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Abstract: With the advent of the era of big data and information technology, deep learning (DL) has
become a hot trend in the research field of artificial intelligence (AI). The use of deep learning methods
for parameter inversion, disease identification, detection, surrounding rock classification, disaster
prediction, and other tunnel engineering problems has also become a new trend in recent years, both
domestically and internationally. This paper briefly introduces the development process of deep
learning. By reviewing a number of published papers on the application of deep learning in tunnel
engineering over the past 20 years, this paper discusses the intelligent application of deep learning
algorithms in tunnel engineering, including collapse risk assessment, water inrush prediction, crack
identification, structural stability evaluation, and seepage erosion in mountain tunnels, urban subway
tunnels, and subsea tunnels. Finally, it explores the future challenges and development prospects of
deep learning in tunnel engineering.

Keywords: deep learning; tunnel engineering; mountain tunnels; urban subway tunnels; undersea
tunnels; intelligent analysis

1. Introduction

In the 17th century, modern tunnel engineering began to rise, and the European
continent started building canal tunnels [1]. By the middle of the 19th century, with the
advent of the second industrial revolution, the industrial economy saw rapid development
and an increasing volume of traffic, which, in turn, placed higher demands on both the
quantity and quality of tunnel construction. It was not until the 1950s that people gradually
mastered the basic principles of various types of tunnel construction, summarizing the
design and planning methods of underground engineering; thus, tunnel engineering grad-
ually emerged as a new research field in civil engineering. Entering the 21st century, with
continuous improvement on the national economic level, China shifted its focus in tunnel
construction from urban plains to hilly areas, while also strengthening the construction of
high-grade highways and railroads.

By the end of 2020, the total mileage of operational tunnels in China had jumped to first
place worldwide. By the end of 2022, China had put into operation a total of 42,723 tunnels,
including 24,850 highway tunnels with a total length of 26,784 km, and 17,873 railroad
tunnels with a total length of 21,978 km [2]; the number of cities with urban rail transit
(including the “Smart Rail” system) in operation reached 58, with a total mileage of about
10,176 km, of which 26 cities have an operating mileage of more than 100 km [3]. Following
the completion of cross-sea tunnels such as the Xiamen Xiang’an Undersea Tunnel, Jiaozhou
Bay Undersea Tunnel, and Hong Kong-Zhuhai-Macao Bridge Undersea Immersed Tube
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Tunnel, the construction of strait passages in the Bohai Strait, the Qiongzhou Strait, and
the Taiwan Strait is also underway. In China’s “13th Five-Year Plan”, there are calls to
strengthen the development and utilization of deep resources and the construction of a
new pattern of underground urban space, which makes the geological conditions faced by
tunnel construction more complex and further increases the construction difficulty.

In the design and construction process of tunnel engineering, the geotechnical body,
situated within the complex environments of engineering geology and hydrogeology,
serves as the main research object. These environments are characterized by strong non-
uniformity, non-determinism, and discontinuity. The excavation of the geotechnical body
and its interaction with the surrounding geological environment, along with the excavation
machinery, make the tunnel excavation process a dynamically changing one in both time
and space [4]. At the same time, the adverse factors affecting tunnel construction are
multi-scale and multi-level. The inherent complexity of the geotechnical body makes it
challenging for researchers to directly determine these factors by monitoring data in an
objective manner. Previously, predictions of these factors primarily relied on the expertise of
field professionals and their engineering experience, without in-depth analysis. Therefore,
accurately predicting and forecasting the stability of the construction process through
simulation and analysis of the mechanical behaviors and phenomena during the excavation
process has become a key research topic for many scholars [5–8].

With the rapid development of computer technology, researchers have begun leverag-
ing the powerful analytical capabilities of computers and artificial intelligence technology,
combined with the fundamental theories of tunnel engineering, for the identification,
study, and intelligent analysis of the mechanical behavior of rock bodies during excava-
tion. Among these technologies, deep learning (DL), which integrates disciplines such as
statistics, neuroscience, and computer science, stands out. This method, relying on data for
learning and without the need for manual feature extraction, enables computers to build
models that simulate human brain functions for information learning and processing. The
application of deep learning in civil engineering began to expand gradually after Ian Flood
first utilized the neural network method to address construction process issues in the late
1980s [9,10]. Ghaboussi was the first to apply neural network research to the ontological
model of geotechnical materials. In the domestic civil engineering community, Shi et al. [11]
were among the early researchers engaged in neural network studies, using artificial neural
networks to analyze the relationship between the central intensity of earthquakes and
their corresponding magnitudes, and addressing the issue of sample non-convergence
with a filtering method. However, in actual tunnel engineering problem analyses, despite
more advanced data acquisition methods and limitations imposed by the engineering
environment, the feature information of the excavation face or the deformation data of
the supporting structure are not effectively utilized [12], and the majority of data end up
archived after project completion [13], rendering them insufficient for the full utilization
of deep learning methods for analysis. Current research indicates that data mining is the
primary means of addressing such issues, with many scholars already employing this
technology for research on engineering problems like geologic disaster prevention and
control [14], geologic advance prediction [15], and structural deformation prediction [16].
With ongoing innovations in computer technology and continuous advancements in deep
learning theory, the deep learning method based on large data samples holds broad research
and application prospects in tunnel engineering.

In addition, artificial intelligence and a series of intelligent products differ from the
human brain in their inability to produce abstract or image thinking similar to that of the
human brain. They also lack the cognitive process of understanding things inherent to the
human brain. This cognitive process often stems from common sense, which includes both
physical common sense and the common sense used in daily life. On the other hand, the
thinking process of artificial intelligence is derived from its technological basis, namely, the
chip. However, when the available data are insufficient or inaccurate, this can lead to issues
in the computational processes of these products. Yet, true intelligent analysis involves
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understanding the essence of the subject matter from a limited amount of data. The ability
to change one’s thinking plays a crucial role here, leveraging the advantages of human
brain thinking, including abstract and image thinking, to move from understanding the
essence of things to establishing intelligent thought processes and ultimately arriving at
the final analysis results.

Through the China National Knowledge Infrastructure (CNKI) and Web of Science,
among other literature search engines, a total of 1068 Chinese and English articles published
over the past 20 years on the topics of “deep learning”, “neural network”, and “tunnel en-
gineering” were selectively reviewed. The applications of deep learning methods in tunnel
engineering research areas have been categorized into 10 themes, as depicted in Figure 1.
It is observed that the most extensive research has been conducted in the area of “tunnel
disease identification and assessment”. This primarily includes the identification of lining
cracks and water leakage areas [17,18], the prediction of rockburst and collapse risk [19,20],
and the control of surrounding rock deformation [21], among other factors. Feng et al. [22]
combined the mean impact value algorithm (MIV-A) with the improved firefly algorithm
to optimize the probabilistic neural network (PNN), using cumulative microseismic event
numbers, microseismic energy, etc., as input parameters and the rockburst intensity level as
the output parameter. They proposed a rockburst prediction method based on microseismic
monitoring and an optimized probabilistic model, demonstrating that the prediction rate
of rockburst based on this method can reach 86.75%. Cao et al. [23] integrated the empirical
modal decomposition method with long short-term memory (LSTM) [24] to create a deep
learning model capable of adaptively processing noisy data. This model uses the empiri-
cal modal decomposition method to break down short-term original tunnel deformation
data into multidimensional data, which are then predicted by the LSTM neural network,
significantly enhancing the accuracy of time series predictions.
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The main journals publishing research on the application of deep learning in tunnel en-
gineering were identified, as shown in Figure 2. Notably, the English journal Tunnelling and
Underground Space Technology has the highest number of publications in this field, totaling
67 articles. Both the Chinese journal Chinese Journal of Rock Mechanics and Engineering and
the English journal Applied Science Basel have published 47 papers in this domain, ranking
them second.

However, the current research on DL in tunneling engineering is predominantly
focused on specific directions, with only a few overview articles analyzing DL methods
within this engineering field. To address this issue, this article outlines the development of
DL by reviewing articles published both in China and internationally over the past ten years.
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It briefly introduces the neural network structures primarily used in DL and categorizes
tunnel engineering challenges into mountain, urban, and subsea tunnel issues based on
their locations. Furthermore, it discusses and summarizes the intelligent applications of
the DL method across various tunnel engineering projects, along with the existing research
gaps. Finally, it explores the future development directions and challenges for DL in the
tunnel engineering field. To better illustrate the research ideas and content of this paper,
the structure flow chart is presented in Figure 3.
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2. Deep Learning Algorithm Evolution

In 2006, Geoffrey Everest Hinton, known as the “Pioneer of Deep Learning”, published
an article in the top academic journal Science with his students [25], which once again
opened a wave of DL in academia and industry. As a new branch of ML, DL would go on
to be widely used in driverless technology [26], natural language processing [27], speech
recognition [28], medical diagnosis [29], astronomy [30], and many other fields in the
following years.

DL can be viewed as a neural network containing multiple hidden layers, and its
origin can be traced back to the birth of artificial intelligence (AI), i.e., as early as the
1950s. In the 1980s, a new approach based on brain-based computing proved feasible,
laying the foundation for the development of DL. With the advent of the 21st century,
with the speed of computer operation becoming fast enough and the computational ability
becoming better, coupled with the abundance of means to obtain data at construction sites
and innovation in monitoring and measurement technologies, more available data could
emerge. Compared with the traditional shallow machine learning (ML) methods, DL can
better overcome the problems concerning the reduced computational power and flexibility
of models due to the dramatic increase in data volume.
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Computers have faster and more precise computing and learning abilities than hu-
mans, while humans have a more comprehensive range of self-learning, thinking, and
judging capabilities. The birth of the discipline of AI has given computers the ability to
understand and think logically as humans so that computers might attain the judgment
and processing of high-level semantics and even emotions. Among the many algorithms
for realizing AI, ML is one of the more rapidly developing ones. Its core idea is to let the ma-
chine actively and continuously learn from a large amount of data, find the corresponding
information law, and use the law to make predictions on unknown data.

As a branch of ML, DL is rooted in mathematics, computer science, and biological
neuroscience. Its essence is to explore specific features of brain structure and the general
principles of brain function, aiming to establish a process of continuously extracting data
characteristics and to achieve the recognition ability necessary to imitate the brain with
respect to images, sounds, and texts. Compared with the previous neural networks, the
network structure of DL is more straightforward, and the network level is more profound,
which can achieve the approximation of complex functions. Specifically, AI, ML, and DL
have an inclusive relationship, as shown in Figure 4.
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In a strict sense, the emergence of DL is due to the development of neural networks,
while the research boom in neural networks arises through perceptrons. In the research
process of DL, it would be absurd to leave the neural network alone. Since the 1940s, the
establishment of theoretical neurology has made people focus on the thinking mechanism
of the human brain and analyze the working principle of human neurons [31–33]. At this
time, the concept of a neural network was proposed [34]. After nearly a century of tortuous
development, the theory of DL has been thoroughly refined from a single-neuron model to
a multi-layer deep network structure [35], from solving simple linear problems to realizing
complex function approximation [36], and from shallow learning to deep learning [37,38].
Its development process can be divided into three parts according to the research process
of neural networks. Figure 5 shows the main development process of DL.

There are hundreds of trillions of neurons in the human brain, granting the human
brain a very high network dimension and a rich hierarchical structure. Inspired by this
structure, scholars in the field of neuroscience began to use anatomical knowledge to dis-
cover the way in which the brain obtains information. With the continuous improvement
of technology, researchers have discovered that the brain does not discriminate between
objects directly based on the projection of the external environment on the retina; it decom-
poses the received signals through the multiple visual laminar structures and gradually
extracts the features of objects to achieve the recognition effect [39]. As to the deep learning
algorithm, it is used to simplify the complex network structure, to delete the perceptrons
with a low contribution rate to subsequent learning layer by layer, and to retain the data
information useful for learning.
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In 2006, Hinton published a paper on deep belief networks (DBN) in Science. The
greedy layer-wise unsupervised learning algorithm proposed in this network solves the
problem of “gradient explosion” due to the increase in the number of hidden layers in
the BP algorithm. The optimization problem of the deep network structure has made
breakthrough progress, and the neural network structure has completed the transformation
from shallow-layer to multi-layer depth. In 2012, Hinton and his student Alex Krizhevsky
et al. optimized and improved the DBN network to build the AlexNet model [41], and this
model was used to win the ImageNet image recognition competition held that year with an
error rate of 15%. DL has set off a broader research boom in the world, so this year is known
as the “First Year of Deep Learning”. In the following years, more network structures such
as transfer learning [42], generative adversarial network (GAN) [40], and ResNet residual
network [43] have been proposed and used in more fields. So far, the development of DL
has officially entered the intelligence era, and the wave of DL based on “Big Data and Deep
Model” has come.

3. Intelligent Application of Deep Learning in Tunnel Engineering
3.1. Mountain Tunnel

In 1979, the total length of mountain road tunnels in China was merely 52 km. Entering
the 21st century, this figure surpassed the 1000 km mark. By the end of 2022, China had
constructed 24,850 mountain tunnels, totaling 26,784 km in length. The emergence of a large
number of tunnel projects has led to “multiplicity” and “length” becoming the defining
characteristics of mountain tunnel construction in this century [44]. Drawing on structural
reliability theory, the main areas of research have focused on the stability and durability
of tunnel engineering, alongside a trend towards more mechanized construction methods
for mountain tunnels. Many scholars have investigated intelligent analysis methods for
addressing various problems in tunnel engineering, primarily divided into (1) intelligent
analysis methods that combine numerical simulation with deep learning (DL); (2) methods
that integrate numerical simulation with machine learning (ML) optimization algorithms;
and (3) approaches based on DL combined with advanced monitoring tools, such as
geological forecasting. During the excavation of tunnels, the disturbance to the original
stratum alters the actual rock stress, with the stress state of the surrounding rock mass in
mountain tunnels experiencing significant variations.

Therefore, when studying mountain tunnel engineering problems, the change of
stress with time plays a vital role in its stability. By mastering the changing trend in the
stress state of rock and soil mass, it can more accurately judge the stability of structures
in engineering, which is also the reason why many scholars study the stress sequence in
the construction process. The construction environment of mountain tunnels is complex; is
often undertaken in high ground stress and deep buried environments, resulting in many
geological disasters such as rockbursts, collapse, and water and mud inrush. In the past,
the prediction methods of geological disasters included numerical simulation analysis,
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fractal geometry, fuzzy mathematics comprehensive evaluation, extensive evaluation, etc.
However, the complexity of deep rock mass and the high non-linearity between disaster
mechanisms and environmental factors make it difficult for traditional methods to meet
the needs of construction design. Accordingly, it is good to use intelligent analysis methods
based on the deep network structure for related identification, prediction, and prevention.
This subsection mainly discusses the innovation of the DL method in mountain tunnels to
account for the above geological disasters.

3.1.1. Rockburst Disaster

Rockburst is one of the main geological disasters in deep-buried long tunnels, often
occurring in hard rock mass under high ground stress. It is characterized by apparent
randomness and suddenness [45]. Due to the brittle damage of deep surrounding rock
caused by excavation, unloading, or external disturbances, the elastic strain energy accu-
mulated in the rock body is suddenly released. This results in damaging phenomena such
as blasting, spalling, and ejection of the surrounding rock. Such events often cause catas-
trophic damage to underground engineering construction and pose a serious threat to the
safety of construction personnel. Consequently, the prediction of rockburst grade and the
development of intelligent early warning systems have become worldwide challenges [46].

When the DL method is used to predict, monitor, and prevent such tragedies, it is es-
sential to choose the neural network parameters. The ability of the parameters to intuitively
reflect lithology characteristics, in situ stress, initial stress field characteristics, and the devel-
opment characteristics of surrounding rock joints and fissures significantly influences the
network’s learning process and the model’s accuracy. Chen et al. [47] selected compressive
strength, tensile strength, elastic energy index, and tangential stress as discriminant indexes.
They used these as input-layer neurons and included two binary neurons in the output
layer to represent the classification of rockburst intensity, thereby establishing an artificial
neural network model for rockburst prediction. Based on the original parameter selection,
Sun [48] summarized the research results of relevant scholars on influencing factors of
rockburst prediction. He added a total of nine types of correlation indicators, including
point load strength (Is), tunnel burial depth (H), and burst tendency index (Wet), and
combined these with the improved BP neural network algorithm to evaluate the propensity
of rockburst occurrence during tunnel construction. Among them, the point load strength
Is depended on the rock damage load and the distance between the loading points, while
the blasting tendency index Wet is the rock need to reach the peak strength of the rock
samples in the elastic strain energy storage energy and plastic deformation dissipation
of the ability of the ratio; the value can be calculated by the rock samples of the stress–
strain curve obtained. Tian et al. [49] proposed a deep neural network (DNN) rockburst
prediction model (DA-DNN) based on dropout regularization and an improved Adam
optimization algorithm. By analyzing rockburst examples, the maximum tangential stress
of surrounding rock, uniaxial compressive strength and tensile strength, and elastic energy
index of rock are also used as evaluation indexes for rockburst prediction. Throughout the
analysis process, the network structure itself enables autonomous selection and screening
of data, avoiding the interference caused by human participation. Therefore, the prediction
model can perform a complex deep relationship learning process and handle a limited
amount of data with some noise. Although the concept of these physical parameters is
fuzzy, their values will be some deviation from the real parameters of rock mass. However,
the significance of the parameters analysis is that they can be used to obtain computational
analysis results that are consistent with the measured information. In the meantime, they
provide a basis for the prediction and evaluation of projects in the later stage or under the
same conditions.

At the same time, the network model used in the DL process requires a large amount
of data for training and verification. Generally, the greater the number of samples, the
higher the potential performance ceiling of the network model becomes. However, the
harsh tunnel environment poses significant challenges to data collection and acquisition.
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Therefore, employing data mining (DM) techniques can effectively address these issues,
enhancing both the quality and quantity of the samples. Zhang et al. [50] applied rough
set theory in data mining to establish a radial basis function neural network (GA-RBF).
They successfully identified a complex non-linear mapping relationship between rockburst
grade and its influencing factors. Luis et al. [51] also employed data mining techniques to
assess the probability of rockburst occurrences, along with their characteristics, such as
type, location, depth, width, and time delay.

In addition, combining over-the-top geological forecasting tools with deep network
models (refer to Figure 6) significantly enhances the accuracy and efficiency of rockburst
predictions. This method monitors the development and occurrence of rockbursts, utilizing
rupture and noise waveforms from pre-processed monitoring signals as inputs to the deep
neural network. This approach enables real-time detection and classification of signals,
allowing for the quick identification of the source of monitoring signals. It not only forecasts
geological information ahead of the tunnel face but also predicts potential disaster types,
representing the most effective and accurate prediction method with superior generaliza-
tion capabilities currently available. Fang et al. [52] improved upon traditional advanced
geological prediction methods, which often struggle with high recognition universality
at lower implementation costs and reduced construction times. By integrating neural
networks with drilling test technology, they devised a novel method for the intelligent
analysis and identification of geological strata. The application of this method to advanced
drilling data from the Jiudingshan Tunnel on the Chu-Da Expressway significantly reduced
the error rate in stratum identification. Qiu et al. [53] introduced a new rockburst predic-
tion approach using the TSP advanced geological prediction system combined with the
initial geostress field obtained through RBF inversion. They emphasized that enhancing
the accuracy of advanced geological prediction and in situ stress field inversion is cru-
cial for improving rockburst prediction precision. Furthermore, leveraging microseismic
monitoring technology, Zhang [54] conducted research using a deep convolutional neu-
ral network to classify microseismic waveforms of surrounding rock, focusing on noise
reduction, array optimization, source localization, microseismic prediction, and rockburst
warning. Building on these research findings, he established a database for the rockburst
microseismic index and designed an intelligent rockburst warning platform, achieving
automated monitoring of tunnel microseismic signals.
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Based on the above analysis, it can be found that the early warning, control, and moni-
toring of rockburst grade for deep rock mass engineering has become an urgent problem to
be solved in major engineering construction in China and even in the world. The analysis
of surrounding rock stress states, realized through the seismic wave signals generated by
rock microfractures and obtained by microseismic monitoring technology, has been widely
used worldwide in the monitoring and prediction of rockburst disasters, achieving great
success [55]. With its great advantage in data processing, the deep learning algorithm
can identify the key characteristics of the monitoring data for establishing the non-linear
mapping relationship between the monitoring data and the source location. Therefore,
researchers tend to use the deep learning algorithm to identify effective monitoring signals
from the monitoring data to predict the subsequent rockburst risk. In addition, to avoid the
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influence of abnormal parameter values at certain times on the prediction results, deter-
mining the evolution trend of microseismic parameters over a period is also beneficial for
rockburst prediction. The prediction trend of several microseismic parameters provides a
corresponding time label for rockburst prediction and risk judgment and introduces a new
research idea for rockburst prediction and early warning in the field of deep underground
and mine engineering.

3.1.2. Prediction of Collapse and Outburst and Water Inflow

Collapse is one of the primary risk sources in tunnel engineering, often accompanied
by water and mud inrush. Figure 7a shows that the upper rock mass of the tunnel collapsed
during construction, with the fallen rock mass visible at the bottom of the image. Figure 7b
reveals a large amount of groundwater gushing out in the upper right corner of the
excavation face. In mountain tunnels, these phenomena primarily occur in areas with
unstable surrounding rock, including weathering zones, fault fracture zones, and geological
structural zones. Many factors contribute to tunnel collapse, including natural factors (such
as precipitation and earthquakes), geological factors (such as the grade of surrounding rock,
buried depth, and groundwater content), survey and design factors (such as inaccurate
geological surveys and deviations in design schemes), and construction factors (such as
limited choices of excavation methods and flawed construction practices). Moreover, the
relationship between the influencing factors of each disaster is complicated and ambiguous,
due to the significant spatial and temporal variability of atmospheric precipitation and
surface runoff. Furthermore, the complexity of the disaster mechanisms and the lack of basic
information make it challenging to quantitatively assess the risks of tunnel collapse and
water inrush, preventing the formation of a unified risk assessment and prediction model.
Currently, the prediction methods employed for this type of disaster in China fall into three
categories: (1) direct forecasting and analysis using field observation and monitoring data;
(2) application of non-linear theory (including grey models, fuzzy risk assessment, and
neural network models) to develop a model for predicting surrounding rock deformation;
(3) prediction analysis utilizing numerical analysis methods, such as finite element, discrete
element, boundary element techniques, and their combinations. Since tunnel collapse and
water surge represent complex processes, often characterized by discontinuity and uneven
rock deformation, a highly non-linear problem, addressing this issue poses significant
challenges. Numerical analysis methods, while precise, demand stringent testing conditions
and incur substantial computational costs. To mitigate these challenges, non-linear theory
is integrated with existing theoretical equations. This integration serves dual purposes: it
offers a theoretical foundation that enhances the accuracy and feasibility of data analysis,
and it provides a methodology for rapidly assessing parameter sensitivity and for cross-
verifying model results. This dual approach not only leverages the strengths of both
methods but also fulfills the requirements for prediction precision and accuracy.

On the problems of the evaluation and diagnosis of collapse disaster, Chen et al. [56]
summarized the factors affecting tunnel collapse according to the case data of more than
100 tunnels and established the membership function of loss and the fuzzy analytic hierar-
chy evaluation model of collapse risk. A comprehensive assignment method is adopted
for the weight value of factors, which can satisfy both historical and practical data and
reduce the possibility of interference by human factors. Wang [57] combined grey theory
with cooperative non-linear theory to establish a grey-collaborative non-linear theoretical
model for landslide time prediction. Chen et al. [58] took the Yinsong Water Diversion
Project as an example based on the monitoring data of 18 collapse accidents during tunnel
construction. The parameters such as penetration rate, rotational speed, thrust, and torque
of the TBM cutter are combined into the drilling efficiency index (TPI), which was used as
the input variable and output targets of DBN. This approach improves the accuracy of the
algorithm while reducing the amount of data. The network structure was combined with
the time series prediction method to realize the successful prediction of the unfavorable
geological section of the tunnel.
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In the prediction of tunnel water inrush, the time series data of water inrush are
normalized as the input and output variables of the model. It is a common method by
which to establish a BP neural network model to predict water inrush, which has been
used in the risk analysis of long-buried tunnels and karst tunnels [59,60]. Chen et al. [61]
proposed an automatic detection method to quantify the water inflow on the tunnel face
in view of the problems of personal subjective judgment, labor, and time consumption in
the process of on-site manual monitoring of tunnel water leakage. This method utilizes
the high-efficiency level of the convolution neural network (CNN) model in semantic
segmentation. First, it identifies the tunnel face image samples without water inrush; then,
it segments the image samples in the water inrush areas. Finally, it uses the ResNet-101
model to realize the probability classification of whether water inrush and inflow occurs in
the image of the tunnel face.

Currently, there are abundant research results on the prediction of tunnel rockbursts,
collapse, and water surges using deep neural networks, and relying on the powerful no-
linear computational ability and learning ability of neural networks, we can realize the
preliminary analysis, prediction, and forecasting of disasters in mountain tunnels under
complex environmental factors. In the context of a “dual-carbon strategy”, the use of deep
neural networks to establish a tunnel carbon emission calculation and analysis system [62],
a dynamic design and decision-making system [63], and a construction mechanization
system carbon emission calculation model [64] will also become major hot directions in the
future construction of mountain tunnels.

3.2. Urban Subway Tunnel

Urban rail transit is an essential infrastructure for urban construction. Rapid industrial
modernization and the high concentration of the urban population led to the increasing
pressure of the urban environment. A series of “urban diseases” problems, such as traffic
congestion and environmental pollution, have led to the acceleration of the development
of urban underground spaces. After decades of construction since the opening of the
first subway in Beijing in 1969, China’s urban tunnels in operation came to 1710 km in
2010, and the number of kilometers in operation grew to 4712 km by 2017. Up to 2021,
244 urban rail transit lines were opened in 45 cities across the country, and the total operat-
ing mileage increased to 7978.19 km. The construction concept behind urban underground
rail is gradually changing from “social needs” to “smart city”, which will alleviate the
negative impacts caused by traffic pressure while expanding this concept to become an
indispensable component of the future intelligent urban transportation system, improving
people’s living standards.

The Issue of urban subway tunnels is a crucial aspect of underground space develop-
ment. Throughout the design, construction, and operation phases of urban subway tunnels,
they are often subjected to various factors such as roadway traffic loads, pedestrian loads,
train travel disturbances, and the loads from existing buildings above. Simultaneously, it
is necessary to consider the influence of underground pipelines, underground piles, and
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diaphragm walls of existing buildings. These factors differentiate the structural design and
construction approach of subway tunnels from that of mountain tunnels. Most subway
tunnels are constructed using shield machines, and the tunnel structure mainly consists of
segments. This construction method inevitably leads to issues such as cracks and water
seepage during both construction and operation. However, the most significant challenge in
building urban tunnels lies in controlling strata stability during excavation and managing
deformation within acceptable limits for surface settlement. It is indispensable to predict
the maximum surface settlement that may occur during construction and operation. In
light of this context, this subsection will summarize the intelligent application of the DL
(deep learning) method in addressing challenges related to recognizing shield tunnel lining
defects and predicting surface subsidence values.

3.2.1. Lining Cracks and Water Leakage

Cracks in the tunnel lining will seriously affect the tunnel’s stability and durability,
reduce the tunnel’s service life, and even more seriously, endanger the safety of trains and
passengers. Therefore, it is crucial to inspect the tunnel structure in a timely manner to
identify and detect the cracked lining structure. As far as subway tunnels are concerned, the
shield method is often used for construction. In the process of shield machine propulsion,
lining segments are assembled, and grouting is carried out outside the lining ring, reducing
the impact on road traffic and nearby residents. It is precise because the tunnel lining is
formed by segments, the splicing strength is low, and the cracking along the joint is easy to
occur. With the aggravation of the cracking degree, the water seepage area will continue to
expand, and the two often show a physical correlation.

At present, the detection methods of tunnel lining cracks and water leakage mainly
adopt manual inspection methods, which use the naked eyes of inspectors to observe the
tunnel surface and realize the identification work. However, due to the dark engineering
environment, artificial level, and subjective judgment factors, this method will inevitably
have errors, lower accuracy, and efficiency. Therefore, the rapid acquisition of tunnel lining
images and the automatic identification of cracks and seepage areas based on computer
vision are the new development trends in the design of detection methods.

In recent years, scholars have delved into metro tunnel lining defect detection and
identification technologies based on deep learning (DL). Their research has led to the
development of advanced algorithms, as illustrated in Figure 8. Xue et al. [18,65] proposed
an optimized depth convolution network model V-6 based on the GoogLeNet structure.
This model effectively classifies image features like water leakage, cracks, seams, and
pipelines, achieving an impressive accuracy rate of 95.24%, surpassing GoogLeNet in
recognition performance. To address limitations in disease location feature extraction from
large-scale images, six faster R-CNN detection models were designed to detect cracks,
water leakage, and other issues simultaneously. Despite some limitations due to sample
size, these models show promise in improving detection outcomes. Huang et al. [66]
utilized fully convolutional networks (FCN) to semantically segment images of cracks and
water leakage in subway shield tunnels. Their dual-flow algorithm incorporates physical
correlations between the two issues, with separate channels for crack and water leakage
area segmentation. This approach outperformed shallow algorithms like the region growth
and adaptive threshold methods. By employing the Mask R-CNN depth convolution
network structure, researchers successfully segmented water leakage images, accurately
identifying leakage traces in tunnel linings and preventing the misinterpretation of concrete
spots as leaks. This method is already applicable in monitoring and identifying diseases
in shield tunnel linings, showcasing the significant speed and accuracy improvements
facilitated by DL methods in traditional lining defect detection.

In the early stage of disease identification and detection research, the analysis model
is usually based on the edge detection algorithm, the mathematical morphology operation,
and the traditional machine learning algorithm. Although it has achieved good results,
its recognition process is still highly dependent on manual labeling features. It is easy to
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misjudge. With the continuous growth in the quantity of tunnel’s under construction and
the continuous accumulation of operational data, the deep learning algorithm has led to
a great leap forward in development in the identification and detection of tunnel lining
structural diseases because of its ability to deal with massive generalization. It shows
better recognition accuracy in a tunnel environment with complex interference factors such
as blind area monitoring and shadow, artificial marking, background texture, and so on.
Therefore, the intelligent identification and monitoring method based on the combination
of deep learning and non-destructive testing technology has become a widely used testing
method in the present, and its use will in the future.
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3.2.2. Prediction of Settlement Value

Land subsidence in China mainly occurs in large- and medium-sized regions in the
east and middle of China, especially in the Yangtze River Delta region and areas with
immense groundwater exploitation. The construction process of the subway tunnel is
carried out in the rock mass; the initial stress state of the original stratum will inevitably
change significantly due to excavation disturbance. After the stratum stress is adjusted, its
macroscopic performance is the movement and deformation of the rock mass position [67].
The ground settlement caused by subway tunnel construction gives rise to many factors,
including objective factors such as the direction of surface runoff and the characteristics of
excavated strata, and is closely related to subjective factors like tunnel section shape and
construction technology level. Therefore, it is essential to control the tunneling speed, shield
machine posture, and the grouting pressure of the shield tail in the construction process [68]
to monitor the surface subsidence and the deformation of surrounding buildings.

As to the problem of predicting surface settlement values in urban tunnel construction,
traditional prediction methods include empirical methods [69], theoretical methods [70],
and model test methods [71], etc. However, the above methods are based only on the
simplification of the tunnel structure and the construction parameters; their applicability
is limited. In addition, the excavation process of tunnel-surrounding rock is a difficult
self-added value system, and the above methods also struggle to achieve the real-time
prediction of surface settlement and the optimization of construction machinery parameters.
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With the increasing construction scale of urban subway tunnels in recent years, surface
settlement prediction methods based on rock mechanics and numerical simulation have also
been developed and great breakthroughs have been made. Tunnel deformation monitoring
methods based on numerical simulation and tunnel stability analysis methods based on
mechanical analysis and rock classification, as well as deep learning algorithms based on
artificial intelligence theory, provide the theoretical basis for, and solution to, these kinds of
random and fuzzy engineering problems.

The recurrent neural network (RNN) can use its recurrent hidden layer in the DL
method to realize the time serialization of monitoring data and generate input data with
the “memory” ability. So, the ability of the network to predict the tunnel settlement is
better than that of the ML algorithms such as BP, RBF, and other algorithms. Wen et al. [72]
predicted the development trend of land subsidence by using the non-linear autoregressive
with eXogenous inputs neural network (NARXNN) time series prediction model with
external input according to the analysis results of monitored land subsidence data. The
network model takes the construction impact factor x(t) as an input unit. This impact factor
combines the construction characteristics, changes in environmental conditions, and spatial
and temporal effects of settlement at the measurement points. In addition, the use of input
and output units with delay effects improves the accuracy and dynamic description of the
prediction model, which means that the inversion results are closer to the actual situation.
Li et al. [73] used stratum parameters, tunnel section parameters, and shield machine
parameters as network input indicators. RNNs such as LSTM, GRU (gated recurrent unit),
and traditional BP algorithms are chosen as prediction models to analyze the prediction of
the maximum ground settlement caused by the subway tunnel construction. The results
show that RNN models outperform the BP network model in various evaluation metrics
such as root mean square error (RMSE), mean absolute error (MAE), and determination
coefficient (R2). Mahmoodzadeh et al. [74] used LSTM, deep neural network (DNN), the
K-nearest neighbor algorithm (KNN), Gaussian process regression (GPR), support vector
machine (SVR), DT, and linear regression (LR) based on three engineering parameters
(tunnel width, tunnel depth, and construction method), and three soil parameters (elas-
tic modulus E, friction angle, and cohesion C) were used to study the maximum land
subsidence of 300 datasets of urban subway tunnels in Iran. The prediction results were
analyzed via the K-fold cross-validation method, which showed that DNN, LSTM, and
GPR had the best prediction results 99.37%, 98.96%, and 96%, respectively.

In addition to the RNN model, other intelligent algorithms have appeared to solve
the problem of land subsidence prediction. Li et al. [75] proposed an adaptive neural
fuzzy inference system (AFIFIS) to solve the problems of weak generalization ability and
low correlation between parameters of intelligent algorithms such as neural networks,
genetic algorithms, and grey systems. The system integrates the adaptive ability of the
deep network model and the expression ability of the fuzzy system, and it comprehensively
considers the relationship between the model and the key control parameters, thus pro-
viding a new solution for the rapid prediction of ground settlement during subway shield
construction. Moeinossadat et al. [76] used the finite difference method to build a digital
intelligent model for a section of Tehran Metro Line 7. Gene expression programming (GEP)
was chosen to express the mathematical equation. The mathematical equation derived from
the GEP model is written in visual basic language to estimate the land subsidence caused
by tunnel construction.

Currently, urban subway tunnel construction aims for the integrated and coordinated
development of underground spaces and rail transport, driven by the initial promotion of
“dual-carbon strategy” and “resilient city” concepts. To construct an evaluation system for
future urban metro tunnel development, it comprehensively applies non-linear theories,
including deep learning, fuzzy analysis, and the analytic hierarchy process, aiming to
achieve low-carbon, intelligent, and sustainable urban and rail transport development.
However, existing neural network models mainly rely on monitoring data for calculations
during the training process and fail to incorporate the underlying physical laws of engi-
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neering problems, leading to poor model interpretability and a lack of generalization in
analysis results. Therefore, there is a need to establish a physics-informed neural network
(PINN) model [77] that integrates both a physics model and a data-driven model. By deeply
analyzing the relationship between data laws and physical mechanisms in conjunction
with known physics mechanisms and the deep learning framework, this approach aims to
facilitate applied research in complex engineering scenarios.

3.3. Subsea Tunnel

To solve the traffic problems between the straits and bays, the subsea tunnel was
created under conditions without prejudice in terms of ship navigation. Different from the
mountain tunnel and the urban subway tunnel. The subsea tunnels are less susceptible to
the effects of weather and climate change and have a more stable and smooth passage. It is
easy to connect with traffic at both ends to form a road network. Currently, there are four
ways to build subsea tunnels in the world, as shown in Table 1.

Table 1. Methods of harbor tunnel construction.

Construction Method Application of Tunnel

Drilling and blasting method; buried excavation construction Xiamen Xiang’an Subsea Tunnel; Qingdao Jiaozhou Bay
Subsea Tunnel

Prefabricated pipe section sinking method Seabed immersed tunnel of Hong Kong-Zhuhai-Macao Bridge
Full-section excavation method based on

shield tunneling machine The Channel Tunnel

Full-section pressurized roadheader construction method Tokyo Bay Subsea Tunnel in Japan

However, the construction period of the subsea tunnel is long, and the pore water
pressure of the overlying strata of the tunnel is significant, which reduces the arching effect
of the surrounding rock. Compared with the other two types of tunnels, the construction
environment is qualitatively different. So, it is impossible to obtain geological information
via the general survey method. In addition, the longitudinal design section of the tunnel is
V-shaped; relying on the tunnel’s structure is insufficient for be natural drainage. Once the
water inflow is too large, the risk of disasters in the tunnel construction process will greatly
increase. During the operation of the subsea tunnel, the infinite water exerts massive
pressure on the top of the tunnel, which leads to tunnel leakage becoming the most serious
problem. The occurrence of lining cracks will destroy the whole tunnel structure in a short
time, and it is prone to collapse water inrush and other disastrous accidents.

Because of the characteristics of the subsea tunnel and the many complex properties
of rock mass, researchers need to consider different boundary conditions, load types, and
material characteristics parameters when analyzing them. Therefore, the key to constructing
the subsea tunnel is four-fold [78]: (1) the determination of the minimum rock cover
thickness; (2) the determination of the design value of water pressure; (3) the optimization of
a cross-section of lining structure; and (4) the anti-drainage plan and construction measures
for unfavorable sections. Thus, in the analysis of subsea tunnels, it is most significant to
determine the stability of the tunnel lining structure, the erosion problem of surrounding
seawater seepage caused by excavation, and the risk prediction of water inrush.

In the past, most methods to solve this kind of problem used numerical analysis
and theoretical analysis. These methods require the constant modification and fitting of
parameters, which makes the construction very complicated. Compared with land tunnels,
the implementation of geological exploration and monitoring control is more complex,
and the accuracy of the obtained mechanical parameters is worse. Once the mechanical
parameters are inaccurate, bottlenecks will appear in the calculation process. Moreover, it is
harder to collect images from outside the subsea tunnel than from inside, and the accuracy
of images makes them difficult to use for practical analysis. In addition, there are only
a few undersea tunnels built in the world, so CNN, RNN, and other models cannot be
effectively used for tunnel lining disease identification and deformation prediction. Con-
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sequently, combining the deep network optimization algorithm with numerical analysis,
using intelligent parameter inversion analysis is a more effective solution.

3.3.1. Structural Stability

In 2010, Xiamen Xiang’an Subsea Tunnel was completed and opened to traffic. As
the first subsea tunnel in China, many scholars took this tunnel as an example by which
to study the structural stability of the tunnel by inverting the construction parameters.
Zhao et al. [6] used the deformation values of the tunnel monitored on site to optimize the
inversion of the equivalent modulus of elasticity of the surrounding rock and the lateral
pressure coefficient. Subsequently, the numerical analysis method was used to carry out
the forward calculation of the above two categories, and according to the results of the
forward calculation, to feed back, check, and judge whether the initial support parameters
need to be further adjusted and modified in the construction process. Finally, a scientific
and reasonable evaluation of the stability of the tunnel surrounding the rock was realized.

Chen et al. [79] carried out a triaxial fluid–solid coupling experiment and a triaxial
rheological coupling experiment on weathered rock samples in the field and simulated the
rheological finite element model of the surrounding rock. The model takes the difference
between the test values and the numerical calculation results as the objective function,
and the Nelder–Mead optimization method was used to invert the rheological model
parameters. According to the field displacement monitoring data, the inversion analysis
of weathering through the surrounding rock via parameters such as mechanical parame-
ters, plastic parameters, and damage parameters is carried out. Based on the fluid–solid
coupling theory under rheological conditions, subroutines are compiled and embedded
in ABAQUS finite element analysis software for numerical simulation calculation, which
realizes the reliability prediction of the long-term stability of the tunnel considering rock
rheology. Wang et al. [80] developed an intelligent back analysis program based on a
differential evolution algorithm and an elastic–plastic finite element solution program;
compared the accuracy of parameters such as elastic modulus E, Poisson’s ratio, internal
friction angle, and cohesion C under different strategies; and analyzed the evolution trend
of parameters of a certain section of the Xiang’an tunnel along with evolution algebra.
Lv et al. [81], who made a detailed introduction to the geological exploration, alignment
selection, excavation, and support of 24 Norwegian highway undersea tunnels, such as
Vardø, Nappstraumen, Oslofjord, Bømlafjord, and Eiksund, studied their risk assessment
methods in depth, which served as a great help in the construction of solid undersea tunnel
structures in China. Li et al. [82] proposed a risk assessment analysis and identification
method for undersea tunnels. The method uses six stages of tunnel planning, feasibility
study, investigation and design, bidding, construction, and operation as entry points for
the analysis. It was successfully applied to the structural stability, the durability of lining
structure, drainage prevention system, and risk-control measures of the fault fracture zone
in the Qingdao Jiaozhou Bay subsea tunnel. Professor Chen Weizhong from Wuhan Insti-
tute of Geotechnics, Chinese Academy of Sciences, took the construction process of Wuhan
Yangtze River Tunnel as the engineering background; used the tunnel tube sheet strain
value, tunnel temperature, and Yangtze River water level as the input parameters; learnt
the spatial correlation and temporal dependence of the structural development trend by
using the autoencoder algorithm and RNN, respectively; and put forward a deep-learning
model that could predict multiple coupling factors (autoencoder fused temporal–spatial–
load network, ATSLN), which achieves a coupled analysis of the structural external load
data and spatial–temporal correlation information and can accurately predict the trend of
future structural mechanical behavior [83]. The results show that the short-term structural
response characteristics, the spatial location of different sensors, the internal temperature of
the tunnel, and the external water pressure are the main factors affecting the development
of the structure.

At present, structural health monitoring (SHM) technology is the main means for
structural stability assessment [84], but this technology started later than big data tech-
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nology, and its application in various engineering fields is also more limited, and the
monitoring data obtained by this technology have the characteristics of huge quantity,
a wide distribution of sources, and a complex correlation between data, which make it
difficult for time series models to describe the effective information in the data, and the
prediction effect struggles to meet expectations. Therefore, researchers apply deep learning
algorithms to SHM technology to predict the structural stability of undersea tunnels with
multi-factor coupling.

3.3.2. Seawater Seepage Erosion

In seepage erosion problems in submarine tunnels, the non-linear variation of the
seepage coefficient has a great influence on the stability of the seepage field [85]. In general,
the water pressure is transferred to the lining structure through the surrounding rock and
the grouting reinforcement ring, so the coupling effect of seepage and stress fields on the
lining structure must be considered when solving the unsteady seepage problem. Wang
et al. [86,87] established an elastic–plastic stress–seepage–damage coupling model for rock
based on analyzing the effect of groundwater on the stability of the surrounding rock in
submarine tunnels and water-rich tunnels offshore. The coupling model takes into account
the seepage and stress effects caused by rock cracks and inverts the coupling parameters
according to observed data such as head and displacement. The stress field, seepage field,
and damage field of the rock surrounding the tunnel through the river under the subway
station of Dalian Maritime University were analyzed by combining the intelligent inversion
analysis method with the principle of the differential evolution algorithm.

At the same time, due to the existence of a large number of inorganic salts in seawater,
the contents of chlorine salt, sulfate, and magnesium salt are much higher than those in
freshwater, including the influence of chemical attack medium, the climate environment,
and concrete structure factors [88]. With the passage of time, this will cause corrosion
damage to the lining structure and have a great impact on the durability of the tunnel (as
shown in Figure 9). Tu et al. [89] think that grouting material is an essential guarantee for
the subsea tunnel to operate throughout its design service life. Sulfate erosion resistance,
seawater penetration resistance, chloride ion penetration resistance, and volume stability
are selected as the durability evaluation indexes of grouting material, which is evaluated
via a fuzzy comprehensive evaluation method. Wang et al. [90] analyzed the durability of
the subsea tunnel with respect to chloride ion diffusion, steel bar corrosion, and protective
layer cracking in three stages and established a life prediction model of the subsea tunnel,
which was used to predict the life of the Xiang’an subsea tunnel.
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Because of the seepage problem in subsea tunnels, the finite element method combined
with neural networks is still used for analysis. Due to their high risks, strong uncertainty,
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and the difficulties in geological survey and construction, subsea tunnels are more challeng-
ing when it comes to obtaining and calculating parameters and have higher monitoring
requirements. The realization of an intelligent analysis model also requires more reliable
data. In addressing the erosion problem, traditional fuzzy mathematics, risk assessment,
and other methods are widely used. However, there is still a certain distance from achieving
intelligent analysis. The reasons are mainly attributed to the long erosion time, the poor
timeliness of data acquisition, and the low accuracy in predicting the erosion area and
scope, which represent significant challenges that need to be addressed in the future.

3.3.3. Water Inrush Risk Prediction

During the process of subsea tunnel construction, there is high pore water pressure
around the tunnel, which will reduce the effective stress of the surrounding rock and make
the arching ability much lower than that of other kinds of tunnels. In the case of unfavorable
geological sections such as fault fracture zones, the magnitude of water pressure borne
by the tunnel is enough to cause geological disasters like sudden water gushing so that
the overlying water on the tunnel is connected and the tunnel is submerged [91], which
poses a severe threat to construction safety. Water inrush and gushing accidents not only
create technical obstacles to the opening of subsea tunnels but also seriously threaten the
personal safety of mechanical facilities and construction personnel. The factors leading
to water inrush in the subsea tunnel are shown in Figure 10. Countries all over the world
often need to consider more factors in the process of designing and building subsea tunnels.
Due to the lack of dynamic analysis of groundwater seepage after tunnel excavation, the
theoretical analysis method, empirical analogy method, and numerical analysis method
are mainly used to predict water inrush of the subsea tunnel in China [92,93]. The former
two methods can only roughly estimate the value, while the numerical analysis method is
suitable for solving hydrogeological problems under complex conditions. However, the
model establishment of this method generally needs to clarify hydrogeological conditions
and obtain more parameters, which are usually difficult to meet in an underwater survey. If
the calculation parameters are too few, the calculation results will be difficult to guarantee.
Thus, this process of numerical analysis is difficult. The efficient algorithms and data
analysis methods of deep learning can systematically and specifically analyze the key
points and difficulties encountered in the process of sudden water disasters occurring in
submarine tunnels while saving a lot of human and material resources.

Xu et al. [94] thought that the determination of the minimum overburden thickness
was an important basis for the route planning of subsea tunnels, and there is a close
relationship between overburden thickness and water inflow. The results of analytical
and numerical analysis methods show that the relationship between water inflow and
overburden thickness of subsea tunnels is approximately parabolic, and the relationship
between minimum overburden thickness and seawater depth is approximately linear.
Zhang et al. [95] also used this method to determine the factors the influencing water
inrush and inflow of the tunnel. It is believed that the nature of the surrounding rock, the
burial depth of the tunnel, and the angle of fault are related, but none of them can make a
more accurate prediction result. The general empirical formula method is suitable for the
subsea tunnel with a large permeability coefficient and sensitive hydraulic response. Once
the surrounding environment of the tunnel changes, this method will also produce a large
deviation. Li et al. [96] used the analytical method and numerical analysis method for the
prediction of water inflow. On this basis, a GIS (geographic information system) is used as
the basic platform by which to put the predicted results into the database of the evaluation
system. Combined with the hydrogeological information during the construction process,
the model parameters are continuously revised, and the final results are used as the basis
for the evaluation of risk prediction problems. Xiao [97] summarized six influencing factors
as the network input index of subsea tunnel water inflow according to previous work,
combined it with a genetic algorithm to optimize the network, and finally achieved the
prediction of water inflow work.
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The essence of sudden water disasters in submarine tunnels is the process of energy
accumulation and the explosion of the underground aquifer and upper seawater pres-
sure. Starting from the surrounding rock state of the aquifer structure and the degree
of accumulation of seawater pressure, effective treatment of sudden water disasters can
be realized. Restricted by the harsh underwater construction environment and high con-
struction cost, the number of undersea tunnels in China currently under construction is
relatively small, the design scheme is still being optimized continuously, and the number
of training samples that can be used for deep learning algorithms is also relatively small.
Hence, the existing research mainly simulates the marine environment indoors and builds
a neural network model with experimental data as the sample data to realize the prediction
of tunnel durability and risk assessment.

4. Problems and Prospects

Although different deep learning algorithms can be applied to the same class of
problems, they are limited by the variability of the network structure itself, the principles,
and the diversity of the data, which can lead to discomfort in the results. Based on the
above analysis, the following problems still exist:

1. There are more factors affecting the optimization of network structure. Fully con-
nected neural networks cannot significantly improve the accuracy of the results only
by increasing the number of hidden layers; they can also produce problems such as
overfitting. Secondly, although convolutional neural networks have a strong segmen-
tation ability in image processing and recognition problems, in tunnel engineering, it
is costly to obtain clear and high-quality lining structure images, and recurrent neural
networks also face issues such as data loss and single data type. In addition, the
training method of generative adversarial neural networks is fundamentally different
from the previous networks; it requires higher computational cost and operation time.

2. The data processing process makes it difficult to achieve real-time sharing. At present,
China has not established a large-scale information platform for tunnel monitoring
data and geohazard information sharing, and there is a high cost of data mining,
which leads to some small- and medium-sized tunnels not being able to achieve
dynamic optimization of the construction process based on existing monitoring data.
This increases the difficulty of the tunnel construction. In addition to the spatial and
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temporal variability of geological conditions, data analysis also faces challenges in
achieving correlation between the network model and numerical analysis results.

3. The accuracy of the analysis results still depends on the expert system. Although
the use of deep learning methods for tunnel lining disease detection and palm face
image recognition technology is relatively mature, its theoretical research is still in
development. In risk assessment and performance prediction, the accuracy of the
results is mostly judged by the expert system, and the research results obtained by the
deep learning method still lack a certain degree of persuasiveness.

The 21st century will become the era of the high-speed, high-quality development of
China’s tunnels and underground spaces, and deep learning, as one of its main driving
forces, will play an important role in various fields in the future. We summarize the
important content of this article, draw the following schematic diagram (as shown in
Figure 11), and look forward to its intelligent application in China’s future tunnels and
underground engineering fields in what follows.
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1. The theory of deep learning and engineering application research needs to further
mature. Including the relationship between the number of samples to be trained
and the calculation accuracy of the model, whether the current model can meet
the engineering requirements is still the key issue to be solved. Large-scale data-
mining technology is used to form a parallel integrated data-computing platform
to establish a close relationship between the basic construction equipment and the
intelligent platform.

2. The expansibility of the deep learning network structure should be strengthened. Most
of the network structures are based on supervised learning, which is limited by the
artificially labeled sample feature information in the process of use, so it is impossible
to mine deeper feature information. On the other hand, the unsupervised learning
network structure can extract key information from a large number of unmarked data,
so this kind of network structure should be used in the intelligent analysis of tunnel
engineering problems by using deep learning in the future.

3. To realize the breakthrough of tunnel construction and underground traffic design
and construction technology under complex conditions, we should optimize the
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construction method of mountain tunnels with high ground stress and high seismic
intensity and that of undersea tunnels in deep-water, high-water-pressure environ-
ments. In the process of urban rail transit construction, it is necessary to refine the
construction management system and improve the efficiency of network operation
and maintenance.

4. In speeding up the exploration of intelligent diagnosis technology, rapid repair tech-
nology, and intelligent disaster prevention technology for tunnel structural diseases,
the problem of aging in some tunnels in China is serious. Therefore, it is the top
priority to strengthen the development and design of tunnels’ full-structure risk rapid
identification and assessment early warning systems, lining full-section rapid scan-
ning and disease imaging equipment, and intelligent fire early warning technology.

5. To clarify the conception of the tunnel construction mode under the background of
the “Dual-Carbon” strategy to complete the innovation of engineering technology,
we should deeply integrate modern information technology with basic engineering
theory, establish a new intelligent dynamic construction industry system, improve
the conversion rate of scientific research achievements and practical applications, and
realize cross-disciplinary and collaborative innovation in multi-disciplinary fields.

5. Conclusions

As the construction object of tunneling is a non-continuous, non-uniform geotechnical
body, its mechanical properties are very complex. Moreover, in the course of tunnel
construction and operation, it is difficult to rely on a single monitoring method, calculation
tool, and indoor test to predict structural diseases, assess risks, and select mechanical
parameters. Therefore, researchers have begun to use the monitoring of the surrounding
rock displacement and stress–strain trends to deduce the nature of the geotechnical body,
and they tend to utilize the rapid and accurate analysis capabilities of computers to solve
the above tasks. At the same time, the rapid development of computer vision and data
mining technology has solved the errors caused by the lack of tunnel monitoring data, weak
disease identification technology, and strong interference of objective factors; thus, the deep
learning method in the intelligent solution of tunnel engineering problems has become a
new development trend. Through a brief introduction to the development of deep learning,
this paper focuses on the intelligent application of the deep learning algorithm in tunnel
disaster prevention and prediction problems, such as those pertaining to mountain tunnels,
urban subway tunnels, and undersea tunnels. The main conclusions are as follows:

1. The development of deep learning has experienced an evolution from the concep-
tion of the network structure to the depth of network. In the progression of the
big data era and the information age, the step towards the intelligent stage of the
“big data + deep network structure” framework has come, and different deep net-
work structures have gradually been put forward. However, due to the different
theoretical bases and structures of all kinds of networks, there is no specific network
model that can be considered the most suitable for solving all engineering problems.

2. With the development of computer vision, deep learning shines brilliantly in intel-
ligent recognition and detection tasks such as image and voice detection, and the
deep learning algorithm is used to quickly monitor and diagnose the various types
of tunnel diseases. The prediction and judgment of the failure mode of the lining
structure and the recognition and classification of a palm face and an image of rock are
the main research directions at present. The CNN network structure has also become
the most widely used deep network structure in tunnel engineering.

3. In the prediction of rockburst disasters in a mountain tunnel, our country already has
certain intelligent analysis abilities, and it can use deeper neural networks to solve
prediction problems such as the rockburst intensity grade, influencing factors, and
so on. However, more in-depth research is needed on the prediction of the time of
rockburst occurrence and the mechanism of rockbursts in different geologies, as well
as collapse, water gushing, and other disasters.
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4. Due to the dense population and concentrated distribution of buildings in the city,
the difficulty of underground space construction is also increasing sharply with the
rapid development of the city; so, the identification of tunnel lining cracks and water
seepage and the prediction of surface settlement are particularly important in urban
tunnel construction. The CNN is often used to identify lining diseases, while the
RNN is often used to predict settlement values. The appropriate depth learning
algorithm should be selected according to different working conditions and different
construction methods. Random forest, support vector machine, and other machine
learning methods are also good choices.

5. At present, the intelligent analysis of subsea tunnels is mainly considered from three
perspectives, namely, surrounding rock stability, durability, and tunnel leakage, and
the analysis method mainly depends on numerical simulation. There are few studies
on the seismic analysis, internal drainage, and ventilation design of tunnels, or on the
structural stability of tunnels passing through bad strata. Intelligent analysis based
on deep learning methods has a long way to go in the research of subsea tunnels.

Author Contributions: C.S. and Q.H. developed the ideas and designed the research methodology.
Z.Y. wrote the original version and the modified version of the manuscript. R.H. supervised the work,
acquired the funds, planned the research, and revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Innovation Capability Support Plan of Shaanxi Province-
Innovation Team (No. 2020TD-005), and the Natural Science Foundation of Shaanxi Province
(No. 2023-JC-YB-297).

Institutional Review Board Statement: No applicable.

Informed Consent Statement: No applicable.

Data Availability Statement: The conclusions used to support this review can be obtained from the
corresponding authors as required.

Conflicts of Interest: Author Chunsheng Su was employed by the company China Railway Construc-
tion Bridge Engineering Bureau Group Co., Ltd. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Zhu, H.H.; Sun, H.Y.; Yang, J.H. Road Tunnel Surrounding Rock Stability and Support Technology; Science Press: Beijing, China, 2007.
2. Gong, J.F.; Wang, W.; Li, X.; Zhu, Y. Statistics of railway tunnels in China by the end of 2022 and overview of key tunnels of

projects newly put into operation in 2022. Tunn. Constr. 2023, 43, 721.
3. Wang, F.W.; Feng, A.J. Statistics and development analysis of urban rail transit in China in 2022. Tunn. Constr. 2023, 43, 521.
4. Zhou, J.; Guo, H.; Koopialipoor, M.; Jahed Armaghani, D.; Tahir, M.M. Investigating the effective parameters on the risk levels of

rockburst phenomena by developing a hybrid heuristic algorithm. Eng. Comput. 2021, 37, 1679–1694. [CrossRef]
5. Song, Z.P.; Yang, Z.F.; Huo, R.K.; Zhang, Y.W. Inversion Analysis Method for Tunnel and Underground Space Engineering: A

Short Review. Appl. Sci. 2023, 13, 5454. [CrossRef]
6. Song, Z.P.; Tian, X.X.; Zhou, G.N.; Li, W.W. Theoretical analysis of mechanical behavior of advanced pre-support of pipe-roof in

tunnel. China J. Highw. Transp. 2020, 33, 89–98. [CrossRef]
7. Cheng, W.C.; Song, Z.P.; Tian, W.; Wang, Z.F. Shield tunnel uplift and deformation characterisation: A case study from Zhengzhou

metro. Tunn. Undergr. Space Technol. 2018, 79, 83–95. [CrossRef]
8. Song, Z.P.; Cheng, Y.; Tian, X.X.; Wang, J.B.; Yang, T.T. Mechanical properties of limestone from Maixi tunnel under hydro-

mechanical coupling. Arab. J. Geosci. 2020, 13, 402. [CrossRef]
9. Flood, I.; Kartam, N. Neural networks in civil engineering. I: Principles and understanding. J. Comput. Civil. Eng. 1994, 8, 131–148.

[CrossRef]
10. Flood, I.; Kartam, N. Neural networks in civil engineering. II: Systems and application. J. Comput. Civil. Eng. 1994, 8, 149–162.

[CrossRef]
11. Shi, C.G.; Liu, X.L. Application of neural network to earthquake engineering. Earthq. Eng. Eng. Dynam 1991, 2, 39–47.
12. He, P.; Li, S.C.; Li, L.P.; Zhang, Q.Q.; Xu, Z.H. Prediction of deformation response in surrounding rock of tunnels and permit

mechanism of dynamic change based on data mining. Chin. J. Rock. Mech. Eng. 2017, 36, 2940–2953. [CrossRef]
13. Phoon, K.K. The story of statistics in geotechnical engineering. Georisk 2020, 14, 3–25. [CrossRef]

https://doi.org/10.1007/s00366-019-00908-9
https://doi.org/10.3390/app13095454
https://doi.org/10.19721/j.cnki.1001-7372.2020.04.009
https://doi.org/10.1016/j.tust.2018.05.002
https://doi.org/10.1007/s12517-020-05373-z
https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131)
https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(149)
https://doi.org/10.13722/j.cnki.jrme.2017.0258
https://doi.org/10.1080/17499518.2019.1700423


Appl. Sci. 2024, 14, 1720 22 of 24

14. Liu, H.L.; Ma, Y.B.; Zhang, W.G. State-of-the-art review of big data application in geo-hazard prevention and control. J. Disaster
Prev. Mitig. Eng. 2021, 41, 710–722. [CrossRef]

15. Nie, S.W. Geological Advance Prediction and Operation Parameter Optimization Based on Data Mining. Master’s Thesis, Dalian
University of Technology, Dalian, China, 2020.

16. Liu, T. Research on Safety Analysis and Deformation Preview of Deep Excavation by Data Mining. Ph.D. Thesis, Tongji University,
Shanghai, China, 2007.

17. Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Doulamis, N.; Stathaki, T. Automatic crack detection for tunnel inspection
using deep learning and heuristic image post-processing. Appl. Intell. 2019, 49, 2793–2806. [CrossRef]

18. Xue, Y.; Cai, X.; Shadabfar, M.; Shao, H.; Zhang, S. Deep learning-based automatic recognition of water leakage area in shield
tunnel lining. Tunn. Undergr. Space Technol. 2020, 104, 103524. [CrossRef]

19. Zhang, H.; Zeng, J.; Ma, J.; Fang, Y.; Ma, C.C.; Yao, Z.G.; Chen, Z.Q. Time series prediction of microseismic multi-parameter
related to rockburst based on deep learning. Rock Mech. Rock Eng. 2021, 54, 6299–6321. [CrossRef]

20. Wang, Y.; Liu, B.G.; Qi, Y. Prediction of the collapse accident probability of urban subway tunnel construction under the condition
of damaged and leaking pipelines. Chin. J. Rock. Mech. Eng. 2017, 37 (Suppl. 1), 3432–3440. [CrossRef]

21. Lai, J.X.; Qiu, J.L.; Feng, Z.H.; Chen, J.X.; Fan, H.B. Prediction of soil deformation in tunnelling using artificial neural networks.
Comput. Intel. Neurosc. 2016, 2016, 6708183. [CrossRef]

22. Feng, G.L.; Xia, G.Q.; Chen, B.R.; Xiao, Y.X.; Zhou, R.C. A method for rockburst prediction in the deep tunnels of hydropower
stations based on the monitored microseismicity and an optimized probabilistic neural network model. Sustainability 2019,
11, 3212. [CrossRef]

23. Cao, Y.; Zhou, X.; Yan, K. Deep learning neural network model for tunnel ground surface settlement prediction based on sensor
data. Math. Probl. Eng. 2021, 2021, 9488892. [CrossRef]

24. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
25. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef] [PubMed]
26. Chen, C.Y.; Seff, A.; Kornhauser, A.; Xiao, J.X. DeepDriving: Learning affordance for direct perception in autonomous driving. In Pro-

ceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2722–2730.
[CrossRef]

27. Zhou, M.; Duan, N.; Liu, S.J.; Shum, H.Y. Progress in neural NLP: Modeling, learning, and reasoning. Engineering 2020, 6, 275–290.
[CrossRef]

28. Zhang, S.X.; Liu, C.J.; Yao, K.S.; Gong, Y.F. Deep neural support vector machines for speech recognition. In Proceedings of the
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24
April 2015; pp. 4275–4279. [CrossRef]

29. Chen, S.H.; Liu, W.X.; Qin, J. Research progress of computer-aided diagnosis in cancer based on deep learning and medical
imaging. J. Biomed. Eng. 2017, 34, 160–165. [CrossRef]

30. George, D.; Huerta, E.A. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with
Advanced LIGO data. Phys. Lett. B 2018, 778, 64–70. [CrossRef]

31. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

32. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958,
65, 386–408. [CrossRef]

33. Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol.
1962, 160, 106–154. [CrossRef]

34. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA
1982, 79, 2554–2558. [CrossRef] [PubMed]

35. Kienker, P.K.; Sejnowski, T.J.; Hinton, G.E.; Schumacher, L.E. Separating figure from ground with a parallel network. Perception
1986, 15, 197–216. [CrossRef] [PubMed]

36. McClelland, J.L. Parallel distributed processing and role assignment constraints. In Proceedings of the 1987 workshop on
Theoretical issues in natural language processing (TINLAP ’87). Association for Computational Linguistics, Las Cruces, NM,
USA, 7 January 1987; pp. 75–79. [CrossRef]

37. Elman, J.L. Finding Structure in Time. Cognitive Sci. 1990, 14, 179–211. [CrossRef]
38. Lecun, Y.; Bottou, L. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
39. Rossi, A.F.; Desimone, R.; Ungerleider, L.G. Contextual modulation in primary visual cortex of macaques. J. Neurosci. 2015,

21, 1698–1709. [CrossRef]
40. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Networks. Commun. ACM 2014, 63, 139–144. [CrossRef]
41. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]

https://doi.org/10.13409/j.cnki.jdpme.2021.04.002
https://doi.org/10.1007/s10489-018-01396-y
https://doi.org/10.1016/j.tust.2020.103524
https://doi.org/10.1007/s00603-021-02614-9
https://doi.org/10.13722/j.cnki.jrme.2017.1147
https://doi.org/10.1155/2016/6708183
https://doi.org/10.3390/su11113212
https://doi.org/10.1155/2021/9488892
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1126/science.1127647
https://www.ncbi.nlm.nih.gov/pubmed/16873662
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1016/j.eng.2019.12.014
https://doi.org/10.1109/ICASSP.2015.7178777
https://doi.org/10.7507/1001-5515.201609047
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1007/BF02478259
https://doi.org/10.1037/h0042519
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1073/pnas.79.8.2554
https://www.ncbi.nlm.nih.gov/pubmed/6953413
https://doi.org/10.1068/p150197
https://www.ncbi.nlm.nih.gov/pubmed/3774489
https://doi.org/10.3115/980304.980320
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1109/5.726791
https://doi.org/10.1523/JNEUROSCI.21-05-01698.2001
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3065386


Appl. Sci. 2024, 14, 1720 23 of 24

42. Andrew, A.; Ramesh, N.; William, W.C. A comparative study of methods for transductive rransfer learning. In Proceedings of
the Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), Omaha, NE, USA, 28–31 October 2007;
pp. 77–82. [CrossRef]

43. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

44. Wu, M.J.; Wu, Q.L. Present situation and prospect of mechanization construction of mountain highway tunnels. J. Chongqing
Jiaotong Univ. Natl. Sci. 2020, 39, 14–21. [CrossRef]

45. Feng, X.T.; Xiao, Y.X.; Feng, G.L.; Yao, Z.B.; Chen, B.R.; Yang, C.X.; Su, G.S. Study on the development process of rockbursts. Chin.
J. Rock Mech. Eng. 2019, 38, 649–673. [CrossRef]

46. Zhang, J.J.; Fu, B.J. Rockburst and its criterion and control. Chin. J. Rock Mech. Eng. 2018, 27, 2034–2042. [CrossRef]
47. Chen, H.J.; Li, N.H.; Nie, D.X.; Shang, Y.Q. A model for prediction of rockburst by artificial neural network. Chin. J. Geotech. Eng.

2002, 24, 229–232. [CrossRef]
48. Sun, C.S. A prediction model of rockburst in tunnel based on the improved Matlab-BP neural network. J. Chongqing Jiaotong Univ.

Natl. Sci. 2019, 38, 41–49. [CrossRef]
49. Tian, R.; Meng, H.D.; Chen, S.J. Prediction of intensity classification of rockburst based on deep neural network. J. Chin. Coal Soc.

2020, 45 (Suppl. 1), 191–201. [CrossRef]
50. Zhang, L.W.; Zhang, D.Y.; Li, S.C.; Qiu, D.H. Application of RBF neural network to rockburst prediction based on rough set

theory. Rock Soi. Mech. 2012, 33 (Suppl. 1), 270–276. [CrossRef]
51. Luis, R.e.S.; Tiago, M.; Rita, L.e.S.; Joaquim, T. The use of data mining techniques in rockburst risk assessment. Engineering 2017,

3, 552–558. [CrossRef]
52. Fang, Y.W.; Wu, Z.J. Intelligent recognition of tunnel stratum based on advanced drilling tests. Rock Soil Mech. 2020, 41, 2494–2503.

[CrossRef]
53. Qiu, D.H.; Li, S.C.; Zhang, L.W. Rockburst prediction based on tunnel geological exploration and ground stress field inverse

analysis. Rock Soil Mech. 2015, 36, 2034–2040. [CrossRef]
54. Zhang, H. Research on Microseismic Signal Processing of Tunnel and Intelligent Early Warning of Rockburst Based on Deep

Learning. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2020.
55. Feng, X.T. Rockburst: Mechanisms, Monitoring, Warning, and Mitigation; Heinemann: Butterworth, Malaysia, 2017.
56. Chen, J.J.; Zhou, F.; Yang, J.S.; Liu, B.C. Fuzzy analytic hierarchy process for risk evaluation of collapse during construction of

mountain tunnel. Rock Soil Mech. 2019, 30, 2365–2370. [CrossRef]
57. Wang, Y.C. Collapse Mechanism and Prevention Measures of Mountain Tunnel. Ph.D. Thesis, Zhejiang University, Hangzhou,

China, 2010.
58. Chen, Z.Y.; Zhang, Y.P.; Li, J.B.; Li, X.; Jing, L.J. Diagnosing tunnel collapse sections based on TBM tunneling big data and deep

learning: A case study on the Yinsong Project, China. Tunn. Undergr. Space Technol. 2021, 108, 103700. [CrossRef]
59. Lei, B.; Qi, T.Y.; Wang, R.; Li, Y.; Teng, Z.N. BP neural network time series prediction model for water surges in tunnels in long

mountain ranges. Railway Eng. 2014, 6, 82–84. [CrossRef]
60. Yang, Z.; Ma, C. Risk prediction of water inrush in karst tunnel based on BP neural network. Tunn. Constr. 2016, 36, 1337–1342.

[CrossRef]
61. Chen, J.Y.; Zhou, M.L.; Zhang, D.M.; Huang, H.W.; Zhang, F.S. Quantification of water inflow in rock tunnel faces via convolutional

neural network approach. Automat Constr. 2021, 123, 103526. [CrossRef]
62. Song, Z.Y.; Zhang, F.; Wei, Y.Q. Calculation and Digitization of Carbon Emission Analysis for Road Tunnel Construction. Mod.

Tunn. Technol. 2022, 59 (Suppl. 1), 115–120. [CrossRef]
63. Wang, M.Z. Research and Design Practice of Urban Mountain Tunnels in the Context of Carbon Peak and Carbon Neutrality.

Mod. Tunn. Technol. 2022, 59 (Suppl. 1), 763–768. [CrossRef]
64. Song, Z.P.; Xia, Z.Z. Carbon Emission Reduction of Tunnel Construction Machinery System Based on Self-Organizing Map-Global

Particle Swarm Optimization with Multiple Weight Varying Models. IEEE Access 2022, 10, 50195–50217. [CrossRef]
65. Xue, Y.D.; Gao, J.; Li, Y.C.; Huang, H.W. Optimization of shield tunnel lining defect detection model based on deep learning. J.

Hunan Univ. Natl. Sci. 2020, 47, 137–146. [CrossRef]
66. Huang, H.W.; Li, Q.T.; Zhang, D.M. Deep learning based image recognition for crack and leakage defects of metro shield

tunnel—ScienceDirect. Tunn. Undergr. Space Technol. 2018, 77, 166–176. [CrossRef]
67. Wu, B. Study of Land Subsidence Induced by Urban Subway Tunneling on Complicated Conditions. Ph.D. Thesis, Southwest

Jiaotong University, Chengdu, China, 2003.
68. Hu, C.M.; Guo, J.X.; Mei, Y.; Wang, Z.Y.; Yuan, Y.L. Influence factors and diffusion mechanism of pressure of shield synchronous

grouting slurry. J. Xi’an Univ. Archit. Technol. (Natl. Sci.) 2020, 52, 617–625. [CrossRef]
69. Peck, R.B. Deep excavations and tunneling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics

and Foundation Engineering, Mexico City, Mexico. 1969, pp. 225–290. Available online: https://www.issmge.org/publications/
publication/deep-excavations-and-tunneling-in-soft-ground (accessed on 9 February 2024).

70. Chou, W.I.; Bobet, A. Predictions of ground deformations in shallow tunnels in clay. Tunn. Undergr. Space Technol. 2002, 17, 3–19.
[CrossRef]

https://doi.org/10.1109/ICDMW.2007.109
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3969/j.issn.1674-0696.2020.03.02
https://doi.org/10.13722/j.cnki.jrme.2019.0103
https://doi.org/10.3321/j.issn:1000-6915.2008.10.010
https://doi.org/10.3321/j.issn:1000-4548.2002.02.023
https://doi.org/10.3969/j.issn.1674-0696.2019.10.07
https://doi.org/10.13225/j.cnki.jccs.2019.1763
https://doi.org/10.16285/j.rsm.2012.s1.008
https://doi.org/10.1016/J.ENG.2017.04.002
https://doi.org/10.16285/j.rsm.2019.1632
https://doi.org/10.16285/j.rsm.2015.07.027
https://doi.org/10.3969/j.issn.1000-7598.2009.08.030
https://doi.org/10.1016/j.tust.2020.103700
https://doi.org/10.3969/j.issn.1003-1995.2014.06.25
https://doi.org/10.3973/j.issn.1672-741X.2016.11.008
https://doi.org/10.1016/j.autcon.2020.103526
https://doi.org/10.13807/j.cnki.mtt.2022.S1.013
https://doi.org/10.13807/j.cnki.mtt.2022.S1.093
https://doi.org/10.1109/ACCESS.2022.3173735
https://doi.org/10.16339/j.cnki.hdxbzkb.2020.07.016
https://doi.org/10.1016/j.tust.2018.04.002
https://doi.org/10.15986/j.1006-7930.2020.05.001
https://www.issmge.org/publications/publication/deep-excavations-and-tunneling-in-soft-ground
https://www.issmge.org/publications/publication/deep-excavations-and-tunneling-in-soft-ground
https://doi.org/10.1016/S0886-7798(01)00068-2


Appl. Sci. 2024, 14, 1720 24 of 24

71. Dias, D.; Kastner, R. Movements caused by the excavation of tunnels using face pressurized shields-Analysis of monitoring and
numerical modeling results. Eng. Geol. 2013, 152, 17–25. [CrossRef]

72. Wen, M.; Zhang, D.L.; Fang, Q.; Zhang, Y.L. The NARXNN time series prediction model for ground subsidence casued by
construction of merto station. Chin. J. Rock Mech. Eng. 2015, 34 (Suppl. S1), 3306–3312. [CrossRef]

73. Li, L.B.; Gong, X.N.; Gan, X.L.; Cheng, L.; Hou, Y.M. Prediction of maximum ground settlement induced by shield tunneling
based on recurrent neural network. Chin. Civil. Eng. J. 2020, 53 (Suppl. S1), 13–19. [CrossRef]

74. Mahmoodzadeh, A.; Mohammadi, M.; Daraei, A. Forecasting maximum surface settlement caused by urban tunneling. Automat
Constr. 2020, 120, 103375. [CrossRef]

75. Li, X.C.; Li, X.G. Prediction of ground surface settlement induced by shield tunneling construction based on neural fuzzy inference
system. J. Beijing Jiaotong Univ. 2018, 42, 18–24. [CrossRef]

76. Moeinossadat, S.R.; Ahangari, K. Estimating maximum surface settlement due to EPBM tunneling by Numerical-Intelligent
approach—A case study: Tehran subway line 7. Transp. Geotech. 2019, 18, 92–102. [CrossRef]

77. Zhang, Z.L.; Pan, Q.J.; Yang, Z.H.; Yang, X.L. Physics-informed deep learning method for predicting tunnelling-induced ground
deformations. Acta Geotech. 2023, 18, 1–16. [CrossRef]

78. Wang, M.S.; Huang, F.M. Key problems on subsea tunnel construction. J. Archit. Civ. Eng. 2005, 22, 1–4.
79. Chen, W.Z.; Cao, J.J.; Yu, H.D.; Jia, S.P.; Wu, G.J. Study on long-term stability of subsea tunnels in special geological region. Chin.

J. Rock Mech. Eng. 2010, 29, 2017–2026.
80. Wang, J.X.; Jiang, A.N. Elastoplastic CPPM algorithm and mechanical parameters inversion of tunnel surrounding rock under the

action of pore water pressure. J. Basic Sci. Eng. 2014, 22, 525–538.
81. Lu, M.; Grφv, E.; Nilsen, B.; Melby, K. Norwegian experience in subsea tunnelling. Chin. J. Rock Mech. Eng. 2015, 24, 4219–4225.

[CrossRef]
82. Li, Y.K.; Zhang, D.L.; Fang, Q. Assessment and analysis of the risks in whole construction process of a subsea tunnel project. Mod.

Tunn. Technol. 2015, 52, 47–54. [CrossRef]
83. Shi, M.; Tang, Y.; Zhu, X.Q.; Zhuang, Y.; Lin, M.H.; Liu, J.X. Feature-attention graph convolutional networks for noise resilient

learning. IEEE Trans. Cybern. 2022, 52, 7719–7731. [CrossRef]
84. Liu, S.C.; Zhang, D.L.; Huang, J.; Zhang, C.P. Research and design on structural health monitoring system for large-scale shield

tunnel. Chin. J. Undergr. Sp. Eng. 2011, 7, 741–748. [CrossRef]
85. Liu, J.; Wang, Y.; Liu, N. Parameter inverse problem in geotechnical engineering seepage. Rock Soil Mech. 2002, 23, 152–161.

[CrossRef]
86. Wang, J.X.; Jiang, A.N.; Song, Z.P. Study of the coupling model of rock elastoplastic stress-seepage-damage (I): Modelling and its

numerical solution procedure. Rock Soil Mech. 2014, 35 (Suppl. 2), 626-637, 644. [CrossRef]
87. Wang, J.X.; Jiang, A.N.; Song, Z.P. Study of the coupling model of rock elastoplastic stress-seepage-damage (II): Parametric

inversion and numerical simulation. Rock Soil Mech. 2015, 36, 3606–3614. [CrossRef]
88. Hu, H.M.; Ma, B.G.; Qian, G.; Cheng, Y.; Yang, Y.C. Analysis and simulation of influencing factors on anti-corrosion of lining

concrete for submarine tunnel. J. Wuhan Univ. Technol. 2007, 29, 46–49+53. [CrossRef]
89. Tu, P.; Wang, X.H. Fuzzy comprehensive evaluation on durability of subsea tunnel grouting material. Hydroge Eng. Geol. 2010,

37, 68–72.
90. Wang, Y.D.; Tang, Y.J.; Chen, C.; Yang, L.D. Study on life predicting model of subsea tunnel based on chloride erosion. Struct. Eng.

2012, 28, 57–62. [CrossRef]
91. Ji, Y.H.; Xiang, Y.Y. An analysis of application of the methods of predicting water influx to under-water tunnels. Hydroge Eng.

Geol. 2005, 32, 84–87. [CrossRef]
92. Feng, X.D.; Li, S.C.; Xu, B.S. Numerical simulation study on influence factors of the seepage volume of submarine tunnels. J.

Shandong Univ. Eng. 2009, 39, 21–24.
93. Wang, D. Study of Analysis of Water Inflow and Risk Prediction Method of Water Inrush from Water Bearing Faults in Subsea

Tunnel. Master’s thesis, Shandong University, Jinan, China, 2017.
94. Xu, B.S.; Zhang, X.T.; Zhang, Q. Study on the prediction and application of water inflow of subsea tunnel. J. Wuhan Univ. Technol.

Traffic Sci. Eng. 2007, 31, 599–602. [CrossRef]
95. Zhang, M.J.; Gao, X.J.; Guo, Y.J. Analysis of water inrush in subsea tunnel and its application in Xiang’an tunnel. J. Beijing Univ.

Technol. 2007, 33, 273–277. [CrossRef]
96. Li, X.P.; Li, Y.A. Study of Forecasting System for Water Inflow under High Pressure in Xiamen Submarine Tunnel Construction

Based on GIS. Chin. J. Undergr. Sp. Eng. 2012, 8, 1276–1281.
97. Xiao, Z.X. Prediction of Water Inflow into the Underwater Tunnel Based on Genetic Algorithm and BP Neural Network. Master’s

thesis, Southwest Jiaotong University, Chengdu, China, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.enggeo.2012.10.002
https://doi.org/10.13722/j.cnki.jrme.2014.0643
https://doi.org/10.15951/j.tmgcxb.2020.s1.003
https://doi.org/10.1016/j.autcon.2020.103375
https://doi.org/10.11860/j.issn.1673-0291.2018.01.003
https://doi.org/10.1016/j.trgeo.2018.11.009
https://doi.org/10.1007/s11440-023-01874-9
https://doi.org/10.3321/j.issn:1000-6915.2005.23.004
https://doi.org/10.13807/j.cnki.mtt.2015.03.007
https://doi.org/10.1109/TCYB.2022.3143798
https://doi.org/10.3969/j.issn.1673-0836.2011.04.022
https://doi.org/10.3969/j.issn.1000-7598.2002.02.027
https://doi.org/10.16285/j.rsm.2014.s2.025
https://doi.org/10.16285/j.rsm.2015.12.034
https://doi.org/10.3321/j.issn:1671-4431.2007.03.014
https://doi.org/10.3969/j.issn.1005-0159.2012.04.010
https://doi.org/10.3969/j.issn.1000-3665.2005.04.021
https://doi.org/10.3963/j.issn.2095-3844.2007.04.009
https://doi.org/10.3969/j.issn.0254-0037.2007.03.010

	Introduction 
	Deep Learning Algorithm Evolution 
	Intelligent Application of Deep Learning in Tunnel Engineering 
	Mountain Tunnel 
	Rockburst Disaster 
	Prediction of Collapse and Outburst and Water Inflow 

	Urban Subway Tunnel 
	Lining Cracks and Water Leakage 
	Prediction of Settlement Value 

	Subsea Tunnel 
	Structural Stability 
	Seawater Seepage Erosion 
	Water Inrush Risk Prediction 


	Problems and Prospects 
	Conclusions 
	References

