

1. Introduction

Coronary computed tomography angiography (CCTA) is a widely utilized non-
invasive technique for diagnosing coronary artery disease (CAD), offering diagnostic
accuracy on par with conventional invasive coronary angiography but with a markedly
reduced risk of complications [1]. Despite these advantages, the acquisition of CCTA
images is susceptible to motion artifacts, potentially leading to errors in coronary artery
tracking and segmentation.

Several approaches have been proposed for motion correction using image-based
motion estimation methods [2–7]. These methods leverage motion vector fields derived
through techniques like registration and artifact metric minimization. However, motion
estimation itself is an extremely difficult problem, perhaps even more so in the presence of
motion artifacts.

As deep learning methods [8,9] have demonstrated revolutionary performance in
various domains including image super-resolution [10], image denoising [11], and image
deblurring [12], deep-learning-based motion compensation methods have also been pro-
posed [13–17]. One approach is to apply deep learning to improve the motion estimation
used for motion correction [15,16].

However, the straightforward approach to applying learning-based methods for
motion correction in CCTA is to learn to generate artifact-less images based on a large
set of training images. Thus, in the work of Jung et al. [13,14], a convolutional neural
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network (CNN) is trained to generate images without motion artifacts. In the work of
Zhang et al. [16], the pix2pix [18] generative adversarial network (GAN) method is used.

In this paper, we present a new method for coronary motion correction based on
GAN [19] with cycle consistency [20]. Compared to previous work, we introduce a more
robust methodology for mitigating motion artifacts in CCTA images. Initially, we create a
dataset that includes spatially aligned 2D image patches. These 2D cross-sectional image
patches are extracted along the RCA (Right Coronary Artery) centerline from 3D CT
volumes at different phases within a 4D CT. Figure 1 showcases representative images from
the dataset, illustrating the coronary artery’s various phases throughout a complete cardiac
cycle as captured by the 4D CT scans. A distinctive aspect of our approach is the application
of Dynamic Time Warping (DTW) for the precise alignment of image patches. This method
ensures that each patch extracted from the motion-affected phases is accurately matched
with its corresponding patch from a phase with minimal motion artifacts. This alignment is
crucial for maintaining the anatomical accuracy and consistency across the patches, forming
a solid foundation for the subsequent motion correction process.

Figure 1. Various phases of the coronary artery throughout a complete cardiac cycle, as captured by a
4D CT scan.

Following this, style transfer is implemented using a patch from a phase with the
least motion artifact as the target to generate synthetic ground truths for motion-affected
patches. The goal is to generate a synthetic motion-corrected ground truth (GT) image
patch as the fusion of the content of the source image, such as local anatomical elements,
with the motion artifact characteristics of the target image.

Leveraging the motion-free and motion-affected pairs, we train a CycleGAN model [20]
to produce realistic artifact-free patches. At the last stage, these 2D patches are reinserted
into our 3D CT scan with volumetric interpolation to obtain the final motion-corrected
3D CT volume. This dual-step image generation process ensures the preservation of the
original internal structures, while simultaneously maintaining a realistic shape for the
RCA. At the testing phase, we assume the 3D CT scan is motion-perturbed, and the RCA
centerline is annotated. Based on this, we proceed to extract 2D patches, correct them,
and subsequently reintegrate them into the scan.

The main contributions of our work are as follows. First, we propose a coronary
artery motion correction technique that employs the cycle consistency GAN model on
2D image patches extracted from a CT image set comprising different cardiac phases,
each presenting various forms of motion artifacts. Second, we utilized the Dynamic Time
Warping technique to reduce the error involved in extracting corresponding image patches
of the coronary artery from CT images across various cardiac phases. Third, we conducted
thorough quantitative and qualitative assessments, comparing the effectiveness of our
proposed method with previous works.

We include a detailed analysis of the performance improvements of our proposed
method, highlighting the advancements over prior methodologies. We quantitatively
evaluated the proposed method by measuring motion artifact metrics [21]. For comparison
with related research, we conducted quantitative evaluations using metrics such as the
Dice score to provide a comprehensive analysis. Additionally, we conducted an observer
study to qualitatively score the degree of motion artifacts.
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2. Previous Works

In addressing our problem, two prevalent deep learning methodologies are commonly
employed. The first involves using neural networks to determine the underlying motion
vectors of the artifacts. Lossau et al. [15] introduced constant linear motion in the axial
plane on artifact-free CT scans to yield sets of motion-affected image patches along with
their associated 2D motion vectors. Then, they trained CNNs to estimate the motion vectors.
In Maier et al. [16], a deep neural network is trained to estimate the motion vector field
(MVF), which is then used for motion-compensated image reconstruction.

The second methdology involves using neural networks to directly generate motion-
corrected images based only on the input image appearance, without any explicit mo-
tion estimation. In Jung et al. [13,14], a CNN structure originally proposed for super-
resolution [10] was used to generate artifact-removed images. In Ren et al. [22],
the pix2pix [18] method, proposed for image-to-image translation, was used to improve
CCTA images from raw CCTA imaging data using reconstructed CCTA images as targets.
The reconstructed images were obtained from Snapshot Freeze (GE Healthcare), a commer-
cial motion correction algorithm that leverages information from adjacent cardiac phases
within a single cardiac cycle to mitigate motion artifacts. Zhang et al. [17] also utilized the
pix2pix method to convert motion-perturbed images into motion-free images. They used
an automated phase selection algorithm, Smart Phase (GE Healthcare), to determine the
optimal target phase within the R-R interval from four sets of image reconstructions. Then,
similar to Ren et al. [22], they employed Snapshot Freeze (GE Healthcare) to the optimal
target phase to generate an image reconstruction that is assigned as the ground truth to train
the pix2pix network. Both GAN-based approaches demonstrated significantly improved
performance on quantitative metrics such as circularity, Dice Similarity Coefficient (DSC),
and Hausdorff Distance (HD) for GAN-generated images compared to raw images when
evaluated against the reference phase.

Unfortunately, corresponding CCTA images with and without motion artifacts can-
not be acquired, since we cannot stop the heart to acquire images. Thus, special tech-
niques must be employed to generate the training data necessary for supervised learning.
In Jung et al. [13,14], neural style-transfer [23] is applied to convert images with artifacts
into images without artifacts, which are considered as synthetic ground truth. Our proposed
method applies a similar approach to that of Jung et al. [14] for generating ground truth.
It is important to note that this method differs significantly from the data procurement
process utilized by Ren et al. [22] and Zhang et al. [17]. This divergence in methodologies
makes it challenging to directly compare our method with theirs. However, since they have
both employed the popular generative adversarial network architecture, pix2pix, we have
trained our own model to specifically evaluate and compare its performance against the
proposed model, CycleGAN.

3. Methodology

Our proposed pipeline aims to enhance a motion-affected 3D CT volume and gen-
erate a motion-corrected version using neural networks. Therefore, we adhere to the
following methodology:

1. We extract image patches along the artery centerline. These patches are aligned with
their corresponding target motion-free phase patch using Dynamic Time Warping
(DTW). DTW is an algorithm used to match correspondences between pixels across
the sequence of patches. This ensures that the corresponding patch pairs exhibit
similar anatomical features. This alignment is essential to ensure the accuracy and
reliability of the subsequent steps in the process;

2. Utilizing the patch corresponding to slower motion as the target, we employ a style
transfer network to produce a synthetic ground truth image (SynGT) for the motion-
perturbed image. Style transfer is performed between pairs of corresponding patches
in different phases in a 4D CT and alters only the style (local texture), not the content
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(structure). Our assumption is that motion artifacts are closer to style and thus can be
reduced using this process;

3. A CycleGAN network is trained to perform motion compensation, with the input
consisting of pairs of motion-affected and SynGT patches;

4. Motion-corrected patches are reinserted and interpolated into the original 3D CT
volume to compensate for the motion artifacts of the mid RCA.

Figure 2 illustrates a schematic representation of the training processes mentioned
in the second and third points. The subsequent sections explain the technical details of
each subprocess.

Figure 2. Workflow of the proposed method. Step 1, generate synthetic motion-corrected patch (SynGT)
using style transfer method. Step 2, train the cycle consistency adversarial network(CycleGAN) using
SynGT. Detailed descriptions of steps 1 and 2 are given in Sections 3.2 and 3.3, respectively.

3.1. Extracting Corresponding Coronary Patches from 4D CT

The 4D CT data is captured using retrospective gating with a dual-source CT scan-
ner. The data is systematically reconstructed at 10% intervals across the heartbeat cycle,
highlighting phases at 40% and 70% for their minimal motion disturbance in the coronary
artery, while other phases are often plagued by significant motion artifacts. We base this
process on that of Jung et al. [14].

Focusing on the highly motion-sensitive midsection of the right coronary artery (RCA),
an experienced radiologist manually annotates this region on each temporally sampled
3D CT volume. This annotation, done using the commercial coronary analysis software
(QAngioCT, Medis Medical Imaging Systems, Leiden, the Netherlands), spans from the
first right ventricle branch to the acute marginal branch.

Adhering to a process parallel to our prior studies, we discretize the mid-RCA center-
line at each phase ϕ into a set of ordered 3D coordinates, forming a linear approximation
between these points. The total length of the mid-RCA centerline is calculated by summing
the distances between adjacent point pairs. For extracting patches along the centerline, we
first establish corresponding points aligned with the same anatomical landmarks across
different phases. A fixed number of equidistant points are sampled along the centerline,
with interpolation to precisely determine their 3D coordinates. Planar patches, centered at
these points, have their normals defined by the tangent to the centerline at each respective
point. Figure 3 illustrates this process, highlighting the alignment of corresponding points
across various temporal phases of the 3D CT volumes.

The corresponding patches are then extracted by sampling the voxel intensities within
the 3D CT volume on a grid, centered and aligned at each equidistant point along the
mid-RCA. This approach ensures consistency in the extracted patches across different
phases, which is crucial for effective motion artifact correction in subsequent steps.
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Figure 3. Using dynamic programming to find corresponding patches based on structural similarities
between target and source patches.

3.2. Dynamic Time Warping for Synthetic Patch Alignment and Cross-Phase Style Transfer

The patches extracted from the coronary artery from different phases of a 4D CT
scan are not only distinct in terms of severity of motion artifact but also in terms of the
anatomical structures. The motion of the heart causes variability in the surrounding local
features as well. Our goal is to obtain corresponding patches with similar neighboring
distinctive features without motion disturbance, to train our CycleGAN model. Because this
is clinically unattainable, we synthesize a same-phase-no-artifact patch, P̃ϕ

j , using style

transfer to the source patch Pϕ
j with a different-phase-no-artifact patch as the target patch

Pϕ⋆
j . We refer to this process as cross-phase style transfer, where ϕ denotes the cardiac phase

and ϕ⋆ denotes the phase within the heartbeat when the motion is the slowest, resulting in
the least severe motion artifacts.

To optimally align the patches, we use the Dynamic Time Warping (DTW) algorithm.
Let P̃ϕ = {P̃ϕ

1 , P̃ϕ
2 , . . . , P̃ϕ

N} be the target patch sequence, and Pϕ = {Pϕ
1 , Pϕ

2 , . . . , Pϕ
M} be the

source patch sequence, where N and M are the lengths of the target and source sequences,
respectively. We calculate the distance or similarity measure between each pair of patches
P̃ϕ

i and Pϕ
j :

cost(i, j) = distance(P̃ϕ
i , Pϕ

j )

In the context of source and target patch matching with similar anatomical structures
(background), we employ the Structural Similarity Index (SSIM) as the similarity measure.
We chose this metric as it takes into account luminance, contrast, and structural information,
which is crucial in our case. Mathematically, it is given by

SSIM(P̃ϕ, Pϕ) =
(2µP̃µP + c1)(2σP̃P + c2)

(µ2
P̃ + µ2

P + c1)(σ
2
P̃ + σ2

P + c2)

The mean values, µP̃ and µP, capture the average intensity of pixel values in P̃ϕ and Pϕ.
The covariance, σP̃P, measures the joint variability between the patches, while σ2

P̃ and σ2
P

represent their individual variances. The constants c1 and c2 prevent instability in the
SSIM computation.

The resulting SSIM scores are stored in a cost matrix of size N × M, which represents
the accumulated cost of the optimal alignment up to position (i, j). To find the minimum
cost path from the starting point to each point (i, j), an accumulated cost matrix of size N × M,
where AccCost(i, j), is calculated. This accumulates costs using the recurrence relation:

AccCost(i, j) = cost(i, j) + min(AccCost(i − 1, j), AccCost(i, j − 1), AccCost(i − 1, j − 1))

Then, this is traced back from (N, M) to (1, 1) to find the optimal alignment path. This path
represents the matching between the target and source patches.

The technique of transforming a source image’s style—but not its content—into a
target image’s style is known as style transfer. Texture, color, and contrast—both local and
global—are components of the style. Conversely, content usually refers to the shapes, hues,
and textures needed to identify the scene, including any particular people or objects. We
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consider local anatomical features to be content in our framework, but motion artifacts as
part of the style.

We apply the neural style transfer method [23], similar to the process in Jung et al. [14].
The pipeline of this method is as follows. A VGGNet [24]—pre-trained on the ImageNet
database [25]—is used to compute local image features, which are the described as the
numerical representation of the content. If we denote the tensor of the CNN features at layer
l as F1

x and F1
c for the synthesized image I⃗x and content reference image I⃗c, respectively,

the loss function for the content is defined as

Lcontent

(
I⃗x, I⃗c

)
=

1
2
|| I⃗x − I⃗c||22. (1)

In the next step, the inner product between different CNN features at layer l is defined by
the Gram matrix Gl , as

Gl
ij = Fl

i · Fl
j, (2)

where Gl
ij denotes the element at row i, column j of Gl , and Fl

i and Fl
j denote the ith and jth

features, respectively, corresponding to the ith and jth convolutional kernels, respectively,
at layer l. The loss function for style is, hence, defined as

Lstyle

(
I⃗x, I⃗s

)
=

1

2Nl
x

2 × 2Nl
s
2 ||G

l
x − Gl

s||22, (3)

where Gl
x and Gl

s are the Gram matrices, and Nl
x and Nl

s are the number of features at layer
l, for I⃗x and style-reference image I⃗s, respectively.

Finally, I⃗x is determined by using a gradient descent to minimize the balanced loss,
defined as

Ltotal

(
I⃗x, I⃗c, I⃗s

)
= αLcontent

(
I⃗x, I⃗c

)
+ βLstyle

(
I⃗x, I⃗s

)
(4)

where α and β are coefficients to balance the effect between the content and style loss terms.
The loss in Equation (4) is not optimized while training, it is fixed. Instead, a modified
version I⃗x of the input images is generated [23].

To summarize, P̃ϕ
j , Pϕ

j , and Pϕ⋆
j correspond to I⃗x, I⃗c, and I⃗s, respectively. Whereas the

phase ϕ⋆ with the minimum amount of motion is determined manually, the patches from
all other phases ϕ can be assigned as the source, i.e., the reference patch for content Pϕ

j .

3.3. Training and Applying the Cycle Consistent Generative Motion Artifact Correction Network

The proposed CycleGAN model is designed for image-to-image translation. It learns
the pixel mapping and color distributions of the source and target patches for subsequent
data synthesis. Typically, the GAN model comprises of two deep learning models—a gen-
erator model and a discriminator model. The learning process alternates between updating
the generator to trick the discriminator more effectively and updating the discriminator
to better identify generated images as real or fake, such that at the end the generator
synthesizes realistic images.

As depicted in Figure 4, the training process of the CycleGAN aims to map features
from source images X, and target images Y to accurately synthesize realistic RCA. In our
study, source domain X images are the motion-perturbed patches, while the SynGT, from the
previous step, are the target domain Y images. This method involves two cyclic image
mapping functions (generators), denoted as G : X → Y and F : Y → X, and two discrimi-
nators, denoted as Dx and Dy. In the CycleGAN architecture, the mapping functions G and
F exhibit cycle consistency, signifying that the image translation cycle can restore an image
x from domain X back to the original image (F(G(x)) → x), and similarly, it can restore an
image y from domain Y back to the original image (G(F(y)) → y).
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Figure 4. A schematic of our proposed method based on CycleGAN [20].

Our proposed CycleGAN framework utilizes a ResNet6-based generator that features
six residual blocks. Each block comprises convolutional layers with skip connections,
allowing for efficient gradient flow during training. The generator utilizes a series of decon-
volutional layers for upsampling, progressively refining the translated images. The number
of filters in the first convolutional layer is set to 64. The cycle-consistency loss Lcyc for the
generator is mathematically defined as:

Lcyc(G, F, X, Y) = Ex∼pdata(x)[∥F(G(x))− x∥1]

+Ey∼pdata(y)[∥G(F(y))− y∥1]

For the discriminator, we have adopted a 70×70 PatchGAN model. This divides the
input image into non-overlapping patches of 70×70 pixels, evaluating each independently.
Mathematically, the adversarial loss LGAN for the discriminator is defined as:

LGAN(D, X, Y) = Ey∼pdata(y)[log DY(y)]

+Ex∼pdata(x)[log(1 − DY(G(x)))]

This approach provides fine-grained feedback, enabling the generator to focus on
localized details and reducing computational complexity. The model undergoes training
for a total of 100 epochs with an initial learning rate set at 0.0002. Following this initial
training phase, the learning rate is linearly decayed to zero over the next 200 epochs.
Figure 5 provides a detailed illustration of the layers within the described generator and
discriminator architecture.

We chose CycleGAN because of (1) its cycle consistency, which means that after trans-
lating patches to correct motion artifacts, the reverse translation should bring them back
to their original state, helping in maintaining relevant anatomical details while mitigating
artifacts, and (2) PatchGAN’s ability to handle patch-wise translations, which aligns well
with the need to correct artifacts in only specific regions of the image.
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Figure 5. Detailed representation of the CycleGAN generator and PatchGAN discriminator architec-
ture [20].

3.4. Reinsertion and Volumetric Interpolation of Motion-Corrected Patches into 3D CT Volume

Lastly, we reinsert the 2D patches generated by the CycleGAN model into the CT
volume to obtain the motion-corrected scan. We employ the methodology outlined in our
earlier work [14] and, therefore, provide only a concise overview here.

For a smooth and continuous appearance of the reinserted patches and the volume,
we perform volumetric interpolation. Given our prior knowledge, of the center point q⃗j and
the normal n⃗j of each patch through the patch extraction process described in Section 3.1,
we reinsert the output patches Pj using the inverse of the known projection transforms.

For two adjacent patches Pj and Pj+1, volumetric interpolation is on the bounding
box enclosed by the reinserted patch coordinate grids Qj and Qj+1. For each voxel with
coordinate q within the bounding box, and in the volume between the two patches, we
determine the vector vk⋆

j,j+1 among {vk
j,j+1, 1 ≤ k ≤ R2} that is closest to the voxel coordinate,

i.e., that has minimum point-to-line distance dp2l(q, vk
j,j+1) =

∣∣∣(q−qk
j )×(q−qk

j+1)
∣∣∣∣∣∣qk

j+1−qk
j

∣∣∣ . The final

value for voxel q is the weighted average defined as I(q) = wq
j Pj(q̃†

j ) + wq
j+1Pj+1(q̃†

j+1),

where Pj(q†
j ) is the intensity obtained from bilinear interpolation on Pj at 2D non-integer

coordinate q̃†
j , and w is the weight defined by the point-to-plane distances dp2p of q to the

planes containing Qj and Qj+1.

4. Results

To facilitate a comprehensive comparison with other methods, we first conducted an
evaluation using the CAVAREV platform [26] through a phantom study. This platform
allowed us to benchmark our proposed method against both existing non-deep-learning
(DL)-based and DL-based techniques previously evaluated on the same platform. In ad-
dition to the phantom study, we also assessed our method’s performance on clinical
data. For this evaluation, we specifically chose recent DL-based methods for comparison,
including the work of Jung et al. [14] and methods based on the pix2pix framework. Al-
though Ren et al. [22] and Zhang et al. [17] also employed pix2pix, direct comparisons
were challenging due to differences in the training data distributions. To overcome this, we
trained a pix2pix model on our dataset.
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4.1. Phantom Study

Our evaluation was conducted on the CAVAREV platform [26], leveraging simulated
dynamic projections from the 4D XCAT phantom, featuring contrast-enhanced coronary ar-
teries modeled after patient data. The dataset, which focuses solely on cardiac motion, was
selected for the assessment of our proposed methods. Geometry calibration was sourced
from a genuine clinical angiographic C-arm system. This evaluation was chosen to facilitate
a direct comparison with previous work, allowing us to benchmark the effectiveness of our
method in motion correction against established techniques.

To evaluate the proposed method using the CAVAREV platform, we generated 10 C-
arm CT volumes on a 2563 grid, ensuring an isotropic voxel size of 0.5 mm, across ten
distinct heart phases targeted for reconstruction. In line with prior works referenced on the
CAVAREV website [27], the volume reconstructed at the heart phase of 0.9, characterized by
minimal motion, served as the target phase for cross-phase style transfer, a process detailed
in Section 3.2 of our methodology. The dataset comprised mid-RCA patches collected from
25 centerline points extracted from 10 CT volumes. Given data limitations, we allocated
seven volumes for training, reserving two for test purposes.

Our method’s efficacy in motion correction was quantified using the 3D metric (Q3D)
as defined by CAVAREV [26], complemented by Dice similarity coefficients (DSCs) to
gauge the overlap between binary images, with values ranging from zero (no overlap) to
one (perfect match). The motion-corrected volumes were binarized and assessed against
the ground truth, represented by the segmentation mask of the coronary artery from
the volume reconstructed at a quiescent heart phase. The performance of the proposed
method was evaluated using the average DSC across two test volumes. This served
as the performance metric, and a comparative analysis was conducted against existing
methodologies, including Jung et al. [14], pix2pix, and other methods featured on the
CAVAREV website [27], as documented in Table 1. The comparison methods [28,29]
are cost-minimization-based approaches, while those in [30–32] are 2D–2D- or 3D–3D-
registration-based approaches.

According to Jung et al. [14], time efficiency is critical in emergency medical scenarios.
In this context, our proposed DL-based method offers a notable benefit in terms of process-
ing speed, while the pix2pix model shows performance on par with that of Jung et al. [14].
Our proposed method also exhibits an enhanced DSC score, indicating improved perfor-
mance. Figure 6 displays a test example from a phase (ϕ = 50) characterized by significant
motion artifacts. Despite the initial poor image quality, the proposed method successfully
diminishes these artifacts, showcasing its efficacy through both quantitative and qualitative
improvements demonstrated on the CAVAREV dataset.

Table 1. Comparative analysis of Dice scores utilizing the CAVAREV dataset across various methods.

Method Approach a DSC

Dynamic Level Set [28] CM 0.691
Streak-Reduced ECG-Gated FDK [30] REG3D 0.744
Residual Motion Compensation [31] REG2D 0.776
Motion Compensation [32] REG2D 0.823
Spatio-temporal TV [29] CM 0.876
Jung et al. (MAC-net) [14] DL 0.829
pix2pix DL 0.830
Proposed Method (CycleGAN) DL 0.841
a CM: cost minimization, REG2D: 2D–2D registration, REG3D: 3D–3D registration, DL: deep learning.
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Figure 6. A qualitative example from the CAVAREV dataset test data showcasing severe motion
artifacts. The set comprises the original mid-RCA test patch, the outcome from the pix2pix model,
the result of the proposed CycleGAN method, and the corresponding reference patch. Phase informa-
tion (ϕ from the 4D CT) is indicated above the patch. Radial artifacts are attributed to the limited
number of projections (n = 133).

4.2. Clinical Data
4.2.1. Datasets

The 4D CT data utilized in this study were retrospectively collected using a dual-source
CT scanner (SOMATOM Definition Flash, Siemens Healthineers, Forchheim, Germany) at
Severance Hospital, South Korea, with the acquisition dates ranging from December 2015
to March 2016. The dataset comprises scans from 140 patients, systematically reconstructed
at 10% intervals throughout the cardiac cycle. The training data comprised patches from
20 points in eight phases in 100 4D CT volumes. The number of phases K = 8 was
determined by the number of temporal-phase quantizations, 10, minus the 40% and 70%
phases designated as the targets for cross-phase style transfer. Several 4D CT volumes
had K values of less than eight, in which phases with extreme motion artifacts were
excluded because manual annotation of the coronary artery was impossible. The final
dataset comprised a total of 5868 pairs of mid-RCA patches, which were then augmented
to 35,208 using vertical and horizontal flips and rotations. Each patch sampled from the 3D
volume was constructed to be of size 64 × 64 pixels. Validation and test sets, comprising
2152 patches from 30 4D CT volumes and 734 patches from 10 4D CT volumes, were
similarly constructed.

4.2.2. Quantitative Evaluation: DSC and HD

We present a quantitative evaluation of GAN-based motion artifact correction methods
using the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) metrics. Our
assessment encompasses image patches affected by motion artifacts, compared to reference
patches, and evaluates the performance of the pix2pix model and CycleGAN model in
correcting these artifacts. To accurately measure the DSC and HD metrics, we segmented the
vessel region using a seed-based region-growing technique that allows for semi-automatic
annotation of the vessel. The reference patches were extracted from the phases of the
4D CT scans that exhibited the least motion artifacts, typically the cardiac phases with
minimal motion disturbance. By comparing the corrected patches against these motion-
minimized references, we were able to quantitatively assess the effectiveness of the pix2pix
and CycleGAN models in correcting motion artifacts.

For a visual representation of these metrics, refer to Figure 7, which includes
two subfigures—(a) displaying a violin plot of the DSC, and (b) a violin plot for the
HD—illustrating the performance comparisons between the methods. CycleGAN demon-
strates the highest median DSC (0.751), surpassing pix2pix, indicating its superior effective-
ness in mitigating motion artifacts. In terms of HD, CycleGAN achieves the lowest median
value (5.385), signifying superior patch similarity to pix2pix. Detailed numerical values and
statistical significance values of these findings are summarized in Table 2, which provides a
comprehensive comparison of the DSC and HD values for pix2pix and CycleGAN.
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We applied the Wilcoxon signed-rank test to assess performance differences between
pix2pix and CycleGAN. This non-parametric test confirms significant improvements in both
DSC and HD for both methods over the motion-affected patch baseline (p-values < 0.001). No-
tably, CycleGAN achieves significantly higher DSC and lower HD than pix2pix (p-value < 0.001),
demonstrating its superior efficacy in mitigating motion artifacts.

In summary, CycleGAN outperforms pix2pix in motion artifact correction, with higher
median DSC and lower median HD values. The reduced variability, indicated by narrower
Interquartile Ranges (IQRs), underscores CycleGAN’s robustness in mitigating motion arti-
facts across various image patches. These findings emphasize substantial and statistically
significant performance improvements by CycleGAN over pix2pix in terms of DSC and
HD metrics.

(a) Dice similarity coefficient (b) Hausdorff distance

Figure 7. Quantitative Evaluation Using DSC and HD Metrics: Two violin plots, showcasing
the performance of the pix2pix model and the proposed (CycleGAN) model in motion artifact
correction. (a) illustrates the distribution of Dice Similarity Coefficient (DSC) values, where CycleGAN
demonstrates a higher median DSC. (b) displays the Hausdorff Distance (HD) metric, with CycleGAN
achieving a lower median HD. Both plots include median and interquartile ranges. The “***” markers
denote statistically significant differences as confirmed by the Wilcoxon signed-rank test.

Table 2. Performance Evaluation Metrics: DSC and HD.

Method Median IQR p-Value

Dice similarity coefficient
Original 0.488 0.330–0.626
pix2pix 0.706 0.534–0.843 <0.001
Proposed (CycleGAN) 0.751 0.598–0.853 <0.001

Hausdorff distance
Original 10.440 8.246–13.200
pix2pix 5.831 4.243–7.616 <0.001
Proposed (CycleGAN) 5.385 4.123–7.000 <0.001

IQR: Interquartile Range, representing the range between the 25th and 75th percentiles.

4.2.3. Quantitative Evaluation: Motion Artifact Metrics

Next, we extended our investigation to include the application of GAN-based methods,
specifically pix2pix and CycleGAN, to enhance the performance metrics for coronary
artery imaging. Our quantitative analysis focused exclusively on normal coronary arteries,
omitting diseased ones due to the challenging nature of these metrics in handling plaque.

We employed the motion artifact metrics as proposed in Jung et al. [14], measuring
isotropy, fold overlap ratio (FOR), low-intensity region score (LIRS), and motion artifact
score (MAS). Isotropy, quantifying the level of motion artifacts, is evaluated based on the
ratio of two eigenvalues (λ1, λ2) of the vessel region’s shape, aligning with methods used
in Jeon et al. [33]. FOR, assessing the symmetry of vessel regions, and LIRS, measuring the
shading effect of motion artifacts, are calculated following the methodologies outlined in
Ma et al. [21].
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The results show that pix2pix and CycleGAN demonstrated substantial improvements
across all evaluated metrics, surpassing the performance of Jung et al. [14], as detailed
in Table 3. A notable increase using GAN-based methods was observed for all metrics
including Isotropy, FOR, LIRS, and MAS. Furthermore, the proposed approach using
CycleGAN resulted in slightly improved performance compared to pix2pix, demonstrating
the effectiveness of our method.

We also confirmed the statistical significance of the measurements, ascertained through
a Wilcoxon signed-rank test, with p-values smaller than 0.001. This robust statistical
evidence firmly supports the superiority of pix2pix and CycleGAN over the previous
method, illustrating their marked effectiveness in reducing motion artifacts.

For the effective calculation of these metrics, it is crucial to accurately identify specific
areas, including the vessel region affected by motion, areas exhibiting low-intensity shading
artifacts, and the myocardium region. To streamline this process, we implemented a seed-
based region-growing technique for semi-automatic annotation of the vessel and low-
intensity artifact regions. This method enhances efficiency and assists in clearly defining
the segment boundaries while ensuring consistent intensity across the region. Conversely,
the myocardium regions are annotated manually due to their variable appearances and
shapes, which makes them less suitable for automated region growing processes.

Table 3. Comparison of Methods Across Different Metrics.

Motion Artifact Metric Method Median IQR p-Value

Isotropy

Original 0.40 0.30–0.58
Jung et al. [14] 0.63 0.46–0.75 <0.001
pix2pix 0.75 0.65–0.83 <0.001
Proposed (CycleGAN) 0.74 0.63–0.84 <0.001

Fold Overlap Ratio (FOR)

Original 0.59 0.54–0.62
Jung et al. [14] 0.63 0.59–0.67 <0.001
pix2pix 0.79 0.78–0.81 <0.001
hlProposed (CycleGAN) 0.8 0.79–0.81 <0.001

Low-Intensity Region
Score (LIRS)

Original 0.92 0.89–0.95
Jung et al. [14] 0.97 0.93–1.0 <0.001
pix2pix 1.0 1.0–1.0 <0.001
Proposed (CycleGAN) 1.0 1.0–1.0 <0.001

Motion Artifact Score
(MAS)

Original 0.54 0.48– 0.59
Jung et al. [14] 0.61 0.55–0.67 <0.001
pix2pix 0.79 0.78–0.81 <0.001
Proposed (CycleGAN) 0.8 0.79–0.81 <0.001

4.2.4. Qualitative Evaluation

One experienced reader evaluated the degree of motion artifacts in coronary artery
images using a 5-point Likert scale. The assessment was blinded; the reader was unaware
of whether the images were pre- or post-application of the proposed motion correction
methods. Images were randomly presented without any identification, including both
original and motion-corrected patches.

Table 4 shows the distribution of the Likert scale scores for the test patches before
and after motion correction using different methods, namely, Original, Jung et al., pix2pix,
and CycleGAN. Initially, a significant majority of images (98.5%) were rated in the lower
categories of the Likert scale (1, 2, and 3), indicating a high degree of motion artifacts. How-
ever, after applying the motion correction methods, this percentage substantially decreased
to 35% for Original and further reduced with the application of advanced methods like
pix2pix and CycleGAN, as demonstrated by the lower frequency of categories 1, 2, and 3
(0.5%, 3.5%, and 32.1% for pix2pix; 0.5%, 3.1%, and 30.6% for CycleGAN, respectively).
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Moreover, the mean score based on the Likert scale improved markedly from 1.43
(±0.66) in the original images to 3.80 (±0.87) for Jung et al. [14], 3.82 (±0.84) for pix2pix,
and 3.88 (±0.85) for CycleGAN, indicating a significant reduction in motion artifacts.
The statistical significance of these improvements is confirmed with p-values smaller
than 0.001.

In our comparative analysis of pix2pix and CycleGAN, we observed a notable su-
periority in the performance of CycleGAN, particularly in the context of motion artifact
correction in coronary artery imaging. While both methods showed significant improve-
ments in reducing motion artifacts, CycleGAN demonstrated a slight edge over pix2pix
in several key metrics. For instance, CycleGAN’s ability to better preserve the structural
integrity of the coronary arteries was evident, as indicated by its higher scores in the Likert
scale evaluation. Specifically, CycleGAN achieved a mean score of 3.88 (±0.85) compared to
pix2pix’s 3.82 (±0.84), suggesting a more effective reduction in noticeable motion artifacts.

Table 4. Motion artifact before and after applying proposed method

Original Jung et al. [14] pix2pix Proposed (CycleGAN) p-Value

Likert scale <0.001
1 = Completely unreadable 66.5% 2.5% 0.5% 0.5%
2 = Significant motion 26% 2.5% 3.5% 3.1%
3 = Apparent motion 6% 30% 32.1% 30.6%
4 = Minor motion 1.5% 41.5% 41.1% 39.8%
5 = No motion 0% 23.5% 22.7% 25.9%
Score <0.001
Mean 1.43 3.80 3.82 3.88
Standard deviation ±0.66 ±0.87 ±0.84 ±0.85

The sample results showcasing the comparative effectiveness of pix2pix and Cycle-
GAN in motion artifact correction are illustrated in Figures 8 and 9. Accompanying each
image set are the Likert score changes and source information, providing a comprehensive
overview of the improvements.

Figure 8 highlights the varying degrees of enhancements achieved. These range from
significant, where image quality substantially improves from completely unreadable to no
motion, to more moderate improvements, such as reductions in apparent motion. Notably,
pix2pix and CycleGAN both significantly enhance the clarity and visibility of the coronary
arteries, yet CycleGAN often outperforms pix2pix, particularly in maintaining the integrity
of the arterial structure.

In Figure 9, instances where pix2pix and CycleGAN are directly contrasted are pre-
sented. Section (a) of the figure illustrates cases where pix2pix inadvertently enhances areas
outside the targeted coronary region, as indicated by yellow arrows. Conversely, section
(b) shows the samples where pix2pix fails to rectify motion artifacts, whereas CycleGAN
successfully mitigates these issues. These comparative examples underline the superior
capability of CycleGAN in addressing complex motion artifacts.

Figure 10 illustrates the efficacy of our proposed motion correction algorithm, espe-
cially highlighting the seamless integration of 2D-patch-based corrections back into the
3D CT volume. The upper row of the figure displays original slices from the CT volume
that were previously affected by motion artifacts. Notably, these slices include the right
coronary artery (RCA), a region typically susceptible to motion-induced distortions.
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Figure 8. Qualitative examples of the original patch containing the mid-RCA, alongside the results
obtained from applying pix2pix and the proposed method, CycleGAN. These samples showcase
a range of improvements, with expert evaluations based on a 5-point Likert scale (1 = completely
unreadable, 2 = significant motion, 3 = apparent motion, 4 = minor motion, 5 = no motion). Addi-
tionally, source information such as case number and phase ϕ in 4D CT is displayed to the left of
each sample. (a) represents instances where the scores remained consistent between pix2pix and
the proposed method, CycleGAN, while (b) highlights cases where the application of the proposed
method, CycleGAN, resulted in improved scores compared to pix2pix.

Figure 9. Comparative Analysis of pix2pix and CycleGAN in coronary motion correction. (a) Illus-
trates a case where pix2pix erroneously enhances regions outside the area of interest in the coronary
artery, marked with yellow arrows to highlight the misenhanced areas. (b) Demonstrates cases where
pix2pix fails to correct motion in the coronary artery, while CycleGAN successfully achieves motion
correction. The regions where pix2pix fails are indicated with yellow arrows, contrasting with the
successful correction by CycleGAN.

Following the application of our motion correction algorithm on these 2D patches, we
reinserted them into the original 3D volume. The lower row of the figure showcases these
post-correction slices. It is particularly remarkable to observe how the reinserted patches
blend seamlessly with the surrounding areas, with no discernible artifacts or discontinuities.
This seamless integration is further enhanced by the volumetric interpolation technique we
employed, ensuring that the corrected patches maintain spatial and anatomical consistency
with the adjacent uncorrected regions.

The RCA region, highlighted with green boxes in both rows, serves as a clear point of
comparison. In the corrected slices, one can observe a marked reduction in motion artifacts,
resulting in clearer and more defined images of the coronary artery. This comparison not
only validates the effectiveness of our motion correction approach but also demonstrates
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our algorithm’s capability to maintain the integrity and continuity of the 3D structure in
the CT volume.

Figure 10. Comparison of axial views of a CT volume before and after applying the proposed coronary
motion correction algorithm including re-insertion and volumetric interpolation. The upper row
shows the original motion-affected slice and the lower shows the slice after motion correction using
our algorithm. The RCA region is highlighted with green boxes.

5. Conclusions

In this study, we have advanced the field of motion correction in coronary computed
tomography angiography (CCTA) by proposing a CycleGAN-based framework. Build-
ing upon the foundations laid by Jung et al. [14], this framework incorporates several
key enhancements: (1) it focuses on 2D patches from the coronary artery for learning,
(2) corresponding patches are extracted from different temporal phases in 3D volumes,
capturing various degrees of motion, (3) CycleGAN is utilized for generating synthetic
motion-corrected images, which serve as a superior alternative to the style transfer method
used previously, (4) this approach enables the deep learning model to accurately learn
motion correction from these synthetic images, and (5) during testing, motion-corrected
patches are efficiently reinserted and interpolated back into the original 3D volumes.

Our comprehensive evaluation, both quantitative and qualitative, underscores the
effectiveness of this updated method using phantom and clinical datasets. Through quanti-
tative metrics such as the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD),
CycleGAN demonstrated a remarkable improvement in motion artifact correction over the
pix2pix model. Additionally, our qualitative analysis, conducted by an experienced reader
using a 5-point Likert scale, reflected significant enhancements in image quality and clarity,
especially in the mid-right coronary artery (RCA) region. The observed improvements in
motion artifact metrics—such as Isotropy, Fold Overlap Ratio (FOR), and Low-Intensity
Region Score (LIRS)—were statistically significant, with p-values less than 0.001, further
affirming the superiority of our CycleGAN-based approach.

One of limitations of our study is the evaluation based on two specific datasets, which
may not adequately represent the full spectrum of imaging environments and patient
populations. This could restrict the broader applicability of our CycleGAN-based approach
in diverse clinical settings. Additionally, the inherent complexity of deep learning models
like CycleGAN raises challenges in interpretability, which could impact clinical trust
and understanding.
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In future research, we intend to expand the evaluation of our method by including a
wider variety of datasets, enhancing our understanding of its robustness and adaptability
in different clinical settings. Building on this, our subsequent efforts will concentrate on
enhancing the transparency and interpretability of deep learning models, with a particular
focus on our CycleGAN-based framework. In conclusion, the promising results achieved
with our CycleGAN-based approach open new avenues for enhancing the clinical utility
and diagnostic accuracy of CCTA. These advancements have the potential to significantly
impact patient care, allowing for more accurate diagnosis and assessment of coronary
artery diseases.
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