
Citation: Pham, H.; Cheng, S.

Non-Iterative Cluster Routing:

Analysis and Implementation

Strategies. Appl. Sci. 2024, 14, 1706.

https://doi.org/10.3390/app14051706

Academic Editor: Nektarios A. Valous

Received: 12 December 2023

Revised: 8 February 2024

Accepted: 13 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Non-Iterative Cluster Routing: Analysis and
Implementation Strategies
Huong Pham 1 and Samuel Cheng 2,*

1 Norman Campus, School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA; huong.n.pham01@gmail.com

2 Tulsa Campus, School of Electrical and Computer Engineering, University of Oklahoma,
Tulsa, OK 74135, USA

* Correspondence: samuel.cheng@ou.edu

Abstract: In conventional routing, a capsule network employs routing algorithms for bidirectional
information flow between layers through iterative processes. In contrast, the cluster routingtechnique
utilizes a non-iterative process and can outperform state-of-the-art models with fewer parameters,
while preserving the part–whole relationship and demonstrating robust generalization to novel
viewpoints. This paper aims to further analyze and clarify this concept, providing insights that allow
users to implement the cluster routing technique efficiently. Additionally, we expand the technique
and propose variations based on the routing principle of achieving consensus among votes in distinct
clusters. In some cases, these variations have the potential to enhance and boost the cluster routing
performance while utilizing similar memory and computing resources.

Keywords: data-dependent routing; capsnet; capsule network

1. Introduction

A Capsule Network, often referred to as CapsNet, is an advanced type of neural
network that employs neuron clusters known as “capsules”. Unlike traditional Convolu-
tional Neural Networks (CNNs), which output scalar values, these capsules produce vector
outputs. These vectors represent not only the probability of a feature’s existence but also its
instantiation parameters, such as pose (position, size, orientation), deformation, texture,
and so on. This richer representation allows the network to capture and maintain spatial
relationships between features more effectively than traditional methods. CapsNet intro-
duces a unique mechanism, known as “routing-by-agreement”, which replaces the pooling
layers found in conventional CNNs. This routing process enables capsules at one level to
send their outputs to higher-level capsules only if there is a strong agreement (i.e., high
probability) that the higher-level capsule’s entity is present in the input. This agreement is
determined according to the dot product between the output of a lower-level capsule and
the predicted output of a higher-level capsule, iteratively refined through a routing process.
This architecture ensures that, during forward propagation, information flows through the
network in a way that preserves spatial relationships, making it inherently more capable of
handling variations in viewpoint, scale, and rotation without the need for extensive data
augmentation [1].

Capsule networks aim to address some fundamental limitations of CNNs, especially
in terms of preserving spatial hierarchies between features within an image. As CNNs rely
on the scalar output of neurons within layers for feature detection and representation, they
sometimes fail to recognize objects captured from different viewpoints if they are not covered
in the training data [2,3]. CapsNets, in contrast, can better preserve the pose information
(position and orientation) of features, thus making them more robust to variations in the input
data [1,4,5].

Appl. Sci. 2024, 14, 1706. https://doi.org/10.3390/app14051706 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14051706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-4071-9043
https://orcid.org/0000-0002-5439-1137
https://doi.org/10.3390/app14051706
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14051706?type=check_update&version=1

Appl. Sci. 2024, 14, 1706 2 of 16

There are several main distinctions between CapsNets and CNNs. First, CapsNets use
a vector or group of neurons as a basic unit, whereas CNNs use a single neuron. These
vectors, called capsules, can potentially represent different parts of an object. Second, while
CNNs capture hierarchical features through the depth of the network, with each layer
learning different levels of abstract and complex features, CapsNets model hierarchical re-
lationships between parts and whole objects, providing more interpretable representations
of learned features. Third, unlike CNNs—which lack a dedicated mechanism for routing
information between layers—CapsNets use data-dependent routing to determine the flow
of information between capsules, allowing for better modeling of part–whole relationships.

In classic routing procedures, a CapsNet begins with a set of primary capsules that
represent low-level features extracted from the input data. Each primary capsule makes
predictions (or votes) by computing an affine transformation of its output and sending
their votes to the capsules of the next layer. These capsules at the higher level compute
a weighted sum of the predictions received from capsules at the lower level. Routing
weights are normalized through layer normalization [6] or a squashing function [1]. An
iterative routing process is used to determine an agreement on how capsules at one level
should connect to capsules in the next level by updating the weights [1,4]. In contrast, a
non-iterative routing procedure computes the routing weights and information of capsules
only once [5,7]. By simplifying the process into a single forward pass, non-iterative routing
methods alleviate the computational load associated with iteration.

Unlike conventional routing methods [1,4], the cluster routing paradigm involves
capsules generating vote clusters (instead of individual votes) for the subsequent layer’s
capsules [7]. Each vote cluster consists of multiple votes, with each vote potentially
originating from a distinct capsule in the previous layer. The proximity of votes within a
cluster signifies the information extracted from the same part of an object from capsules in
previous layers. Consequently, the variance within a vote cluster can serve as an indicator
of the confidence in the encoded information that the vote clusters represent. This suggests
that vote clusters with lower variance are more reliable in encoding information related to
a specific part of an object. Thus, greater weights are assigned to centroids originating from
clusters with lower variance.

We offer a comprehensive explanation of the definitions and terminologies presented
in the existing literature [7]. Our objective is to minimize confusion and prevent misin-
terpretations surrounding the cluster routing technique, thereby enhancing its utilization
across different scenarios.

Moreover, we carry out extensive experiments to investigate the impact of agreement
indicators and hyperparameters. Our goal is to determine whether variance can serve as
the sole dependable agreement indicator, or if increasing the number of votes per cluster
invariably results in better performance.

Expanding upon the non-iterative cluster routing concept [7], we propose two varia-
tions of cluster routing: one features a streamlined routing process with the potential to
reduce the number of parameters while maintaining performance levels comparable to
those of existing methods, and the other is designed to effectively handle an increase in the
number of votes per cluster, thus improving the overall efficiency of cluster routing.

Empirical evaluations across several data sets show that our proposed methods utiliz-
ing cluster routing consistently yield higher accuracy, when compared to existing capsule
networks. Moreover, our capsule network maintains the beneficial attributes of previous
CapsNet versions, including strong generalization to images taken from new viewpoints.

The contributions of our work are outlined in the following:

• The definitions and examining the implementations within the cluster routing litera-
ture are clarified to support the effective deployment of cluster routing techniques.

• Comprehensive experiments are performed to investigate the impacts of agreement
indicators.

• Two novel variations of cluster routing are proposed [7] based on the routing principle
of achieving consensus among votes of clusters.

Appl. Sci. 2024, 14, 1706 3 of 16

2. Related Works
2.1. Agreement Routing in Capsule Network

CapsNets play a crucial role in feature encoding. They transform the extracted features
into capsules, which are vectors capable of characterizing parts of an object, unlike the
singular units used in conventional CNNs. These capsules possess the ability to represent
more intricate aspects of an object, such as its pose, orientation, and texture style. The
capsule system proposed in the dynamic routing paper titled “Dynamic Routing Between
Capsules” [1] employs a routing-by-agreement mechanism. This mechanism iteratively
determines its predictions based on the agreement between lower- and higher-level cap-
sules, which is achieved through adjusting the weights connecting them. Inspired by the
ideas presented in this paper, numerous subsequent research papers have explored similar
concepts with the aim of enhancing the capsule network while preserving the critical
notion of the part–whole relationship. These endeavors have led to diverse approaches
and innovations in the field. The matrix capsules with EM routing approach [4] uses
high-dimensional coincidence filtering and a fast iterative process to determine the routing
weights, resulting in better performance and higher robustness to adversarial attacks than
baseline CNNs. RS-CapsNet [8] integrates Res2Net and Squeeze-and-Excitation blocks to ex-
tract multi-scale features, emphasizes useful information, and employs linear combinations
between capsules in order to enhance object representation while reducing the capsule
count. Cluster routing [7] uses variance as the fundamental indicator of agreement and
confidence in the information encoded within the vote cluster. Group normalization [9]
also utilizes the mean and standard deviation of a group. It splits the output channels of
a convolutional layer into several groups and normalizes the features within each group
according to the mean and standard deviation. However, as it does not use routing weights
based on the agreement between capsules (data-dependent routing) to produce the input
for the next capsule layer, as in cluster routing, it is not classified as a routing algorithm.

CapsNets can outperform conventional CNNs in various applications, utilizing fewer pa-
rameters [10–12]. This advantage is particularly notable in medical image processing, where the
main obstacles include detecting small lesions and overcoming class imbalances. Unlike CNNs,
which often require substantial amounts of labeled data (that may be scarce in medical contexts),
CapsNets can achieve similar levels of performance with a smaller data set [13,14]. CapsNets
employ capsules that encapsulate richer feature vectors, unlike CNNs that use scalar neurons,
making them more effective in addressing these challenges [13]. Furthermore, CapsNets are
superior in maintaining part–whole relationships and geometric details, significantly improving
their performance in medical segmentation tasks [11,12,15,16].

AI-generated deepfakes, including face-swapping videos and images, have been prolif-
erating across the internet, driven by significant advancements in graphics processing units
and AI algorithms. These technologies enable individuals to effortlessly create manipulated
and unethical media. In areas such as deepfake detection, where novel and unforeseeable
attacks are frequent, the strong generalization capability of capsules becomes vital. The
nature of deepfake technology allows attackers to continuously develop new methods to
bypass detection systems, making it imperative for defense mechanisms to possess the
ability to generalize from known attacks to novel ones effectively. CapsNets are particularly
suited to this task, due to their ability to understand the underlying structure of the data in a
way that mirrors human visual perception. This understanding includes recognizing when
an image or video deviates from the norm in a manner that suggests manipulation, even
if the specific technique used for manipulation has not been encountered by the system
before. A notable application of CapsNets in this context is Capsule-Forensic, which has
been shown to be effective in identifying altered or synthetically produced images and
videos [17,18]. The efficacy of CapsNets in this application stems from their unique ability
to encode hierarchical relationships between objects and their components, including de-
tailed pose information. This makes it an invaluable tool in the fight against the unethical
use of AI for media manipulation [19].

Appl. Sci. 2024, 14, 1706 4 of 16

2.2. Attention Routing

The ideas behind CapsNets share similarities with those of attention mechanisms,
initially introduced in transformers [20]. Attention between capsules [21] replaces dynamic
routing with a convolutional transform and attention routing, thus utilizing fewer parame-
ters. The inclusion of a dual attention mechanism after the convolution layer and primary
capsules in [22] enhanced the performance of the CapsNets. The use of a self-attention
mechanism in [23] allowed for alternative non-iterative routing, efficiently reducing the
number of parameters while maintaining effectiveness.

3. Methods
3.1. Notation and Terminology

Several terms and definitions are used in the relevant literature, defined as follows:

• v, Vote: A vote is the prediction of a capsule, resulting from the multiplication of a
weight matrix with a capsule.

• D, Depth or Length of a Capsule: The number of convolutional units in a capsule.
• u, Capsule: A capsule with length or depth of D.
• K, Number of Votes per Cluster: Each cluster has K votes.
• N, Number of Clusters: The number of vote clusters in each channel of a capsule layer.
• W, Weight Matrix: A weight matrix is multiplied with a capsule to create a vote v.

There are K matrices to produce K votes in a cluster.
• C, Number of Channels: Each capsule layer has C channels.
• G, Number of Groups: Each group has a number of clusters.

In cluster routing, a capsule layer has C channels, each channel has N clusters, and
each cluster has K votes.

3.2. Original Non-Iterative Cluster Routing

Cluster routing [7] generates clusters of votes through a non-iterative approach, where
the standard deviation is employed as the fundamental indicator of agreement and confi-
dence for the information encoded within the vote cluster. Clusters with higher variance
indicate lower confidence in their encoded information or decision; consequently, they are
weighted less and passed to the next layer. The agreement vector is computed based on
the standard deviation of the cluster’s individual votes. The centroids or means of the
vote clusters are weighted with their corresponding agreement vectors. The weighted sum
of these centroids integrates and aggregates the information from all vote clusters across
the capsules in the current layer, which is then normalized and transmitted to the next
layer. By leveraging agreement and weighted summation, cluster routing can efficiently
and dynamically route information flow between each layer of capsules in a single pass. A
vote cluster û{1,··· ,K}

i can be generated by multiplying a capsule ui with each weight matrix

W of a weight cluster W{1,··· ,K}
i ,

ûk
i = Wk

i ui. (1)

To enhance the receptive fields of each vote, the neighborhood of ui in Equation (1) is
expanded to 3 × 3 in practice. ui becomes the concatenation N(ui) ∈ R9D of its neighbor-
hood. Then, the kth vote in the cluster is produced as follows,

ûk
i = Wk

i N(ui). (2)

A vote cluster û{1,··· ,K}
i will send its centroid or mean mi =

1
K ∑K

k=1 ûk
i to the next layer,

with weighting determined by the agreement vector ai. The computation of ai is outlined
as follows,

ai = − log(σi), (3)

Appl. Sci. 2024, 14, 1706 5 of 16

where

σi =

√√√√ 1
K

K

∑
k=1

(ûk
i − mk

i)× (ûk
i − mk

i) (4)

The centroids (or means) of these vote clusters are weighted summed as follows,

s =
C

∑
i=1

ci × mi, (5)

where

ci =
exp(ai)

∑C
j=1 exp(aj)

(6)

Each of the C capsule channels contributes a vote cluster to the capsules in the next
layer, making the number of vote clusters (N) equivalent to the number of channels (C) in
the multiple-channel version. Layer normalization [6] is applied to s to produce the output
of the capsule layer. The computational task in Equation (2) can be efficiently executed
through utilization of PyTorch’s pre-existing optimized convolutional operations [24],
similar to the technique employed in [21].

Notably, this mechanism utilizes significantly fewer parameters than both attention
routing [21] and dynamic routing [1]. The absence of iterations in the process enhances its
computational efficiency and reduces training resource requirements.

3.3. Cluster Routing Implementation
3.3.1. Weighting Computation

Feature maps were extracted from the original image through a convolutional layer
to form primary capsules. This layer is a convolutional capsule layer with C channels of
convolutional capsules. Each primary capsule comprises D convolutional units with a
3 × 3 kernel and a stride of 1. To create a vote, cluster routing utilizes a weight matrix for
element-wise multiplication with a capsule. Capsules within the same channel can share
weights to produce a vote, where each capsule has dimensions of 1 × 1 × D. However, in
cluster routing, the surrounding neighborhood is included to increase the receptive field
for producing a vote, resulting in the weight dimension of a capsule becoming 3 × 3 × D.

To handle the weight multiplication process, we leverage an optimized function in
PyTorch named conv2d. There are two approaches to produce votes from C separate
channels in the primary capsule layer.

First, a single conv2d layer can be used to generate votes from all C channels, employ-
ing group convolution through the conv2d function in PyTorch. The groups parameter in
conv2d controls the connections between inputs and outputs; for example, if groups = 1, all
inputs are convolved to all outputs. In cluster routing with C = 3, we can use groups = 3
to consider three convolutional layers side by side, creating three capsule channels. Each
layer sees one-third of the input tensor and produces one-third of the output, which are
subsequently concatenated.

Second, the feature maps can be segmented into individual channels, with each
channel employing its own conv2d layer to generate votes. It is important to note that
each channel utilizes a distinct conv2d layer for the generation of votes, which is currently
implemented in the code.

In iterative routing [1,4], the routing weights are computed through an iterative process.
The weight update frequency can have significant effects on the performance [1]. However, in
our non-iterative approach, the weight only needs to be computed once per epoch based on
the agreement vectors. Hence, the weight update frequency does not impact the performance.
In fact, without iteration, our method can reduce the training time to approximately 15%.

Appl. Sci. 2024, 14, 1706 6 of 16

3.3.2. Agreement Vector

In cluster routing, the weighting coefficients ci in Equation (6) can be computed
efficiently using the softmax function in Pytorch. However, when we substitute Equation (3)
into Equation (6), the ci can be simplified into the following form,

ci =
exp(ai)

∑C
j=1 exp(aj)

=
1
σ i

∑C
j=1(

1
σ j)

(7)

where σi is the standard deviation of the vote cluster.
The agreement vector in Equation (6) now can be redefined as ai =

1
σi

. This can be
explained by stating that the agreement is inversely proportional to the standard deviation
of the vote cluster: with a higher standard deviation, less agreement exists between the
votes, resulting in less weight being assigned to the centroid of the cluster.

3.3.3. Cluster Routing with Single Channel

In cluster routing, optimal performance is typically achieved through utilization of
the single-channel version, as illustrated in Table 1. Technically, this approach can be
summarized as creating multiple versions of the original capsule channel, increasing
its dimension by one. Next, the .view() function is utilized to divide the additional
dimension into two dimensions, K and N, as depicted in Figure 1. Subsequently, the mean
and standard deviation are computed along the K dimension to determine the centroid
and agreement vector, reducing the dimension by one. Following this, the mean tensor
is multiplied with the weight and then summed to derive the output capsule channel,
further reducing the dimension by one. This process involves expanding the dimension
and subsequently reducing it to preserve the original dimensionality of the input capsule
channel. Further details and the code implementation of this version can be found in our
GitHub repository.

The averaging and summing components of this technique can be conceptualized as a
type of vector dimension reduction, in which the dimensionality is reduced while preserv-
ing essential information. However, additional experiments (which are not addressed in
this study) are required to validate this hypothesis.

Table 1. Comparative analysis of test error rates in the capsule networks literature [7].

Method smallNORB Fashion-MNIST SVHN CIFAR-10
Error (%) Param Error (%) Param Error (%) Param Error (%) Param

Baseline CNN 3.76 3.30M 5.21 3.38M 3.30 3.38M 7.90 3.38M
Dynamic [1] 2.7 8.2M - - 4.3 ≃1.8M 10.6 8.2M
EM-Routing [4] 1.8 310K - - - - 11.9 ≃460K
RS-CapsNet [8] - - 6.49 5.00M 3.5 5.01M 10.19 5.01M
Attention Routing [21] - - - - - - 11.39 9.6M
DA-CapsNet [22] 1.74 - 6.02 - 5.18 - 14.53 -
Efficient-CapsNet [23] 2.54 151K - - - - - -
RVC [25] - - 5.87 - 2.97 - 8.3 -
Inverted dot-product
attention routing [26] - - - - - - 14.83 560K

VB-Routing [27] 1.6 169K 5.2 172K 3.9 323K 11.2 ≃323k
MoCapsNet [28] - - - - 7.00 - 27.83 -
SRM-CapsNet [29] 8.54 - 8.35 - 6.90 - 28.26 -
ER-CapsNet [30] - - - - 4.33 - 11.46 9.4M
Metric Learning [31] - - 9.59 - 7.24 - 26.76 9.4M

Appl. Sci. 2024, 14, 1706 7 of 16

Table 1. Cont.

Method smallNORB Fashion-MNIST SVHN CIFAR-10
Error (%) Param Error (%) Param Error (%) Param Error (%) Param

MASK DR [32] - - 6.32 1.4M - - 9.99 1.4M
ML-CapsNet [33] - - 7.35 - - - 14.28 -
PT-CapsNet [34] - - 7.77 - - - 8.79 -
NASCaps [35] - - 6.13 - 3.41 - 23.54 -
DenseCaps [36] - - - - 4.01 - 10.59 16M

Cluster Routing [7]
CM 1456 (C4K5D6) 2.98 ± 0.24 150K 5.17 ± 0.07 146K 3.94 ± 0.07 154K 12.16 ± 0.30 154K
CM458 (C4K5D8) 3.09 ± 0.19 246K 5.02 ± 0.04 240K 3.63 ± 0.11 252K 11.11 ± 0.09 252K
CM4816 (C4K8D16) 1.92 ± 0.12 1.32M 4.84 ± 0.07 1.30M 3.56 ± 0.07 1.34M 8.55 ± 0.12 1.34M
CM4824 (C4K8D24) 1.95 ± 0.12 2.87M 4.64 ± 0.03 2.84M 3.48 ± 0.14 2.89M 7.89 ± 0.11 2.89M
CS 2 (N8K8D32) 1.57 ± 0.13 2.53 M 4.68 ± 0.01 2.51M 3.37 ± 0.03 2.55M 7.37 ± 0.06 2.55M

Ours
V1M 3456 (K20D6G1) 3.32 ± 0.46 150K 5.36 ± 0.07 146K 3.74 ± 0.03 154K 10.78 ± 0.34 154K
V1M458 (K20D8G1) 3.11 ± 0.41 246K 5.29 ± 0.08 240K 3.71 ± 0.06 252K 10.21 ± 0.24 252K
V1M4816 (K32D16G4) 2.67 ± 0.3 1.32M 5.06 ± 0.04 1.30M 3.62 ± 0.14 1.34M 8.22 ± 0.3 1.34M
V1M4324 (K12D24G8) 1.95 ± 0.43 1.11M 4.95 ± 0.03 1.09M 3.48 ± 0.08 1.11M 7.83 ± 0.12 1.11M
V1M4824 (K32D24G8) 2.1 ± 0.22 2.87M 4.86 ± 0.02 2.84M 3.73 ± 0.14 2.89M 7.53 ± 0.11 2.89M
V2S 4 (N4K2N4K2D32) 1.46 ± 0.11 2.53 M 4.63 ± 0.07 2.51M 3.21 ± 0.08 2.55M 7.33 ± 0.03 2.55M

1 Cluster routing with multiple channels. 2 Cluster routing with single channel. 3 First variation with multiple
channels. 4 Second variation with single channel.

Version February 8, 2024 submitted to Appl. Sci 6 of 16

(batch_size, K*N, D, h, w)

(batch_size, K, N, D, h, w)
Mean, Variancee

(batch_size, N, D, h, w)
Sum

(batch_size, D, h, w)

Figure 1. Single-Channel Quick Implementation of Cluster Routing.

impact the performance. In fact, without the iteration, our method can reduce the training 230

time to approximately 15%. 231

3.3.2. Agreement Vector 232

In cluster routing, the weighting coefficients ci in Eq 6 are computed efficiently using 233

the softmax function in Pytorch. However, when we substitute Eq 3 into Eq 6, the ci can be 234

simplified to the following form, 235

ci =
exp(ai)

∑C
j=1 exp(aj)

=
1
σ i

∑C
j=1(

1
σ j)

(7)

where σi is the standard deviation of the vote cluster. 236

The agreement vector in Eq 6 now can be redefined as ai =
1
σi

. This can be explained 237

by stating that the agreement is inversely proportional to the standard deviation of the 238

vote cluster. The higher the standard deviation, the less agreement exists between votes, 239

resulting in less weight being assigned to the centroid of the cluster. 240

3.3.3. Cluster Routing with Single Channel 241

In cluster routing, optimal performance is typically achieved through the utilization 242

of the single-channel version, as illustrated in Table 1. Technically, this approach can be 243

summarized as creating multiple versions of the original capsule channel, increasing its 244

dimension by one. Next, the .view() function is utilized to divide the additional dimension 245

into two dimensions, K and N, as depicted in Fig 1. Subsequently, the mean and standard 246

deviation are computed along the K dimension to determine the centroid and agreement 247

vector, reducing the dimension by one. Following this, the mean tensor is multiplied 248

by the weight and then summed to derive the output capsule channel, further reducing 249

the dimension by one. This process involves expanding the dimension and subsequently 250

reducing it to preserve the original dimensionality of the input capsule channel. Further 251

details and code implementation of this version can be found in our GitHub repository. 252

The averaging and summing components of this technique can be conceptualized as a 253

type of vector dimension reduction, in which the dimensionality is reduced while preserv- 254

ing essential information. However, additional experiments, which were not addressed in 255

this study, are required to validate this hypothesis. 256

3.3.4. Cluster Routing with Multiple Channels 257

Cluster routing can also be implemented with multiple channels. Each capsule layer 258

consists of C channels, and within each channel, there are N clusters. Since each channel 259

contributes a vote cluster, there are C vote clusters per channel, making N equal to C 260

in this case. For simplicity, this variation involves multiple channels, with each channel 261

representing the single-channel version of cluster routing, as previously presented. 262

3.4. Proposed Routing Variations 263

3.4.1. Our First Routing Variation 264

This deviated version originates from the multiple-channel version of cluster routing. 265

Nevertheless, it remains compatible with a single-channel version. We adhered to the 266

agreement based on standard deviation. However, we are omitting the step of summation 267

Figure 1. Single-channel quick implementation of cluster routing.

3.3.4. Cluster Routing with Multiple Channels

Cluster routing can also be implemented with multiple channels. Each capsule layer
consists of C channels and, within each channel, there are N clusters. As each channel
contributes a vote cluster, there are C vote clusters per channel, making N equal to C
in this case. For simplicity, this variation involves multiple channels, with each channel
representing the single-channel version of cluster routing, as previously presented.

3.4. Proposed Routing Variations
3.4.1. Our First Routing Variation

This deviated version originates from the multiple-channel version of cluster routing.
Nevertheless, it remains compatible with the single-channel version, and we adhered to the
agreement based on standard deviation. However, we omit the step of summation over the
weighted centroids, thereby eliminating the need for the hyperparameter N, representing
the number of clusters per channel. The process is illustrated in Figure 2.

Appl. Sci. 2024, 14, 1706 8 of 16Version February 8, 2024 submitted to Appl. Sci 7 of 16

m5
σ5 m′

5

m4
σ4 m′

4

m3
σ3 m′

3

m2
σ2 m′

2 =

 σ−1

2
σ−1

2 +σ−1
3

× m2

m1
σ1 m′

1 =

 σ−1

1
σ−1

0 +σ−1
1

× m1

1×1×K m0
σ0 m′

0 =

 σ−1

0
σ−1

0 +σ−1
1

× m0

Primary Capsules

3x3

Primary Capsules Next CapsLayer

Routing

Routing

Routing

Routing details

Next CapsLayer

Figure 2. Our First Routing Variation With Multiple Channels. The bottom of the figure demonstrates
the connections between different capsules layers. At the top of the figure, 3×3 primary capsules are

multiplied with each weight matrix of a weight cluster comprising K matrices W{1,··· ,K}
i to generate a

vote cluster u{1,··· ,K}
i . This vote cluster consists of K votes depicted as a 1x1xK block (colored cyan)

in the right corner of the front middle block. Each cluster sends its weighted centroid mi based on
agreement vector ai to the next layer capsules. The agreement vector is the result of comparing the
standard deviation of each vote cluster with other vote clusters within their smaller respective group,
distinguished by different colors, the number of groups is denoted as G. In the current scenario,
there are three groups (G = 3), each with two centroids denoted as m0 and m1. These centroids are
weighted using their corresponding standard deviations σ0 and σ1, resulting in transformed values
labeled as m′

0 and m′
1 for the cyan colored group. This procedure is replicated for other red and blue

groups. The resultant weighted centroids are concatenated together to form the next layer capsule
channel.

over the weighted centroids, thereby eliminating the need for the hyperparameter N, 268

representing the number of clusters per channel. The process is illustrated in Figure 2. 269

The agreement vector ai in Eq. 3 is simplified as the reciprocal of its standard deviation, 270

as follows: 271

ai =
1√

1
K ∑K

k=1(û
k
i − mk

i)
2

(8)

Figure 2. Our first routing variation with multiple channels. The bottom of the figure demonstrates
the connections between different capsule layers. At the top of the figure, 3 × 3 primary capsules are

multiplied with each weight matrix of a weight cluster comprising K matrices W{1,··· ,K}
i to generate a

vote cluster u{1,··· ,K}
i . This vote cluster consists of K votes, depicted as a 1 × 1 × K block (colored

cyan) in the right corner of the front middle block. Each cluster sends its weighted centroid mi based
on the agreement vector ai to the next capsule layer. The agreement vector is the result of comparing
the standard deviation of each vote cluster with other vote clusters within their smaller respective
group, distinguished using different colors, where the number of groups is denoted as G. In the
current scenario, there are three groups (G = 3), each with two centroids (denoted as m0 and m1).
These centroids are weighted using their corresponding standard deviations σ0 and σ1, resulting in
transformed values (labeled as m′

0 and m′
1 for the cyan-colored group). This procedure is replicated

for the other (red and blue) groups. The resultant weighted centroids are concatenated together to
form the next capsule channel layer.

The agreement vector ai in Equation (3) is simplified as the reciprocal of its standard
deviation, as follows:

ai =
1√

1
K ∑K

k=1(û
k
i − mk

i)
2

(8)

Apart from the weighted sum in Equation (5), the centroids of these vote groups are
only weighted and fast-forwarded to the next layers, as follows,

s = ci × mi, (9)

Appl. Sci. 2024, 14, 1706 9 of 16

where,
ci =

ai

∑C
j=1 aj

(10)

Then, layer normalization [6] is applied to the weighted centroids s. The fast-forward
mechanism, when experimentally applied, exhibited comparable performance with fewer
parameters than the weighted sum approach used in cluster routing for the SVHN and
CIFAR-10 data sets, as illustrated in Table 1. This method has the potential to reduce the
number of parameters while preserving network performance.

3.4.2. Our Second Routing Variation

While conducting extensive experiments with various hyperparameters in cluster
routing, we observed that increasing the number of votes per cluster (denoted as K) in
both single- and multiple-channel versions can lead to a decrease in performance, as
demonstrated in Figures 3 and 4, respectively. Therefore, we introduce a second variation
of the routing mechanism to mitigate the impact of increasing K while enhancing its
performance.

In Figure 5, the K and N dimensions are split only once in the original cluster routing,
using the .view() method in PyTorch. This second variation suggests that the breakdown
is not limited to only two times (as depicted in Figure 5) but, rather, depends on the
dimension of the tensor, which must satisfy the condition K1 × N1 × K2 × N2 = K × N.

Version February 8, 2024 submitted to Appl. Sci 8 of 16

(batch_size, K*N, D, h, w)

(batch_size, K, N, D, h, w)

(batch_size, K1, N1, K2, N2, D, h, w)
Mean

Sum
Mean

Sum

(batch_size, D, h, w)

Figure 3. Second Variation Scheme.

14 8 16 32 64 128

1.6

1.8

2

2.2

2.4

Number of Votes per Cluster (K)

Te
st

Er
ro

r
R

at
e

[%
]

smallNORB

Figure 4. Performance of the single-channel version of cluster routing with N=8 and D=32

Apart from the weighted sum in Eq. 5, the centroids of these vote groups are only 272

weighted and fast-forwarded to the next layers, as follows, 273

s = ci × mi, (9)

where, 274

ci =
ai

∑C
j=1 aj

(10)

Afterward, layer normalization [7] is applied to the weighted centroids s. The fast- 275

forward mechanism, when experimentally applied, exhibits comparable performance with 276

fewer parameters than the weighted sum approach used in cluster routing for the SVHN 277

and CIFAR-10 datasets, as illustrated in Table 1. This method has the potential to reduce 278

the number of parameters while preserving network performance. 279

3.4.2. Our Second Routing Variation 280

While conducting extensive experiments with various hyperparameters in cluster 281

routing, we observed that increasing the number of votes per cluster (denoted as K) in 282

both single-channel and multiple-channel versions can lead to a decrease in performance, 283

as demonstrated in Figure 4 and Figure 5, respectively. Therefore, we introduce a second 284

variation of the routing mechanism to mitigate the impact of increasing K and aim to 285

enhance its performance. 286

In Fig.3, the K and N dimensions are split only once in the original cluster routing 287

using the .view() method in PyTorch. This second variation suggests that the breakdown 288

is not limited to only two times, as depicted in Fig. 3, but rather depends on the dimension 289

of the tensor. It must satisfy the condition K1 × N1 × K2 × N2 = K × N. 290

Figure 3. Performance of the single-channel version of cluster routing with N = 8 and D = 32.

Version February 8, 2024 submitted to Appl. Sci 9 of 16

10 20 40 80 160

10.6

10.8

11

Number of Votes per Cluster (K)

Te
st

Er
ro

r
R

at
e

[%
]

CIFAR-10

Figure 5. Performance of the multiple-channel version of cluster routing with C=4 and D=6

2.55M 4.94M 9.75M
1.4

1.6

1.8

2

Total parameters [Million]

Te
st

Er
ro

r
R

at
e

[%
]

smallNORB

Cluster Routing
Second Variation

Figure 6. Performance of Cluster Routing and the Second Variation.

This approach can be utilized to effectively manage capsule layers with large dimen- 291

sions, resulting in improved performance and faster convergence, as illustrated in Figures 6 292

and 7, respectively. 293

4. Experimental Setup 294

In all experiments, we fix the number of capsule layers as five and use a stride of 2 295

at the second and fourth layer. They are all trained with the Stochastic Gradient Descent 296

optimizer and cross-entropy loss. The training is performed with a batch size of 64 over 297

300 epochs, with an initial learning rate of 0.1 and a step decay of 0.1 at every 100 epochs. 298

The hyperparameters for augmentation are tuned using a validation set that comprises 299

one-fifth of the training images. 300

0 2 4 6 8 10 12 14 16 18 20
40

60

80

100

Epoch

A
cc

ur
ac

y[
%

]

smallNORB

Second Variation
Cluster Routing

Figure 7. Training curve of Cluster Routing and the Second Variation.

Figure 4. Performance of the multiple-channel version of cluster routing with C = 4 and D = 6.

Appl. Sci. 2024, 14, 1706 10 of 16Version February 8, 2024 submitted to Appl. Sci 8 of 16

(batch_size, K*N, D, h, w)

(batch_size, K, N, D, h, w)

(batch_size, K1, N1, K2, N2, D, h, w)
Mean

Sum
Mean

Sum

(batch_size, D, h, w)

Figure 3. Second Variation Scheme.

14 8 16 32 64 128

1.6

1.8

2

2.2

2.4

Number of Votes per Cluster (K)

Te
st

Er
ro

r
R

at
e

[%
]

smallNORB

Figure 4. Performance of the single-channel version of cluster routing with N=8 and D=32

Apart from the weighted sum in Eq. 5, the centroids of these vote groups are only 272

weighted and fast-forwarded to the next layers, as follows, 273

s = ci × mi, (9)

where, 274

ci =
ai

∑C
j=1 aj

(10)

Afterward, layer normalization [7] is applied to the weighted centroids s. The fast- 275

forward mechanism, when experimentally applied, exhibits comparable performance with 276

fewer parameters than the weighted sum approach used in cluster routing for the SVHN 277

and CIFAR-10 datasets, as illustrated in Table 1. This method has the potential to reduce 278

the number of parameters while preserving network performance. 279

3.4.2. Our Second Routing Variation 280

While conducting extensive experiments with various hyperparameters in cluster 281

routing, we observed that increasing the number of votes per cluster (denoted as K) in 282

both single-channel and multiple-channel versions can lead to a decrease in performance, 283

as demonstrated in Figure 4 and Figure 5, respectively. Therefore, we introduce a second 284

variation of the routing mechanism to mitigate the impact of increasing K and aim to 285

enhance its performance. 286

In Fig.3, the K and N dimensions are split only once in the original cluster routing 287

using the .view() method in PyTorch. This second variation suggests that the breakdown 288

is not limited to only two times, as depicted in Fig. 3, but rather depends on the dimension 289

of the tensor. It must satisfy the condition K1 × N1 × K2 × N2 = K × N. 290

Figure 5. Second variation scheme.

This approach can be utilized to effectively manage capsule layers with large di-
mensions, resulting in improved performance and faster convergence, as illustrated in
Figures 6 and 7.

Version February 8, 2024 submitted to Appl. Sci 9 of 16

10 20 40 80 160

10.6

10.8

11

Number of Votes per Cluster (K)

Te
st

Er
ro

r
R

at
e

[%
]

CIFAR-10

Figure 5. Performance of the multiple-channel version of cluster routing with C=4 and D=6

2.55M 9.75M
1.4

1.6

1.8

2

 4.94M

Number of Parameters [Millions]

Te
st

Er
ro

r
R

at
e

[%
]

smallNORB

Cluster Routing
Second Variation

Figure 6. Performance of Cluster Routing and the Second Variation.

This approach can be utilized to effectively manage capsule layers with large dimen- 291

sions, resulting in improved performance and faster convergence, as illustrated in Figures 6 292

and 7, respectively. 293

4. Experimental Setup 294

In all experiments, we fix the number of capsule layers as five and use a stride of 2 295

at the second and fourth layer. They are all trained with the Stochastic Gradient Descent 296

optimizer and cross-entropy loss. The training is performed with a batch size of 64 over 297

300 epochs, with an initial learning rate of 0.1 and a step decay of 0.1 at every 100 epochs. 298

The hyperparameters for augmentation are tuned using a validation set that comprises 299

one-fifth of the training images. 300

0 2 4 6 8 10 12 14 16 18 20
40

60

80

100

Epoch

A
cc

ur
ac

y[
%

]

smallNORB

Second Variation
Cluster Routing

Figure 7. Training curve of Cluster Routing and the Second Variation.

Figure 6. Performance of cluster routing and the second routing variation, along with their respective
hyperparameters shown in Table A1.

Version February 8, 2024 submitted to Appl. Sci 9 of 16

10 20 40 80 160

10.6

10.8

11

Number of Votes per Cluster (K)

Te
st

Er
ro

r
R

at
e

[%
]

CIFAR-10

Figure 5. Performance of the multiple-channel version of cluster routing with C=4 and D=6

2.55M 4.94M 9.75M
1.4

1.6

1.8

2

Total parameters [Million]

Te
st

Er
ro

r
R

at
e

[%
]

smallNORB

Cluster Routing
Second Variation

Figure 6. Performance of Cluster Routing and the Second Variation.

This approach can be utilized to effectively manage capsule layers with large dimen- 291

sions, resulting in improved performance and faster convergence, as illustrated in Figures 6 292

and 7, respectively. 293

4. Experimental Setup 294

In all experiments, we fix the number of capsule layers as five and use a stride of 2 295

at the second and fourth layer. They are all trained with the Stochastic Gradient Descent 296

optimizer and cross-entropy loss. The training is performed with a batch size of 64 over 297

300 epochs, with an initial learning rate of 0.1 and a step decay of 0.1 at every 100 epochs. 298

The hyperparameters for augmentation are tuned using a validation set that comprises 299

one-fifth of the training images. 300

0 2 4 6 8 10 12 14 16 18 20
40

60

80

100

Epochs

A
cc

ur
ac

y[
%

]

smallNORB

Second Variation
Cluster Routing

Figure 7. Training curve of Cluster Routing and the Second Variation.Figure 7. Training curves for cluster routing and the second routing variation.

4. Experimental Setup

In all experiments, we set the number of capsule layers to 5 and used a stride of 2 in
the second and fourth layers. The models were all trained with the Stochastic Gradient
Descent optimizer and cross-entropy loss. Training was performed with a batch size of
64 over 300 epochs, with an initial learning rate of 0.1 and a step decay of 0.1 at every
100 epochs. The hyperparameters for augmentation were tuned using a validation set
comprising one-fifth of the training images.

Appl. Sci. 2024, 14, 1706 11 of 16

The reference CNN employed for comparison was composed of five ReLU convolu-
tional layers. Each layer incorporates ReLU activation, 256 filters, and layer normalization,
resulting in a total of 3.38 million parameters.

Data Pre-Processing

For each data set, we employed brightness and contrast jitter to augment the training
data. We used α and β to control the contrast and brightness f (x) of a pixel at position x by
g(x) = α f (x) + β. Specifically, random brightness and contrast were applied with a factor
of 0.2. The value of α was randomly chosen from a uniform distribution in [0.8, 1.2], and
the value of β from [−0.2 1

Nx
∑x f (x), 0.2 1

Nx
∑x f (x)], with Nx denoting the total number of

pixels and 1
Nx

∑x f (x) denoting the mean pixel value.
The smallNORB [37] data set contains 24,300 images at 96 × 96 resolution, classified

into 5 classes. Pre-processing, as per [4], involved down-sampling to 48 × 48, normalization
and, for training, a contrast factor of 0.2, random shifts of 0.2, padding to 56 × 56, and
random cropping to 32 × 32. For testing, images were centrally cropped to 32 × 32.

The Fashion-MNIST [38] data set contains 70,000 images with a resolution of 28 × 28 pixels,
categorized into 10 classes. The data set was split into training and testing sets with a
ratio of 6:1. During training, various data augmentation techniques were applied to the
images, including random brightness adjustments, random flips with a 0.5 probability, and
contrast adjustments with a factor of 0.2. Additionally, the images were padded to a size of
36 × 36 pixels, then randomly cropped to a final size of 32 × 32 pixels.

The CIFAR-10 [39] data set consists of a collection of 60,000 color images, each measur-
ing 32 × 32 pixels, and is divided into 10 different classes, with each class representing a
distinct object or category. Each class contains 6000 images. The training and testing sets
were divided with a 5:1 ratio. In the training phase, random adjustments to brightness and
contrast were implemented with a factor of 0.2. Padding to achieve a size of 40 × 40 was
conducted, then random cropping was applied to obtain a 32 × 32 portion. Additionally,
random horizontal flips were introduced with a 0.5 probability.

The SVHN [40] data set comprises 10 digit classes represented as 32 × 32 real-world
house numbers. The core training set, consisting of 73,257 images, was used for training,
while evaluation was performed on the 26,032 test set images. Throughout training, random
brightness and contrast adjustments with a factor of 0.2 were applied. Images were padded
to 40 × 40, and random 32 × 32 crops were extracted for further processing.

5. Results

In Table 1, we evaluate and compare the performance of our proposed capsule network
in classification tasks (although it is not exclusively confined to such tasks). We investigated
its generalization to novel viewpoints and experiments through the various indicators
of agreement between cluster votes. For each data set, we conducted a minimum of
8 experiments using 8 random seeds under identical conditions, and the average test error
rate, standard deviation, and the number of parameters are presented in Table 1.

5.1. Comparison with the Baseline CNN

In our study, our proposed cluster routing variations demonstrated superior perfor-
mance when compared to the baseline CNN in two key aspects: the number of parameters
and test error rates. Notably, when tested on the smallNORB data set, which is known
for its variations in viewpoint, the proposed variations achieved higher accuracy while
employing fewer parameters, as illustrated in Table 1. The CNN baseline, with 3.3 million
parameters, achieved a test error rate of 3.76% on the smallNORB data set, while our
strategy halved the test error rate to 1.95% while using approximately one-third of the
parameters (1.11 M). The proposed variation achieved the best performance on this data
set, with a test error rate of 1.46%. This proves the robustness of CapsNets in handling
viewpoint variations in object recognition and pose estimation tasks. This accomplishment
can be attributed to the capsule network’s inherent capability to retain and utilize pose

Appl. Sci. 2024, 14, 1706 12 of 16

information within the features, enabling robust generalization even when confronted
with images captured from viewpoints that have not been previously encountered [25]
While demonstrating superior performance and robustness on the smallNORB data set, our
proposed variations also exhibited improved performance with a reduction in the number
of parameters across image processing tasks, including the real-world digit recognition task
in the SVHN data set, as well as image classification in the Fashion-MNIST and CIFAR-10
data sets, as illustrated in Table 1. This can be useful in real-world scenarios, where objects
may be partially occluded or where the viewpoint of the object may vary.

CNNs are adept at a wide array of tasks, but encounter difficulties in maintain-
ing the spatial relationships between objects due to the incorporation of max-pooling
layers [13,15,41]. These layers, which are designed for feature extraction and dimensional-
ity reduction, inadvertently result in the loss of spatial information among objects. Con-
sequently, CNNs may demonstrate decreased robustness in scenarios involving changes
in viewpoint, scale, and rotation [14]. Capsule networks offer a solution to this issue by
eliminating the need for pooling layers. Instead of relying on scalar values for feature
representation—as is common in CNNs—CapsNets employ vectors or “capsules”. Fur-
thermore, they utilize a “routing-by-agreement” mechanism instead of pooling, which
allows capsules to collaboratively decide on the existence of higher-level features [10]. This
capability to preserve spatial relationships renders CapsNets particularly beneficial in the
field of medical image analysis for tasks such as tumor detection, semantic segmentation,
and disease classification, especially considering the variability in the body shapes and
sizes of patients, as well as tumor locations.

Despite their potential, CapsNets face inherent challenges; notably, they depend on a
sophisticated routing algorithm that requires extensive agreement computations among
capsules. In seminal CapsNet studies, such as those cited by [1,4], routing iterations
have been shown to be crucial for updating capsule agreements, considerably lengthening
training and inference times [10]. This issue could limit the ability of CapsNets to match
the depth and scalability of CNNs [12]. Nevertheless, our novel approaches leverage a
non-iterative strategy to calculate capsule agreement, effectively reducing the training
duration by an average of 15%, when compared to conventional iterative methods [1,4].

5.2. Comparisons with the State-of-the-Art

For a fair comparison in Table 1, we employed identical data processing and training
settings, ensuring the selection of configurations with a similar number of parameters.

Our first variation, characterized by a lower number of parameters, achieved per-
formance comparable to that of the original cluster routing approach. Specifically, the
V1M4324 variation with fewer parameters (1.11 million in total) demonstrated a test error
rate of 3.48% on the SVHN data set. This is comparable to that of the original cluster routing
approach, which has 2.89 million parameters and a similar error rate. Similarly, in the
context of the CIFAR-10 data set, the outcomes of the V1M4324 variation closely matched
those of the original cluster routing, despite employing fewer parameters, with test error
rates of 7.83% and 7.89%, respectively. However, it slightly fell short in performance on
the Fashion-MNIST data set, exhibiting a test error rate of 4.95% with 1.1M parameters,
in contrast to the original cluster routing, which achieved 4.84% with 1.3M parameters.
Despite this result, this variation demonstrated the potential to achieve comparable perfor-
mance with fewer parameters. Furthermore, our variation employed a simpler agreement
calculation, leading to a modest reduction in training time (averaging 5%), when compared
to the original cluster routing approach.

Our second variation model, V2S, demonstrated significant performance enhance-
ments compared to existing capsule networks with an equivalent number of parameters to
the original cluster routing, as detailed in Table 1. Our analysis revealed that an increase in
the number of votes per cluster, denoted as K, led to a degradation in the performance of
the original cluster routing in both single- and multi-channel configurations, as depicted
in Figures 3 and 4, respectively. The V2S model addresses this issue effectively, offering

Appl. Sci. 2024, 14, 1706 13 of 16

a strategic approach to manage capsule layers with significant dimensions and alleviate
the negative impact of increasing K. In the context of the smallNORB data set, V2S not
only achieved superior performance, as demonstrated in Figure 6, but also exhibited faster
convergence during network training, as illustrated in Figure 7. These characteristics
significantly enhance the cluster routing efficacy, underscoring the potential of the V2S
model in improving cluster routing capabilities.

Despite nuanced variations, the two proposed routing alternatives emerge as viable
options, showcasing notable strengths in differentiating data sets with diverse characteristics.

5.3. Classification across Various Viewpoints

In this section, we evaluate the generalization capabilities of our proposed methods to
novel viewpoints using the smallNORB data set. To guarantee a fair comparison, we also
retrained the cluster routing algorithm, applying the same data augmentation techniques
as those used in our methods.

The network was trained on the training set with varying capture angles or azimuths
(300, 320, 340, 0, 20, 40). The test set comprised different instances in the same categories,
with unseen angles ranging from 60 to 280. To evaluate the network’s performance under
varying elevation viewpoints, we selected three smaller elevations from the training set
and tested the model on six larger elevations from the test set.

From the novel azimuth viewpoint, our first variation achieved the highest accuracy of
85.27%. The multiple-channel version of the original cluster routing and our first variation
demonstrated an advantage over the single-channel version. Regarding the novel elevation
viewpoint, the single version of our second variation attained the highest accuracy of
84.44%, as depicted in Table 2. The performance of both variations was on par with the
original cluster routing, maintaining robust generalization to novel viewpoints. In certain
instances, they even exhibited a slight advantage.

Table 2. Comparison of generalization capabilities on the smallNORB data set across various view-
points.

Azimuth (%) Elevation (%)
Model CS CM V2S V1M CS CM V2S V1M
#Params 2.55M 2.89M 2.55M 2.89M 2.55M 2.89M 2.55M 2.89M

Novel View 83.31 84.89 83.84 85.27 83.79 84.25 84.44 83.71

5.4. Agreement Indicators

In cluster routing, the standard deviation of the votes within a cluster serves as a metric
for assessing the consensus among votes surrounding the cluster centroids. Specifically, 1

σ
is utilized to calculate the agreement weighting for the cluster centroids in cluster routing.

We performed experiments to investigate alternative agreement indicators, including
1√
σ

, 1
σ2 , 1

σ3 , and the mean of absolute difference. However, no significant variations in
network performance were observed. Additionally, we explored alternative indicators,
such as the L1 norm (Manhattan norm) and the L2 norm (Euclidean norm), utilizing a
moving 3D kernel for norm calculations. Despite these efforts, such alternatives led to a
decrease in performance.

The summarized performance results for these investigations are provided in Table 3.
Based on these findings, we concluded that 1

σ stands out as the optimal choice for the
agreement indicator, due to its simplicity and efficiency.

Table 3. Performance of second variation on CIFAR-10 with diverse agreement indicators.

√
σ σ σ2 σ3 MAD * L1 Norm L2 Norm

10.92 ± 0.33 10.78 ± 0.34 10.75 ± 0.37 11.05 ± 0.54 11.26 ± 0.39 34.41 ± 0.16 29.44 ± 0.25
* Mean of absolute difference.

Appl. Sci. 2024, 14, 1706 14 of 16

6. Conclusions

This research aimed to clarify the key definitions and concepts integral to cluster
routing, with an emphasis on demystifying the terminologies and principles underlying
the original cluster routing algorithm. Additionally, we provided a comprehensive guide
for the implementation of different versions of the original cluster routing algorithm. Our
goal was to streamline the deployment process, making it easier for users to adopt and
effectively utilize the cluster routing approach.

We conducted extensive experiments to assess the limitations associated with increas-
ing the number of votes per cluster and explore alternative agreement indicators for cluster
routing. Our findings indicated that the standard deviation of the votes within a cluster
stands out as the optimal choice for the agreement indicator, due to its simplicity and effi-
ciency. Additionally, we observed that increasing the number of votes per cluster, denoted
as K, led to decreased performance in the original cluster routing for both single- and
multiple-channel versions.

Furthermore, we proposed two innovative cluster routing variations, which were
designed to enhance its capabilities. Our first variation attempts to simplify the origi-
nal cluster routing computation process through omitting the summation over weighted
centroids, thereby reducing the training time. In some cases, it achieved superior perfor-
mance while utilizing fewer parameters. This simplification is beneficial, as computational
complexity and memory requirements pose challenges for constructing deeper and larger
capsule networks. Our second variation addresses the impact of increasing the number of
votes per cluster, denoted as K, in the original cluster routing. This variation enables us
to manage capsule layers with substantial dimensions and mitigate the effects of increas-
ing the number of votes per cluster, leading to improved performance when compared
to the original cluster routing approach. Additionally, it offers the advantage of faster
convergence throughout the network training phase.

Our proposed novel methods improved the effectiveness of cluster routing and appear
promising for numerous applications. Future research will aim to evaluate the applicability of
our variations in various fields, including medical image analysis and deepfake detection.

Author Contributions: Supervision, S.C.; Writing—original draft, H.P.; Writing—review & editing,
H.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Vice President for Research and Partnerhsips, the Data
Institute for Societal Challenges, and the Stephenson Cancer Center at the University of Oklahoma
through the 2021 DISC/SCC Seed Grant Award.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All research data used in this study were sourced from publicly
available data on public websites. The source codes developed for this study are accessible at
https://github.com/hngpham/cluster_routing_variations starting from 16 March 2023.

Acknowledgments: The authors extend their gratitude to Zhihao Zhao for valuable discussions.
Additionally, the authors would like to acknowledge the partial provision of computational resources
for this project by the OU Supercomputing Center for Education & Research (OSCER) at the University
of Oklahoma (OU).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/hngpham/cluster_routing_variations

Appl. Sci. 2024, 14, 1706 15 of 16

Appendix A

Table A1. Experimental configuration used for Figure 6.

Parameter Cluster Routing Second Variation
(Million) (K, N, D) (K1, N1, K2, N2, D)

2.55M (8, 8, 32) (4, 2, 4, 2, 32)
4.94M (16, 8, 32) (8, 2, 4, 2, 32)
9.75M (32, 8, 32) (4, 4, 4, 4, 32)

References
1. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the 31st Conferenceon Neural

Information Processing Systems (NIPS2017), Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866.
2. Engstrom, L.; Tsipras, D.; Schmidt, L.; Madry, A. A rotation and a translation suffice: Fooling cnns with simple transformations.

arXiv 2017, arXiv:1712.02779.
3. Alcorn, M.A.; Li, Q.; Gong, Z.; Wang, C.; Mai, L.; Ku, W.S.; Nguyen, A. Strike (with) a pose: Neural networks are easily fooled by

strange poses of familiar objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 16–20 June 2019; pp. 4845–4854.

4. Hinton, G.E.; Sabour, S.; Frosst, N. Matrix capsules with EM routing. In Proceedings of the International Conference on Learning
Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

5. Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming auto-encoders. In Proceedings of the International Conference on
Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 44–51.

6. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
7. Zhao, Z.; Cheng, S. Capsule networks with non-iterative cluster routing. Neural Netw. 2021, 143, 690–697. [CrossRef] [PubMed]
8. Yang, S.; Lee, F.; Miao, R.; Cai, J.; Chen, L.; Yao, W.; Kotani, K.; Chen, Q. RS-CapsNet: An advanced capsule network. IEEE Access

2020, 8, 85007–85018. [CrossRef]
9. Wu, Y.; He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,

8–14 September 2018; pp. 3–19.
10. Ribeiro, F.D.S.; Duarte, K.; Everett, M.; Leontidis, G.; Shah, M. Learning with capsules: A survey. arXiv 2022, arXiv:2206.02664.
11. Zade, A.A.T.; Aziz, M.J.; Masoudnia, S.; Mirbagheri, A.; Ahmadian, A. An improved capsule network for glioma segmentation

on MRI images: A curriculum learning approach. Comput. Biol. Med. 2022, 148, 105917.
12. Wang, L.; Tang, M.; Hu, X. Evaluation of grouped capsule network for intracranial hemorrhage segmentation in CT scans. Sci.

Rep. 2023, 13, 3440. [CrossRef]
13. Zhang, Z.; Ye, S.; Liao, P.; Liu, Y.; Su, G.; Sun, Y. Enhanced capsule network for medical image classification. In Proceedings of

the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, BC,
Canada, 20–24 June 2020; IEEE: New York, NY, USA, 2020; pp. 1544–1547.

14. Akinyelu, A.A.; Zaccagna, F.; Grist, J.T.; Castelli, M.; Rundo, L. Brain tumor diagnosis using machine learning, convolutional
neural networks, capsule neural networks and vision transformers, applied to MRI: A survey. J. Imaging 2022, 8, 205. [CrossRef]

15. Tran, M.; Vo-Ho, V.K.; Quinn, K.; Nguyen, H.; Luu, K.; Le, N. CapsNet for medical image segmentation. In Deep Learning for
Medical Image Analysis; Elsevier: Amsterdam, The Netherlands, 2024; pp. 75–97.

16. Avesta, A.; Hui, Y.; Aboian, M.; Duncan, J.; Krumholz, H.; Aneja, S. 3D capsule networks for brain image segmentation. Am. J.
Neuroradiol. 2023, 44, 562–568. [CrossRef]

17. Bhagtani, K.; Yadav, A.K.S.; Bartusiak, E.R.; Xiang, Z.; Shao, R.; Baireddy, S.; Delp, E.J. An overview of recent work in media
forensics: Methods and threats. arXiv 2022, arXiv:2204.12067.

18. Nguyen, H.; Yamagishi, J.; Echizen, I. Use of a capsule network to detect fake images and videos. arXiv 2019, arXiv:1910.12467.
19. Mehra, A.; Spreeuwers, L.J.; Strisciuglio, N. Deepfake Detection using Capsule Networks and Long Short-Term Memory

Networks. In Proceedings of the VISIGRAPP, Virtual Event, 8–10 February 2021.
20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In

Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.
21. Choi, J.; Seo, H.; Im, S.; Kang, M. Attention routing between capsules. In Proceedings of the IEEE International Conference on

Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.
22. Huang, W.; Zhou, F. DA-CapsNet: Dual attention mechanism capsule network. Sci. Rep. 2020, 10, 11383. [CrossRef] [PubMed]
23. Mazzia, V.; Salvetti, F.; Chiaberge, M. Efficient-capsnet: Capsule network with self-attention routing. Sci. Rep. 2021, 11, 14634.

[CrossRef]
24. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS2017), Long
Beach, CA, USA, 4–9 December 2017.

25. Xie, N.; Wan, X. Residual Vector Capsule: Improving Capsule by Pose Attention. IEEE Access 2021, 9, 129626–129634. [CrossRef]

http://doi.org/10.1016/j.neunet.2021.07.032
http://www.ncbi.nlm.nih.gov/pubmed/34418871
http://dx.doi.org/10.1109/ACCESS.2020.2992655
http://dx.doi.org/10.1038/s41598-023-30581-4
http://dx.doi.org/10.3390/jimaging8080205
http://dx.doi.org/10.3174/ajnr.A7845
http://dx.doi.org/10.1038/s41598-020-68453-w
http://www.ncbi.nlm.nih.gov/pubmed/32647347
http://dx.doi.org/10.1038/s41598-021-93977-0
http://dx.doi.org/10.1109/ACCESS.2021.3113176

Appl. Sci. 2024, 14, 1706 16 of 16

26. Tsai, Y.H.H.; Srivastava, N.; Goh, H.; Salakhutdinov, R. Capsules with Inverted Dot-Product Attention Routing. arXiv 2020,
arXiv:2002.04764.

27. Ribeiro, F.D.S.; Leontidis, G.; Kollias, S.D. Capsule Routing via Variational Bayes. In Proceedings of the PAAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 3749–3756.

28. Gugglberger, J.; Peer, D.; Rodríguez-Sánchez, A. Momentum Capsule Networks. arXiv 2022, arXiv:2201.11091.
29. Hollósi, J.; Ballagi, Á.; Pozna, C.R. Simplified Routing Mechanism for Capsule Networks. Algorithms 2023, 16, 336. [CrossRef]
30. Alaoui-Elfels, E.; Gadi, T.; ER-Caps: ELU Residual Capsule Network for Complex Images Classification. Int. J. Intell. Eng. Syst.

2023, 16. [CrossRef]
31. Ohta, N.; Kawai, S.; Nobuhara, H. Capsule Network Extension Based on Metric Learning. J. Adv. Comput. Intell. Intell. Inform.

2023, 27, 173–181. [CrossRef]
32. Chen, J.; Liu, Z. Mask dynamic routing to combined model of deep capsule network and u-net. IEEE Trans. Neural Netw. Learn.

Syst. 2020, 31, 2653–2664. [CrossRef]
33. Noor, K.T.; Robles-Kelly, A.; Kusy, B. A Capsule Network for Hierarchical Multi-label Image Classification. In Proceedings of the

Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), Montreal, BC, Canada, 26–27 August 2022; Springer: Cham, Switzerland, 2022; pp. 163–172.

34. Pan, C.; Velipasalar, S. PT-CapsNet: A novel prediction-tuning capsule network suitable for deeper architectures. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 11996–12005.

35. Marchisio, A.; Massa, A.; Mrazek, V.; Bussolino, B.; Martina, M.; Shafique, M. NASCaps: A framework for neural architec-
ture search to optimize the accuracy and hardware efficiency of convolutional capsule networks. In Proceedings of the 39th
International Conference on Computer-Aided Design, Virtual Event, 2–5 November 2020; pp. 1–9.

36. Sun, G.; Ding, S.; Sun, T.; Zhang, C.; Du, W. A novel dense capsule network based on dense capsule layers. Appl. Intell. 2022,
52, 3066–3076. [CrossRef]

37. LeCun, Y.; Huang, F.J.; Bottou, L. Learning methods for generic object recognition with invariance to pose and lighting. In
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA,
27 June–2 July 2004; IEEE: New York, NY, USA, 2004; Volume 2, pp. II–104.

38. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

39. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report TR-2009; University of Toronto:
Toronto, ON, Canada, 2009.

40. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature
learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain,
12–17 December 2011.

41. Zhang, H.; Li, Z.; Zhao, H.; Li, Z.; Zhang, Y. Attentive Octave Convolutional Capsule Network for Medical Image Classification.
Appl. Sci. 2022, 12, 2634. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/a16070336
http://dx.doi.org/DOI: 10.22266/ijies2023.0228.02
http://dx.doi.org/10.20965/jaciii.2023.p0173
http://dx.doi.org/10.1109/TNNLS.2020.2984686
http://dx.doi.org/10.1007/s10489-021-02630-w
http://dx.doi.org/10.3390/app12052634

	Introduction
	Related Works
	Agreement Routing in Capsule Network
	Attention Routing

	Methods
	Notation and Terminology
	Original Non-Iterative Cluster Routing
	Cluster Routing Implementation
	Weighting Computation
	Agreement Vector
	Cluster Routing with Single Channel
	Cluster Routing with Multiple Channels

	Proposed Routing Variations
	Our First Routing Variation
	Our Second Routing Variation

	Experimental Setup
	Results
	Comparison with the Baseline CNN
	Comparisons with the State-of-the-Art
	Classification across Various Viewpoints
	Agreement Indicators

	Conclusions
	Appendix A
	References

