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Abstract: Faults play a pivotal role in controlling fluid migration and retention within sedimentary
basins, particularly in the context of fault-bound hydrocarbon reservoirs. Assessing the stability and
sealing capabilities of faults enhances our comprehension of these systems and aids in the identifica-
tion of pathways for fluid migration. In this study, we focus on a series of fault-bound hydrocarbon
accumulations located in the southern Wenchang A subbasin within the Pearl River Mouth Basin. We
emphasize the significant influence of faults in governing the processes of hydrocarbon migration
and accumulation. By leveraging 3D seismic data and well information, we have assessed the sealing
potential of ten faults that either currently retain hydrocarbon columns or have the potential to
do so. Our analysis reveals that even faults with a relatively low Shale Gouge Ratio (as low as
15%) can effectively support substantial column heights. Taking into account factors, such as the
source rock maturity, fault activity, geometry, sealing potential, and the distribution of hydrocarbon
accumulations, we have formulated a conceptual model for hydrocarbon migration and accumulation
within the study area. This model underscores potential fluid traps within the rift basin, shedding
light on the complex dynamics of hydrocarbon movement in this region.

Keywords: fault sealing; hydrocarbon migration; hydrocarbon accumulation; Wenchang A subbasin;
Pearl River Mouth Basin

1. Introduction

Faults, which are commonly found in sedimentary basins, can serve as conduits,
barriers, or combined barrier-conduit structures for fluid migration in the subsurface [1–17].
The primary factors that influence their control based on fluid flow are their episodic
seismic activity and sealing capacity during quiescence periods [18–25]. Although faulting
(reactivation) occurs for short geological periods and typically ceases as the tectonic activity
stops, fault sealing plays a crucial role over long geological timescales [26–28], making it
significant for hydrocarbon migration, accumulation, and other fluid-storage operations,
such as carbon dioxide, hydrogen, and air.

There are three major mechanisms of fault sealing: juxtaposition seal, fault rock capil-
lary seal, and cementation [29–43]. It is well-documented that even in reservoir/reservoir
juxtaposition conditions, the low permeability of the fault gouge generated during the
faulting process can effectively seal and support a high hydrocarbon column [44,45]. There-
fore, evaluating and predicting the composition and distribution of the fault gouge along
the fault surface and thus the sealing potential of the fault will provide a solid foundation
for analyzing hydrocarbon migration and accumulation [28]. For quantitatively predicting
the volume and type of fault gouge within the fault zone, several algorithms have been
developed, including the Clay Smear Potential (CSP) [33], Shale Smear Factor (SSF) [35],
and Shale Gouge Ratio (SGR) [36]. Empirically, a high clay content within the fault zone
is associated with a high capillary threshold pressure, but calibration is still necessary to

Appl. Sci. 2024, 14, 1712. https://doi.org/10.3390/app14051712 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14051712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14051712
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14051712?type=check_update&version=1


Appl. Sci. 2024, 14, 1712 2 of 20

assess the fault sealing capacity [46,47]. In addition, an associated geochemical analysis
would help to reconstruct the hydrocarbon flow process [48,49].

Here, we illustrate the control of faults on hydrocarbon migration and accumulations
in the extensional setting of the south western Pearl River Mouth Basin (PRMB), which is
one of the most important petroliferous basins in the northern South China Sea [50–53].
The fault geometries, activity history, and fault sealing potential are used to create a migra-
tion pathway model, which is then validated with the locations of verified hydrocarbon
accumulations and used to predict potential unidentified accumulations.

2. Geological Setting

The PRMB is an extensional rift located on the continental shelf and slope of the
northern South China Sea [54,55]. The western part of the PRMB, called the Zhu III
subbasin, consists of a series of SW-NE striking half-graben and graben structures separated
by horst areas (Figure 1). The study area is located in the Wenchang A basin, which is
one of these half-graben structures, with the main boundary faults in the south and east
and onlapping sediments occurring in the north and west of the basin (Figure 1) [56,57].
The Cenozoic sedimentary succession of the basin comprises a good source–reservoir–seal
vertical sequence (Figure 2), with Eocene and Oligocene lacustrine source rocks overlain
by Oligocene to Miocene marine sandstone reservoirs, which are intercalated with marine
mudstones, forming excellent seals (Figure 2) [53]. During its Cenozoic evolution, the basin
experienced multiple tectonic phases, including a Paleocene-to-Early-Oligocene rifting
stage, a Late-Oligocene-to-Early-Miocene post-rift subsidence stage and a Middle-Miocene-
to-the-present-tectonic reactivation stage [58].

Under the influence of the clockwise-rotating stress field during the Cenozoic, the
fault systems in the study area exhibit a complex pattern consisting of multiple stages
and directions. During the Paleocene to Early Oligocene, the stress field was character-
ized by NW–SE extension, resulting in the formation of a series of NE-trending faults
primarily within the Late Eocene and Early Oligocene Wenchang and Enping Formations
(Figure 2) [53]. Subsequently, from the Late Oligocene to Middle Miocene, the stress field
shifted towards near N–S extension, leading to the development of a series of nearly E-W-
trending faults, predominantly distributed in the Zhuhai and Zhujiang Formations of the
same age (Figure 2). Lastly, since the Late Miocene to the present, the stress field exhibited
NNE–SSW extension, giving rise to a series of WNW-trending faults primarily developed
within the Miocene Hanjiang and Yuehai Formations (Figure 2).

Hydrocarbon charging was initiated in the basin center during post-rift subsidence and
has led to oil and gas filled reservoir intervals in the tilted fault blocks associated with the
half graben structures at the southern edge of the basin, where several hydrocarbon fields
have been discovered (Figure 3). All of these fields are fault-bound, and fault rock seals
often control the column heights in the interbedded reservoir-seal intervals. Discoveries
have been made in various strata, including the early Miocene (N1z2), late Oligocene
(E3z), and even the early Oligocene (E3e) (Figure 3d). However, the main hydrocarbon
accumulations are observed in the Mid-to-Late Oligocene E3z2 and E3z3 sequences as in the
fault-bound fields Field A, Field B, and Field C (Figure 3). The hydrocarbon distribution
pattern, both in the plan view and cross-section, indicates that faults F1 and F2 act as
the major sealing faults for Field A (Figure 3a). In contrast, the accumulation of Field B
primarily relies on the fault sealing provided by F3 (Figure 3b). Similarly, F5 controls the
major hydrocarbon accumulation in Field C, acting as the primary sealing fault, while F6
serves as a secondary sealing fault (Figure 3c).
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Figure 1. (a) Location and structural units of the PRMB. (b) Structural units and hydrocarbon dis-
tribution of the Zhu Ⅲ subbasin. See the location in Figure 1a. (c) The T62 fault system and the 
hydrocarbon distribution of the southern Wenchang A subbasin. See the location in Figure 1b. 

Figure 1. (a) Location and structural units of the PRMB. (b) Structural units and hydrocarbon
distribution of the Zhu III subbasin. See the location in Figure 1a. (c) The T62 fault system and the
hydrocarbon distribution of the southern Wenchang A subbasin. See the location in Figure 1b.

There is an evident and noteworthy pattern in the distribution of hydrocarbon fill
within the basin. Specifically, the fields situated in the central region of the basin predomi-
nantly contain natural gas, whereas the accumulations towards the periphery of the basin
contain crude oil. It is noteworthy that the oil accumulations near the basin’s edges are
also positioned at higher elevations, prompting the inquiry of whether the oil has migrated
away from the reservoirs, which are now gas-filled, and what role fault seals may have
played during that process. A hydrocarbon migration model, including the sealing capacity
of the faults, which appear to play a pivotal role in governing fluid migration within the
study area, is thus needed to improve the understanding of the system and to be able to
predict potential undiscovered hydrocarbon accumulations.
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Figure 2. Stratigraphic column, structural evolution, and hydrocarbon accumulation history of the 
Wenchang A subbaisn. The main reservoirs and source rocks are indicated beside the lithology col-
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contact data from Field A, Field B, and Field C were collected. All of the aforementioned 
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Figure 3. Cross-sections through (a) Field A, (b) Field B, and (c) Field C, and (d) an illustration of
the vertical hydrocarbon distribution in the southern Wenchang A subbasin. For the locations of
the cross-sections, see Figure 1c. Reservoir I and II are the major reservoirs within the Mid-to-Late
Oligocene E3z2 and E3z3 sequences.

3. Data and Methods
3.1. Data

In this study, high-quality 3D data were utilized to analyze seven prominent basin-
wide seismic reflection interfaces (T20, T40, T50, T60, T70, T80, and Tg, as shown in
Figure 2) to identify and interpret the fault geometry. The time-depth conversion func-
tion used was derived from check shot data. A total of 32 wells with comprehensive
logging data were gathered to assess the shale volume on the hanging wall and/or foot-
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wall of the faults. Additionally, three representative hydrocarbon reservoir profiles and
hydrocarbon-water contact data from Field A, Field B, and Field C were collected. All of
the aforementioned data were provided by Zhanjiang Oil Company Ltd., Zhanjiang, China,
a subsidiary of the China National Offshore Oil Corporation (CNOOC), Beijing, China.
Stress field data, including the magnitudes of Sv (27.1 MPa/km), SHmax (22.6 MPa/km),
Shmin (18.5 MPa/km), and the azimuth of SHmax (120◦), were obtained from published
regional literature [59,60] and density logs (Sv).

3.2. Methods

Ten faults identified as potentially controlling fluid migration from the basin center to
the southern horst were analyzed in terms of their geometry, activity history, and sealing
capacity. The geometry of these faults was examined to understand their orientation, dip,
and scale, which provides insights into the structural framework and connectivity between
different reservoir units. The fault activity history was investigated to determine the timing
of the fault movement and any associated tectonic events that may have influenced fluid
migration patterns. Furthermore, the sealing capacity of these faults was evaluated. This
involved assessing their ability to inhibit or prevent fluid migration across fault planes, as
an understanding of the sealing capacity of these faults is crucial for assessing the potential
for hydrocarbon accumulation and the effectiveness of fault barriers in controlling fluid
migration pathways.

3.2.1. Evaluation of Fault Rock Seals

To assess the lateral sealing capacity of faults in sand-shale sequences, the focus was on
the low-permeability of the fault gouge within the fault zones. The Shale Gouge Ratio (SGR)
algorithm is commonly used to predict the type and distribution of the fault gouge along
the fault surface [27,36,45]. Note that the composition of shale or mudstone sequences is
difficult to predict, and different clay minerals usually present a similar physical property
compared to sandstones, so this algorithm only considers the content of clay within the
fault zone. The SGR value was calculated using Equation (1):

SGR =
Σ(shale bed thickness)

throw
× 100% (1)

The SGR value serves as a proxy for the fault sealing capacity, but it needs to be
calibrated to establish a link with the actual sealing capacity. There are two common
calibration methods. The first involves conducting laboratory experiments to determine
the capillary threshold pressure of fault rock samples [38]. But this method needs a
large number of fault rock samples, which is difficult to implement especially in offshore
explorations. The second empirical method utilizes empirical pressure data from the strata
on both the hanging wall and footwall of the sealing fault from a worldwide filed dataset
to calculate the across-fault pressure difference (AFDP) or capillary threshold pressure (Pc)
and relate it to the SGR [39,61]:

AFPD = 10(
SGR
27 −C) (2)

where the unit of AFPD is bar; when the burial depth is less than 3.0 km, C is 0.5; when
the burial depth between 3.0 and 3.5 km, C is 0.25; when the burial depth is greater than
3.5 km, C is 0.

Pc = 0.3 × SGR − 6 (3)

when the burial depth is less than 3 km.

Pc = 0.15 × SGR + 1.9 (4)

when the burial depth is more than 3.5 km.
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It is important to note that when using this method, it is necessary to define the
lower limit of the SGR, which indicates the threshold at which hydrocarbons can be sealed.
Otherwise, even if the SGR value is very low, it could still be calculated as a positive
value, leading to the sealing of a certain column height of hydrocarbons. The buoyancy
pressure generated by the hydrocarbon column can be treated as equivalent to the AFPD
or capillary threshold pressure. However, further charging will result in the buoyancy
pressure exceeding the capillary threshold pressure, leading to leakage. The height of the
supported hydrocarbon column can be calculated using Equation (5):

H =
Pc

(ρw − ρh)g
(5)

where H represents the height of the hydrocarbon column (m), Pc is the capillary threshold
pressure of the fault rock (MPa), ρw is the density of pore water (kg/m3), ρh is the density
of hydrocarbons (kg/m3), and g is the acceleration due to gravity (m/s2). We assume an
oil density between 750 kg/m3 [62], a gas density of 150 kg/m3, and a formation water
density of 1035 kg/m3.

3.2.2. Evaluation of Fault Stability

Geomechanical analyses using the slip tendency and fracture stability approaches
were carried out to evaluate fault stability and the risk of vertical fluid flow. Slip tendency
(Ts) is a method used to quickly assess the relative likelihood of a fault surface experiencing
slip under the current effective stress field. It is determined by the ratio of the resolved
shear stress (τ) to resolved normal stress (σn) acting on the fault surface [63]. The slip
tendency is expressed as follows:

Ts =
τ

σn
(6)

If Ts is equal to or greater than the coefficient of static friction (µs), which is typically
assumed to be 0.6 [64,65], it indicates that slip is more likely to occur on the fault surface. The
slip tendency method does not explicitly require the input of fault properties for modeling,
but rather relies on the assumption of a friction coefficient. On the other hand, fracture
stability (Fs) refers to the increase in pore pressure necessary to reduce the effective stresses
to a point where a fault plane experiences shear, tensile, or hybrid failure [66]. Modeling
fracture stability requires the consideration of failure envelopes, which necessitates the
input of known rock properties, such as cohesion and the angle of internal friction. This
approach explicitly requires the knowledge of the fault rock composition for accurate
modeling. Both of fault lateral and vertical sealing analyses were conducted with the
TrapTester® 7.2 software.

4. Results

In the following, the properties of the faults identified as potentially controlling fluid
migration from the basin center to the southern uplift are presented, starting from the basin
center to the horst located in the southern part.

4.1. Hydrocarbon Sealing Faults (F1–F6)
4.1.1. Fault Structure
Field A

The east-west trending and northward dipping F1 fault acts as the sealing fault for the
northern part of Field A. In cross-section, the fault is steeply dipping, significantly offsets
horizons and cuts downwards into the Late Eocene Wenchang Formation, and extends
upwards to the Late Miocene Yuehai Formation. The F2 exhibits a similar geometry to the
F1 fault, with a near east-west trend and northward dip, and serves as the sealing fault for
the southern part of Field A (Figure 4). The F2 normal fault has a gentler dip angle and is of
a smaller scale compared to the F1 fault. It cuts downwards into the Wenchang Formation
and extends upwards to the first member of the Early Miocene Zhujiang Formation (N1z1).
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Appl. Sci. 2024, 14, 1712 8 of 20

Field B

Field B is bounded by the F3 and F4 faults. The F3 fault trends northwest and dips
northeast, while the F4 fault is near east-west trending and dips southward. In the cross-
section, both the F3 and F4 faults exhibit a listric geometry with relatively gentle dip angles
(Figure 4). The F4 fault is located at a greater depth compared to the F3 fault, which cuts
downwards into the Wenchang Formation and extends upwards to the second member of
the Zhujiang Formation (N1z2). The F3 fault offsets a small upper segment of the F4 fault.
The F4 fault can cut downwards into the Enping Formation and extend upwards to the
bottom of the Yuehai Formation.

Field C

In Field C, the F5 and F6 faults act as the main sealing faults, dividing the oil field
into several segments. The F5 fault trends northwest and dips northeast, while the F6 fault
is near east-west trending and dips northward. In the cross-section, both the F5 and F6
faults exhibit a listric geometry with relatively gentle dip angles. The fault scale of the F5
is smaller than that of the F6. The F5 fault cuts downwards into the Enping Formation
and extends upwards to the N1z1 strata, while the F6 fault cuts deeply into the Wenchang
Formation and can extend upwards to the Hanjiang Formation.

4.1.2. Faulting History

The hydrocarbon-bounded faults F1–F6 exhibit a general trend of strong faulting
activity during faulting initiation followed by a gradual weakening over time (Figure 5).
Most faulting occurred during the Late Oligocene (E3z sequence) and the Early Miocene
(N1z2 sequence) post-rifting stage, with only limited faulting occurring after the Middle
Miocene. The F1 fault began its activity during the Early Oligocene (E3e sequence) when it
displayed the highest displacement rate, approximately 60 m/Ma. From the Late Oligocene
(E3z sequence) onwards, the displacement rate of the fault rapidly reduced to around
20 m/Ma, maintaining a relatively stable level of activity until the Late Miocene (N1y
sequence). Similarly, the F2 fault also initiated its activity during the Early Oligocene, but
with a relatively weaker displacement rate of no more than 20 m/Ma. It maintained a
relatively stable level of activity until the Early Miocene, including the deposition of the
N1z1 and N1z2 sequences. However, after the deposition of the N1z1 sequence (18.3–16 Ma),
the displacement rate of the F2 fault rapidly decreased and eventually ceased. The F3 fault
began its activity in the Late Oligocene, exhibiting very low displacement rates generally
not exceeding 10 m/Ma. It stopped being active after the Middle Miocene (N1h sequence).
The F4 fault followed a pattern of early activity starting in the Early Oligocene and ceasing
during the deposition of the N1z2 sequence (23–18.3 Ma). Its displacement rate ranged
between 20 and 30 m/Ma. The F5 fault was active from the Late Oligocene to the Early
Miocene, but with a very low displacement rate. On the other hand, the F6 fault remained
active for a significant duration, initiating its activity in the Oligocene and persisting until
the Middle Miocene. The fault displacement rate of the F6 fault was generally very low,
except during the deposition of the N1z1 sequence.

4.1.3. Fault-Sealing Capacity

To assess the capillary sealing capacity of the faults F1–F6, the SGR (Shale Gouge Ratio)
values were calculated (Figure 6). The SGR values provide an indication of the sealing
potential of the fault surfaces. In general, the F1, F2, and F3 faults exhibit relatively weak
heterogeneities in the SGR distribution along their surfaces. The majority of these fault
surfaces have SGR values between 35 and 50%, with some smaller sections ranging between
25 and 35% or even exceeding 50% (Figure 6a–c). This suggests that the capillary sealing
capacity of these faults may be relatively consistent along their surfaces. In contrast, the F5
fault displays stronger heterogeneities in the SGR distribution along its surface. The upper
part of the fault, between the T60 and T61 interfaces (on the footwall side), and a narrow
section along the T62 interface (on the footwall side) exhibit low SGR values. However,
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other parts of the F5 fault surface show high SGR values (Figure 6d). This indicates that the
sealing capacity of the F5 fault may vary along its surface, with certain sections potentially
having better capillary sealing properties than others.
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The calculated maximum column heights for both Reservoir I and II, determined using
the SGR-capillary pressure relationships proposed by Bretan et al. [39] and Yielding [61]
(Equations (3)–(5)), reveal a congruence with the measured column heights, as indicated in
Table 1. Notably, the measured column heights generally align closely with the upper limits
of column heights projected by the Bretan et al. [39] algorithm, constituting approximately
50% of the predicted values on average (Table 1). Remarkably, even SGR values as modest
as 15.8 are shown to sustain significant oil column heights, notably up to 55.8 m (Figure 7).
Conversely, the lowest observed SGR value that accommodates gas columns is 25, corre-
sponding to a column height of 17.4 m. Note that for higher (>30) SGR values, supported
column heights seem to vary drastically. These findings underscore the potential of fault
sections in the study area with SGR values exceeding 15 to serve as effective hydrocarbon
seals, while fault sections with SGR values lower than 15 serve as hydrocarbon leakage
pathways. This further supports the notion that certain fault segments, characterized by
SGR values beyond the threshold, can effectively contain hydrocarbon migration.

Table 1. Table listing the parameters used in the predicted hydrocarbon column height calculations
of Field A, Field B, and Field C.

Field Fault Reservoir Hydrocarbon
Type

Hydrocarbon
Density
(kg/m3)

Water
Density
(kg/m3)

SGR Calibration
Approach

Max.
Supported

Column
Height (m)

Column
Height

Measured
(m)

% of Max.
Column
Height

Field A F1 Reservoir I Gas 150 1035 38.6

Bretan et al.
(2003) [39] 303.9

204.5
67%

Yielding
(2012) [61] 86.9 235%

Field A F1 Reservoir II Gas 150 1035 34.9

Bretan et al.
(2003) [39] 221.6

189.6
86%

Yielding
(2012) [61] 80.6 235%

Field A F2 Reservoir I Gas 150 1035 34.6

Bretan et al.
(2003) [39] 121.5

84.6
70%

Yielding
(2012) [61] 80.1 106%

Field A F2 Reservoir II Gas 150 1035 34.1

Bretan et al.
(2003) [39] 116.4

103.1
89%

Yielding
(2012) [61] 79.3 130%

Field B F3 Reservoir I Gas 150 1035 25

Bretan et al.
(2003) [39] 53.6

17.4
32%

Yielding
(2012) [61] 63.8 27%

Field B F3 Reservoir II Gas 150 1035 35

Bretan et al.
(2003) [39] 125.7

29
23%

Yielding
(2012) [61] 80.8 36%

Field C F5 Reservoir I Oil 750 1035 15.8

Bretan et al.
(2003) [39] 75.9

55.5
73%

Yielding
(2012) [61] 149.8 37%

Field C F5 Reservoir II Oil 750 1035 19

Bretan et al.
(2003) [39] 99.7

32.6
33%

Yielding
(2012) [61] 166.7 20%
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Figure 7. Plot illustrating the relationship between Shale-Gouge-Ratio and column heights for the
hydrocarbon sealing faults of the three studied fields. For each fault, the SGR at the structurally
highest point is given, as well as the measured and predicted column heights. Note that there is no
clear correlation between SGR and column heights.

4.1.4. Fault Stability Analysis

Under a given stress field, the stress of a fault is determined based on its dip angle
and strike, which in turn determines the stability of the fault. In general, faults with a low
dip angle and near orthogonal to the direction of SHmax have a high normal stress and
are relatively stable, and vice versa. Geomechanical analyses of faults F1, F2, F3, and F5
indicate that all four faults are stable under the present-day in situ stresses. Pore pressures
within the fault rocks would need to be increased between 5.2 MPa (F5) and 8.8 MPa (F8) to
force the faults into failure (Figure 8) as the faults have slip tendency values well below 0.6
(Figure 9). This indicates that the risk of vertical leakage due to fault reactivation is low and
that fault stability is not controlling hydrocarbon column heights in the fault-bound traps.

4.2. Potentially Hydrocarbon Supporting Faults (F7–F10)
4.2.1. Fault Structure

In contrast to faults F1–F6, faults F7–F10 are situated in proximity to the basin bound-
ary Zhu III South Fault and are closely related to it. The F7 fault predominantly trends in a
northeast direction and dips northwest, forming a segmented fault pattern in the plan view
(Figure 1c). In the cross-section, it appears as a steeply dipping planar fault with a limited
scale, extending downward into the Enping Formation and upward into the N1z2 strata.

In contrast, the F8 fault is oriented near east-west and dips to the north. Vertically, it
assumes a slightly listric fault shape with a steep dip angle and features a relatively larger
fault scale. This fault cuts downward into the Enping Formation and has the potential to
extend upward into the Hangjiang Formation.

Faults F9 and F10 share a similar geometry, both trending near parallel in a northeast-
east direction and dipping northwest. In the cross-section, both faults exhibit a small-scale
planar fault configuration with a relatively gentle dip angle. These faults cut downward
into the Zhuhai Formation and are truncated upward by the T60 seismic reflection interface.
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4.2.2. Faulting History

In contrast to the hydrocarbon-bounded faults F1–F6, faults F7–F10 exhibit a compar-
atively shorter active duration and lower displacement rate (Figure 5). Specifically, the
F7 fault displayed the highest displacement rate, surpassing 40 m/Ma since its activation
in the Late Oligocene, and then experienced a slight reduction in the displacement rate
during the deposition of the N1z2 sequence before coming to an abrupt halt. Among these
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faults, F8’s active duration is the most extended. It has been active since the Late Oligocene
with a displacement rate of approximately 20 m/Ma. Subsequently, its displacement rate
decreased rapidly and maintained a very weak level of activity until the middle Miocene.
Both F9 and F10 faults were only active during the Late Oligocene, with displacement rates
of 30 m/Ma and 13 m/Ma, respectively.

4.2.3. Fault Sealing Capacity

To explore potential hydrocarbon migration pathways and identify prospective areas
for hydrocarbon accumulation in the study region, it is imperative to initially assess the lat-
eral sealing capacity of faults F7–F10. This evaluation aims to ascertain which faults could
serve as conduits for hydrocarbon fluids to cross and access fault array traps. Subsequently,
for faults exhibiting robust lateral sealing, an assessment of their vertical sealing capac-
ity is essential to determine the likelihood of hydrocarbon accumulation in the hanging
wall traps.

In pursuit of this goal, we conducted SGR calculations for faults F7–F10. It is note-
worthy that due to the complexity of seismic reflections, identifying the T61 seismic re-
flection interface on F7–F10 faults presents challenges. The outcomes of our analysis
reveal significant heterogeneity in the SGR distribution along the F7 fault. Specifically,
the upper fault segment displays a pattern of either non-sealing (SGR < 15) or moderate
(15 < SGR < 25) lateral sealing, whereas the lower fault segment exhibits robust
(SGR > 25) lateral sealing (Figure 10a). This observation suggests that the upper seg-
ment of F7 could function as a lateral conduit, while the lower segment is likely to act as a
barrier to hydrocarbon flow. Conversely, F8 generally exhibits non-sealing behavior along
its entire fault surface, except for a moderate lateral sealing capacity in its middle portion
(Figure 10b). Consequently, it may be broadly considered a lateral conduit. On the other
hand, both F9 and F10 demonstrate a consistent strong lateral sealing capacity along their
fault surfaces (Figure 10c,d). This finding implies that both F9 and F10 are poised to act as
formidable barriers, preventing the passage of hydrocarbon fluids across these fault zones.
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4.2.4. Fault Stability Analysis

The vertical sealing capacity of faults F7, F9, and F10 was evaluated using slip tendency
and fracture stability. Slip tendency analysis indicates that the majority of F7 exhibits values
lower than 0.2, signifying a substantial margin of safety from failure (Figure 11). F9 and
F10 display a similar slip tendency pattern, with roughly half of these faults experiencing
moderate stress (0.3 < Ts < 0.5), while the other half remains significantly distant from
failure (Ts < 0.2) (Figure 11).

In the context of fracture stability calculations, we employed low-friction fault rock
parameters (cohesion C = 0.5 MPa; coefficient of internal friction µ = 0.45) to estimate the
fracture stability for the mentioned faults. The outcomes reveal notable differences in pore
pressure increasing requirements to induce failure. Specifically, F7 demonstrates a consid-
erably high threshold of 13.8 MPa (Figure 11), whereas F9 and F10 exhibit comparatively
moderate pore pressure thresholds of 6.5 MPa and 5.4 MPa, respectively (Figure 11).

By synthesizing the results from slip tendency and fracture stability analyses, it be-
comes evident that F7 remains in a stable stress state with a robust vertical sealing capacity.
Conversely, F9 and F10 exhibit moderate levels of stable stress, translating to a moderate
vertical sealing capacity within these faults.
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5. Discussion
5.1. Role of Faults for Fluid Migration in the Wenchang A Subbasin

Hydrocarbon fluid flow within the Wenchang A subbasin is strongly linked to faults
acting as both fluid pathways and flow baffles, with the hydrocarbon charge of fault-sealed
reservoirs occurring along faults that cut into the deeply buried source rocks (e.g., F2, F4, F6).

The maturity of source rocks within the basin varies from post-mature (Ro 2.0–2.2%)
in the central basin to mature (Ro 1.0–1.6%) close to the southern basin boundary fault,
with hydrocarbon expulsion having been estimated to have primarily occurred between
26.5 and 16 Ma in the central basin and since the N1Z2 post-rift sequence (23–18.3 Ma) in
the studied fault blocks [57]. During early hydrocarbon (oil) expulsion in the central part of
the basin, the caprocks that form an integral part of today’s traps had not yet formed [67],
leading to a loss of these early hydrocarbons. During later hydrocarbon expulsion, gas
in the very mature central areas of the basin and oil in the areas with a lower vitrinite
reflectance migrated vertically parallel to the fault and along permeable pathways in the
fault damage zones of deeply seated faults, such as F2, F4, and F6. Note that the faults
were seismically active during the hydrocarbon migration, which may have enhanced the
permeability in the fault damage zone fracture networks as they were close to critically or
critically stressed [20,68–73]. Hydrocarbon flow entered permeable reservoirs, which are
capped by mudstones forming the top-seals. The period of fault active and charging was
followed by a long structural quiescence from the Middle Miocene onwards and without
reactivation of these hydrocarbon sealing faults. Faults located up dip have fault rock seals
and form lateral flow barriers, leading to hydrocarbon accumulations. While these sealing
faults may have been geomechanically unstable during the initial hydrocarbon migration,
they are currently in stable conditions, and there are no indications for previous leakage
from the reservoirs. The traps are all presently not filled to spill, and fault seal predic-
tions using the Bretan et al. [39] algorithm suggest that the fault seals can support higher
column heights.

Previous studies conducted in various rift basins located offshore China, such as
the Zhu I subbasin of the PRMB [74], the Xihu subbasin of the East China Sea Shelf
Basin [10], and the Qinan area [27,46], Tangbei area [75], and Bozhong subbasin of the
Bohai Bay Basin [76], have indicated similar hydrocarbon migration and accumulation
patterns controlled by fault seals, albeit with some differences. Besides China, the North
Sea also exhibits a pattern of hydrocarbon migration, accumulation, and distribution under
the control of fault sealing [21,23,42]. In all of these cases, it has been demonstrated that
the sealing capacity of fault rocks directly influences whether faults act as conduits or
barriers for the flow of hydrocarbons, thereby impacting the distribution of hydrocarbons.
However, what sets our study apart is the unique phase configuration of hydrocarbons
resulting from variations in source rock maturity and distribution, with gas generated from
the basin center and oil generated from the slope/border of the basin.

5.2. Implications for Prospect Analysis in the Study Area

Based on our understanding of the relationship between SGR values and the lat-
eral sealing capacity of faults, combined with the model of hydrocarbon migration and
accumulation in the fault array traps described above, we can try to predict potentially
undiscovered accumulations (Figure 12).

Hydrocarbons from the mature source rocks towards the basin edge continue to
expell oil, which migrates vertically along permeable fault zones (F6–F10) and flows into
permeable reservoir intervalls, where the presence of fault seals is crucial for the formation
of hydrocarbon accumulations.

In this context, F8 exhibits weaker lateral fault sealing, allowing hydrocarbons to
directly cross it and enter traps that are bounded by the basin boundary fault. This process
can lead to hydrocarbon accumulation across the entire Zhuhai Formation reservoirs
(Figure 12). In contrast, F7 demonstrates robust lateral sealing in its lower segment but
weaker sealing in the upper portion. Its vertical sealing capacity is robust and far from
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failure. Consequently, hydrocarbons accumulate in the hanging wall trap of the E3z3
sequence (aligned with the lower fault segment), while in the E3z1 and E3z2 sequences
(corresponding to the upper fault segment), hydrocarbon flow laterally permeates the fault
zone and infiltrates the fault compartment bounded by the basin boundary fault (Figure 12).
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Regarding F9 and F10, both exhibit pronounced lateral sealing and moderate vertical
sealing. Importantly, F9 is positioned predominantly in front of F10 in terms of the hy-
drocarbon flow path. It acts as a lateral barrier, implying that hydrocarbons must breach
the lateral sealing limit to access the fault array traps in front of or even behind F10. Con-
sidering the robust lateral sealing of F9 and F10, the highest likelihood for hydrocarbon
accumulation exists in the hanging wall trap within the entire Zhuhai Formation of F9
(Figure 12).

Interestingly, hydrocarbon accumulations found on the Shenhu Uplift (see Figure 1b
for locations) host oil, which is thought to have formed in the Wenchang A basin based
on compositional analyses [67]. This would indicate that migration pathways through the
studied fault block array, as well as through the basin boundary fault (Zhu III South Fault),
exist. Note the potential limitations of this study, as the conceptual model of hydrocarbon
migration and accumulation only considered the fault sealing capacity and the maturity
and distribution of source rocks. Further related oil-source correlation and petroleum
geochemistry research will improve this study.

6. Conclusions

In this study, the control of fault seals on basin-scale hydrocarbon migration and
accumulations in the south western Pearl River Mouth Basin (PRMB) was illustrated. It
has been shown that the primary hydrocarbon reservoirs within the southern Wenchang A
subbasin are associated with fault-bounded structures, predominantly accumulating in the
Oligocene Zhuhai Formation. The major faults of the study area, faults F1–F10, displayed
their main activity during the deposition of the Late Oligocene E3z and Early Miocene
N1z sequences, ceasing after the N1h sequence. However, the major hydrocarbon charging
phase in the area was initiated around the middle Oligocene and has continued up to the
present, coinciding with the faulting activity.

The assessment of the lateral sealing capacity of the key sealing faults (F1, F2, F3, and
F5) reveals the following patterns: F1–F3 exhibit high SGR values with relatively uniform
distributions along their fault surfaces, whereas F5 demonstrates more variable SGR values
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across its surface. A correlation between SGR values and hydrocarbon distribution has been
established, with most hydrocarbon-bearing layers displaying SGR values at or exceeding
20%. Notably, the lower limit of SGR that supports hydrocarbon columns in this study
is at 15.8%, indicating that significant cementation might have occurred within the major
sealing faults.

An evaluation of the fault sealing characteristics of the bounding faults (F7–F10) in
potential fault array traps yields the following insights: for fault lateral sealing, the upper
segments of F7 and F8 act as lateral conduits, while the lower segments of F7, F9, and
F10 function as lateral barriers. Regarding fault vertical sealing, F7 demonstrates robust
vertical sealing capacity, while F9 and F10 exhibit moderate vertical sealing capabilities.
Consequently, hydrocarbons are anticipated to directly traverse the upper segments of F7
and F8, accumulating in the fault array traps positioned behind these faults. Conversely, the
lower portions of F7 and F9 hinder further hydrocarbon migration, leading to accumulation
in the hanging wall traps associated with these two faults.
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