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Abstract: Landslides are a common geological disaster, which cause many economic losses and
casualties in the world each year. Drawing up a landslide list and monitoring their deformations is
crucial to prevent landslide disasters. Interferometric synthetic aperture radar (InSAR) can obtain
millimeter-level surface deformations and provide data support for landslide deformation monitoring.
However, some landslides are difficult to detect due to the low-coherence caused by vegetation cover
in mountainous areas and the difficulty of phase unwrapping caused by large landslide deformations.
In this paper, a method based on multi-direction phase gradient stacking is proposed. It employs
the differential interferograms of small baseline sets to directly obtain the abnormal region, thereby
avoiding the problem where part of landslide cannot be detected due to a phase unwrapping error.
In this study, the Sentinel-1 satellite ascending and descending data from 2018 to 2020 are used to
detect landslides around Zhouqu County, China. A total of 26 active landslides were detected in
ascending data and 32 active landslides in the descending data using the method in this paper, while
the SBAS-InSAR detected 19 active landslides in the ascending data and 25 active landslides in the
descending data. The method in this paper can successfully detect landslides in areas that are difficult
for the SBAS-InSAR to detect. In addition, the proposed method does not require phase unwrapping,
so a significant amount of data processing time can be saved.

Keywords: phase gradient stacking; InSAR; landslide; Sentinel-1

1. Introduction

Landslides are a common geological disaster, usually occurring in steep mountainous
areas due to the inclination of the slope and the soil’s own gravity, which may lead to
downward sliding. Additionally, external factors such as earthquakes, rainfall, and man-
made activities may lead to accelerated sliding of landslides [1–3]. Therefore, in order to
avoid casualties and the economic losses caused by landslides, it is important to understand
the locations of landslides and whether they will cause disasters. The most important aspect
is the detection of landslide locations.

Remote sensing is widely used in landslide disaster detection because of its non-
contact and large-area characteristics [4]. After the occurrence of landslides, the surface
soil or rock is often exposed, resulting in spectral differences between the landslide area
and the surrounding environment. Therefore, the landslide can be identified from optical
images by the differences in spectral characteristics [3]. However, because some landslides
do not expose soil or rock before the disaster, such landslide sites cannot be detected by
optical images. SAR data, on the other hand, has certain advantages in this regard, and is
widely used in the monitoring of various types of geologic hazards, such as earthquakes [5],
volcanoes [6], floods [7,8], and so on. As a high-precision earth observation technique,
InSAR has a unique advantage in the detection of this kind of slow-moving landslide

Appl. Sci. 2024, 14, 1632. https://doi.org/10.3390/app14041632 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041632
https://doi.org/10.3390/app14041632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5412-2703
https://doi.org/10.3390/app14041632
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041632?type=check_update&version=1


Appl. Sci. 2024, 14, 1632 2 of 17

because of its ability to obtain millimeter-level deformation values [9–11]. InSAR mainly
obtains surface deformation using phase information to find abnormal areas on the surface.
The main steps are as follows: Long-term SAR data and DEM are collected, and the average
deformation rate of the surface is acquired by InSAR time series analysis techniques [12–15].
Then, the landslide in the region is comprehensively judged by combining related data
(DEM, optical images). Finally, the temporal deformation characteristics of the single
landslide are obtained and the concrete parameters of the landslide are calculated using
multi-track data [16–19].

There have been numerous studies on obtaining large-scale surface information
through InSAR to identify landslide disasters [20,21], but there are still some difficul-
ties in interpreting the obtained deformation results in a large range. Therefore, some
methods that can automatically extract the deformation region have been applied to the in-
terpretation of deformation results. In 2017, Barra [22] proposed a method to automatically
update the deformation region by using Sentinel-1 data and the PS-InSAR method, which
has been applied to various deformation monitoring scenarios. This method can solve the
difficulty in interpreting the final results. However, since the specific location of the land-
slide cannot be known during the landslide survey, it is necessary to process a large range
of data simultaneously during data processing, which not only has low computational
efficiency but also leads to the redundancy of results in most areas without deformation.
With the development of SAR satellites, SAR data has increased explosively, and therefore
this disadvantage will become more obvious. To address this, some scholars proposed that
the deformation results of a large range be obtained by D-InSAR or Stacking methods first,
and that key areas be processed by refined timing methods [23]. However, this method still
has some defects. First, D-InSAR is the deformation information obtained between two time
periods, and atmospheric errors cannot be avoided. Secondly, the D-InSAR and Stacking
methods also require phase unwrapping, which cannot avoid the difficulty of unwrapping
caused by steep mountain terrain. Some methods that do not need phase unwrapping have
been gradually used to identify landslide hazards [24,25], but it is difficult to obtain enough
monitoring points in low-coherence areas. Therefore, how to avoid phase unwrapping
errors and how to detect landslides in both low coherence regions and large deformation
regions are the main difficulties in landslide detection using InSAR.

The phase gradient method is gradually being used to locate deformation regions.
It has been used to detect the deformation information associated with seismic fault
zones [26,27] and faults [28]. The deformation range caused by these cases is relatively
large, often extending for thousands or tens of kilometers in space, and these regions can
be identified by the phase gradient method. Compared with large-scale deformation, these
landslides are generally small, and most are located in a slope unit [29]. Some scholars
have also made attempts at using the phase gradient for landslide recognition. First, for
the identification of reservoir bank landslides, which tend to have obvious deformation
before and after impounding, obvious signals are found in the differential interferogram,
so the phase gradient can quickly locate them [30]. Secondly, earthquakes often lead to
slope instability, and some slopes may move slowly or accelerate in earthquake areas,
therefore such landslides are often dense [31]. Similarly, some scholars have used the
NASA Uninhabited Aerial Vehicle SAR (UAVSAR) data and the phase gradient stacking
method to explore the deformation boundary of monomer landslides [32]. Additionally,
some scholars have applied the deep learning method to the phase gradient stacking results
for the automatic identification of landslides [33,34].

The current use of interferogram phase gradient stacking for the detection of deforma-
tion regions is more likely to use the results of phase gradient stacking in the range and
azimuth directions. However, this approach does not make full use of the neighboring
information, as a central pixel has at least eight neighbouring pixels. Thus, some landslides
cannot be detected by this method due to the fact that the phase gradient stacking results in
the range and azimuth directions are not obvious because of the direction of the slopes and
the imaging parameters of the SAR satellites. Consequently, to ascertain landslides based
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on phase gradient information while leveraging the entirety of temporal signal sequences,
a novel approach is proposed: a multi-direction phase gradient stacking technique tailored
for the identification of slow-moving landslides. This method combines short baseline sets
of interferograms over the entire time series, attenuating atmospheric effects by means of
averaging over a large number of interferograms, with fast access to slow-moving land-
slides through the results. Subsequently, this method is applied to Zhouqu County, Gansu
Province, China, to validate its efficacy. Furthermore, we employed the Small Baseline
Subset (SBAS) method to determine the average deformation rate within this area, enabling
a comparative analysis between the proposed method and the SBAS method in landslide
detection, elucidating their disparities and respective advantages.

2. Methods
2.1. Main Components of the Method

Initially, SAR data encompassing the designated study area along with an external Dig-
ital Elevation Model (DEM) are gathered, and the data set is processed through registration
and difference. Subsequently, by employing the phase gradient calculation formula, the
phase gradient is computed and a stacking process is executed to yield the phase gradient
stacking outcome. This outcome integrates the phase gradient in each direction, culminat-
ing in the fusion of these directional phase gradients. The landslide detection methodology,
delineated in three primary stages (as depicted in Figure 1), unfolds as follows:

(1) Data Collection and Pre-processing: SAR imagery and the DEM are acquired, with
subsequent geocoding of the primary image to simulate the topographic phase un-
der SAR coordinates using the DEM. Interferometric pairs are selected based on
predefined spatial and temporal baseline thresholds, following a construction ap-
proach akin to the Small Baseline Subset (SBAS), resulting in acquisition of differential
interferograms composed of small baseline sets. Processing was performed in the
GAMMA202202 software.

(2) Multi-direction phase Gradient Stacking and Fusion: the phase gradient calculation
method is applied to calculate the phase gradients in the four directions of the interfer-
ograms, and then the phase gradients in the four directions of the interferograms are
stacked with the temporal baseline as the weighting factor. The noise is removed by
means of spatial filtering, and the stacked results of the phase gradients are fused in
the four directions, and the fused stacked results of the phase gradients are obtained.

(3) Landslide detection: leveraging the fused multi-direction phase gradient stacking
results, regions exhibiting outliers are identified. These outliers predominantly arise
from deformation-induced anomalies, where the interference pattern stacking across
the time series mitigates atmospheric influences. We consider these anomalous regions
as target areas, especially regions that indicate landslides.
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2.2. Principles Involved in the Method
2.2.1. Phase Gradient Stacking and Fusion

The phase gradient can be obtained without phase unwrapping, allowing us to acquire
the true gradient value, as demonstrated by Cao [31], who used the phase gradient to calcu-
late the deformation gradient. Moreover, since the phase gradients of many interferograms
do not influence each other, they can compensate for the incoherence present in some
regions caused by temporal and spatial baselines. By stacking the phase gradients, we
consistently obtain effective results for the entire region, enabling us to observe regions in
low coherence.

Here, the central difference method is used to calculate the phase gradient. The center
pixel has eight neighboring pixels, so using the central difference method only needs to
calculate the phase gradient in four directions (phase gradients in opposite directions are
negative to each other). Taking the center pixel (i,j) as an example, the phase gradients in
the four directions are calculated as follows:

∆ϕ0(i, j) = ϕi,j+1 −ϕi,j−1
∆ϕ45(i, j) = ϕi−1,j+1 −ϕi+1,j−1

∆ϕ90(i, j) = ϕi−1,j −ϕi+1,j
∆ϕ135(i, j) = ϕi−1,j−1 −ϕi+1,j+1

(1)

∆ϕk represents the phase gradient in a particular direction of the central pixel. We
define the range phase gradient as ∆ϕ0, the upper right corner phase gradient as ∆ϕ45,
the orientation direction as ∆ϕ90, and the upper left corner phase gradient as ∆ϕ135. Since
the wrapped differential interferogram has values in the range (−π, π], the phase gradient
calculation results lie within the range (−2π, 2π]. However, results in the range (−2π, −π]
and (π, 2π] occur due to phase jumps. To obtain the true gradient value within (−π, π], we
wrapped the phase gradient as follows:

∆ϕ′ =


∆ϕ+ 2π, ∆ϕ < −π

∆ϕ, −π ≤ ∆ϕ ≤ π
∆ϕ− 2π, ∆ϕ > π

(2)

∆ϕ’ is the phase gradient of the difference interferogram. At each pixel point (i,j),
phase gradients in four directions can be obtained: ∆ϕ0 (i,j), ∆ϕ45 (i,j), ∆ϕ90 (i,j), and
∆ϕ135 (i,j). Here, the phase gradient is calculated using differential interferograms in the
SAR coordinate system, with the 0◦ direction indicating the ranging direction and the 90◦

direction indicating the azimuthal direction.
In the final phase gradient result, there are inevitable random phase gradients caused

by random noise points and local micro gradients caused by the atmosphere, etc. Here, we
adopt two strategies to solve this problem. First, we mask the low coherence region based
on coherence, because the low coherence region is often noisy so it is difficult to obtain
effective information; secondly, we stack and sum the phase gradients of interferograms
constructed by short baseline sets, which can weaken some atmospheric effects on large
spatial scales. However, due to the differences in temporal and spatial baselines, the
gradient results obtained by the differential interferogram of different temporal baselines
are also different. Therefore, the method for different temporal baselines is used here,
and the temporal baselines are used as a weighting factor to stack the phase gradients of
different temporal baselines. The final Stacking method is shown in Equation (3):

Gk =
M

∑
n=1

Tn∆ϕn
0 /

M

∑
n=1

T2
n (3)

where Gk represents the phase gradient results stacked in each direction, k equals 0, 45, 90,
135, representing the phase gradient stacking results in four directions, M represents the
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number of differential interferograms we used for phase gradient stacking, and T represents
the temporal baseline of the two-scene complex image of the differential interferogram.

Although some of the noise and the atmosphere are removed by masking the low
coherence region and stacked summation, there are still some phase gradient anomaly
results caused by random noise. Therefore, in order to better identify the region of interest,
we use spatial filtering to remove these noises. Of course, due to the side-view imaging of
SAR and the relief of the terrain, there will inevitably be some shadows and overlying areas.
DEM and SAR imaging parameters are used to calculate areas of geometric distortion to
help identify landslides and reduce landslide detection errors.

By stacking the phase gradients in the four directions, the phase gradient stacking
results in the four directions can be obtained respectively. Due to the relationship between
the morphology of landslide and satellite imaging, the landslide signals in the four results
show different forms, and it may be impossible to distinguish the landslide signals from
other signals in one result. Thus, the results of the four directions are fused through
Equation (4):

G = (|G0|+ |G 45|+ |G 90|+ |G 135|)/4 (4)

where G is the combination of the phase gradient stacking results in four directions, and
the phase gradient stacking results were averaged in four directions to obtain a more
complete landslide boundary signal, which is an improvement over the results obtained in
a single direction.

2.2.2. Landslide Detection

Following the fusion of gradients to yield the final result, G, variations emerge due
to disparities in the number of differential interferograms and temporal baselines. This
discrepancy hinders the stabilization of G, prompting the necessity for normalization. Peri-
staltic landslides typically exhibit prolonged, subtle deformations, fostering the persistence
of stable deformation signals across numerous differential interferograms. In contrast, noise
remains stochastic and can be effectively eliminated through coherence analysis. Conse-
quently, within the result G, regions depicting landslides manifest significantly heightened
gradient values compared to other areas. In addition, there is a spatial aggregation tendency
in these regions. These areas are defined as landslides.

3. Study Area and Used Data
3.1. Study Area

Zhouqu is located in the southern part of Gansu Province, China (104.371◦ E, 33.785◦ N),
in the transition zone between the first and second steps, on the edge of the Tibetan Plateau.
The Minshan mountain system runs from southeast to northwest, and the Bailong River is
the main river that passes through Zhouqu County. The topography of this area is quite
undulating, with an altitude of 1000–4000 m, a relative elevation difference of more than
2500 m, and a gradient concentrated between 40 and 70◦. Figure 2b is the elevation map of
the study area. Because the study area is located in the seismic zone, the regional tectonic
movement is active, which makes the slope prone to instability. The climate of this region
is characterized by a concentrated rainy season and frequent downpours. The monthly
precipitation distribution in the study area from March 2018–September 2020, as shown in
Figure 3, is at its peak from May to September each year. The unique geographical location
and the influence of climate have led to a large number of landslides in this region, and
landslide disasters have occurred in recent decades. The huge debris flow on 8 August 2010
caused huge casualties and property losses [35]. Meanwhile, in recent years, some ancient
landslides have intensified and some small landslide disasters have occurred [36,37].
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3.2. Used Dataset

Sentinel I imagery from orbit 55 (frame 107) and orbit 62 (frame 479) was collected
from ESA between 22 March 2018 and 19 September 2020. A total of 71 images were
collected in the ascending orbit and 74 images in the descending orbit. Table 1 shows the
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relevant parameters, and Figure 2a shows their spatial coverage. The majority of the images
were obtained within 12 days, although some time points are still missing. To remove
topographic phase from the interferograms, we used a DEM with a spatial resolution of 30
m provided by the Shuttle Radar Topography Mission (SRTM).

Table 1. SAR data parameters.

Senor Band Track Pass Direction Pixel Spacing (m)
in Rg × Az

Number
of Images Temporal Coverage

Sentinel-1A C 55 Ascending 2.33 × 13.95 71 22 March 2018–19 September 2020
Sentinel-1A C 62 Descending 2.33 × 13.95 74 22 March 2018–19 September 2020

3.3. Data Processing

SAR images were processed to select the primary image from the ascending and
descending data. The remaining images were then aligned with the primary image. To
improve the image quality, the images were multi-viewed in both the range and azimuth
directions (multi-view ratio of 8:2), with a ground resolution of about 30 m, which is close
to the SRTM acquired. Secondly, to suppress the phenomenon of incoherence, we built a
short baseline set, using 36 days and 100 m as the temporal and spatial baseline thresholds
to select interference pairs for ascending and descending. The temporal and spatial baseline
combination of the constructed interference pairs is shown in Figure 4. Based on the
interference pair selected from the temporal and spatial baseline, we used the DEM with a
resolution of 30 m to generate the simulated topographic phase, and used the difference to
eliminate the influence of terrain to obtain the differential interferograms. Meanwhile, the
Goldstein filtering method [39] was used to filter the differential interferograms to improve
the quality of the interferograms. Finally, the filtered interferograms were used for the final
phase gradient calculation and stack fusion. Here, 0.15 was used as the coherence threshold
mask to remove the phase gradient calculated by the corresponding interference pair.
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4. Result
4.1. Landslide Detection Based on Multi-Direction Phase Gradient Stacking

Utilizing the differential interferograms from the ascending and descending tracks, our
method derived phase gradient stacking results for both ascending and descending data in
the study area, illustrated in Figure 5. The null regions within these results denote areas
affected by geometric distortion, varying between the ascending and descending tracks
due to their distinct monitoring angles. While most regions exhibit low values, indicating
no deformation, conspicuous red aggregation areas highlight anomalies starkly contrasting
with their surroundings. A total of 26 landslides, labeled A1–A26, were identified in the
results of the ascending data (Figure 5a), and a total of 32 landslides, labeled D1–D32, were
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identified in the results of the descending data (Figure 5b). Notably, A1–A19 and D1–D19
represent the same landslides detectable via both ascending and descending data. These
landslides span significant areas and exhibit minimal geometric distortion in both sets of
results, facilitating clear detection. Conversely, A20–A26 are landslides detectable solely by
ascending data, while D20–D32 are detectable only by descending data. These differences
may be due to smaller landslide areas or different geometric distortions that result in some
landslides only being detectable through a single track. Of course, it is also possible that
the data processing process is responsible for this discrepancy.
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Most of the landslides detected on the ascending and descending tracks were located
on both sides of the Bailong River. Within the orbit ascent and descent results, the most
prominent regions displaying robust landslide detection signals include the Suoertou
landslide, the Nanyu landslide group, and the Zhongpai landslide. Locations A1 and D1
in Figure 5 represent the Suoertou landslide, exhibiting consistent deformation regions
in both ascending and descending track results. The Nanyu landslide group comprises
numerous smaller landslides, such as A7 and D7 along the Xieliupo landslide, A9 and
D9 at the Mentou Ping landslide, and D27 at the Jiangdingya landslide, all positioned
along the Bailong River. These landslides exhibit evident signals in our results due to slope
instability induced by persistent erosion at their bases from river water. Notably, significant
disparities exist between the monitoring outcomes of the ascending and descending data
in this region. While landslides 7–9 exhibit detectable signals in both the ascending and
descending tracks, additional landslides, like D25–D29, are visible only in the descending
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track results. Geometric distortion primarily accounts for the absence of D28 and D29 in
the lifting track data. Conversely, landslides D25–D27 evade detection due to compression
within a few pixels in the orbital ascent data, a situation mirrored in the SBAS results [16,40].

A total of 39 landslides with deformation can be detected in this region by applying
the ascending and descending data through the method in this paper, and their specific
information is shown in Table 2. The two largest landslides, the A/D1 Suoertou landslide
and A/D11 Zhongpai landslide, both have an area of more than 3 km2, and it can be seen
that these landslides are mainly distributed at an elevation of about 2000 m. The highest
landslide is D22, which is located at 3000 m above sea level. The detected landslides are
mainly shallow landslides, with some debris flow landslides but no landslides with sudden
deformations such as rock falls, mainly because the InSAR technology detects creeping
deformations, and landslides with deformations that are too large cannot be detected by
the phase information [10].

Table 2. Landslide Detection Information Statistics for the Ascending and Descending Tracks.

Landslide Longitude Latitude Area
(km2)

Elevation
(m) Type Landslide Longitude Latitude Area

(km2)
Elevation

(m) Type

A/D1 104.330 33.801 3.144 1863 Earth-
flow A21 104.226 33.811 0.209 1625 Slide

A/D2 104.328 33.790 1.676 1937 Slide A22 104.294 33.769 0.276 1742 Slide
A/D3 104.392 33.772 0.288 1597 Slide A23 104.370 33.804 0.192 1647 Slide
A/D4 104.414 33.747 1.672 1768 Slide A24 104.276 33.805 0.951 1908 Slide
A/D5 104.400 33.739 0.258 1522 Slide A25 104.285 33.810 0.182 1930 Slide
A/D6 104.418 33.730 0.645 1743 Slide A26 104.367 33.773 0.456 1626 Slide

A/D7 104.401 33.639 1.222 2179 Earth-
flow D20 104.390 33.781 0.342 1774 Slide

A/D8 104.523 33.725 0.391 1566 Slide D21 104.408 33.740 0.104 1357 Slide
A/D9 104.516 33.742 0.204 1665 Slide D22 104.450 33.717 0.0797 3108 Slide
A/D10 104.340 33.620 0.204 2043 Slide D23 104.447 33.726 0.348 1676 Slide
A/D11 104.500 33.736 3.690 1682 Slide D24 104.463 33.729 0.409 2136 Slide
A/D12 104.385 33.647 0.440 2196 Slide D25 104.436 33.791 0.221 1564 Slide
A/D13 104.384 33.641 0.412 2164 Slide D26 104.245 33.859 0.172 2356 Slide
A/D14 104.510 33.623 0.180 1608 Slide D27 104.259 33.747 0.252 2096 Slide
A/D15 104.543 33.644 0.424 1286 Slide D28 104.436 33.643 0.913 1876 Slide
A/D16 104.537 33.783 0.435 1425 Slide D29 104.450 33.697 0.098 1720 Slide
A/D17 104.502 33.791 0.539 2096 Slide D30 104.421 33.737 0.081 1984 Slide
A/D18 104.416 33.759 0.470 1789 Slide D31 104.416 33.759 0.470 1838 Slide
A/D19 104.507 33.690 0.159 1718 Slide D32 104.320 33.822 0.4523 2294 Slide

A20 104.240 33.795 0.965 1593 Slide

The criteria for classifying landslides are documented by Hungr [41].

4.2. Landslide Detection by SBAS

Deformation results for the survey area were derived using the traditional temporal
InSAR method (SBAS). Figure 6 illustrates the SBAS results from both the ascending and
descending tracks. Negative blue values represent movement away from the satellite, while
positive red values indicate deformation towards the satellite. Notably, most of the outlined
landslides in both the ascending and descending SBAS results exhibit deformation, while
areas lacking outlines generally show no deformation. This demonstrates the efficacy of
our method in accurately detecting regions experiencing deformation. In the ascending
results, two regions stand out with substantial deformation: the Suoertou landslide (A1)
and the Zhongpai landslide (A11), as depicted in Figure 5a. The region with the most
significant deformation showcases a rate of approximately −90.97 mm/year, while the
other region registers a rate of about−83.88 mm/year. Similarly, in the orbit descent results
shown in Figure 5b, these same landslides exhibit noticeable deformation. Additionally,
the D28 landslide in the orbit descent results also demonstrates considerable deformation,
measuring approximately −57.14 mm/year.
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To compare the results of the proposed method and SBAS, we conducted a comparative
analysis of the detected landslides and summarized them in Table 3. The multi-direction
phase gradient stacking method identified 26 landslides in the ascending data, which is
more than the SBAS, which only identified 19 landslides in the ascending data. Similarly,
for the descending data, the method detected 32 landslides, while the SBAS detected 25.
These results show that the multi-direction phase gradient stacking method detects more
landslides on both the ascending and descending orbits than the SBAS. The difference in
detection results is mainly due to the limitations of SBAS in effectively capturing deforma-
tions in low-coherence regions that have been represented as real landslides in previous
studies [42]. However, the method in this paper is excellent at detecting landslides in these
challenging areas, and helpsto identify more landslides.

Table 3. The phase gradient stacking method and the SBAS method landslide quantity detection statistics.

Method
Number of Landslides Detection

Ascending Descending

Multi-direction
phase gradient stacking 26 32

SBAS 19 25
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5. Discussion
5.1. Comparison of the Difference and Efficiency of Multi-Direction Phase Gradient Stacking and
SBAS for Typical Landslide Detection

The Suoertou landslide is an earth-flow landslide which has been active since its
reactivation in the 1970s, and the entire length of the landslide body is about 3000 m [43].
A1 in Figure 7a,c and D1 in Figure 7b,d represent the Suoertou landslide, which shows a
wide upper part and a narrow middle and lower part. There are two main deformation
zones in the whole slope, with a significant deformation in the upper and lower parts,
while the middle part is more stable. In the SBAS results, the deformation rate of the
slope is about −81.9 mm/yr, and according to the distribution of deformation points, the
deformation is greatest in the upper part of the slope bordering with the middle part of
the slope. This leads to the fact that not all of the deformation points can be detected
in this area, but using this paper’s method, the area is detected. This limitation is most
evident in the A2/D2 landslide, where a clear signal exists throughout the landslide, but
effective deformation points are difficult to detect in the SBAS results. This situation cannot
be avoided during the phase deconvolution of conventional time-series InSAR methods,
where deformation is too large to cause incoherence [10,44], and therefore the only way to
remove low-coherence regions is to mask them during phase deconvolution. However, the
method in this paper applies differential interferograms for phase gradient calculation and
stacking, so these low-coherence regions may retain signals in some interferograms, and all
are able to be detected in a sufficiently large number of regions.
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Figure 7. Suoertou landslide (region 1 in Figures 5 and 6). (a) Multi-direction phase gradient
stacking results of the ascending track; (b) Multi-direction phase gradient stacking results of the
descending track; (c) SBAS deformation rate of the ascending track; (d) SBAS deformation rate of the
descending track.

Figure 8 depicts another significant landslide accumulation area, namely the Nanyu
landslide group, known for its historical presence. While the overall slope has maintained
relative stability in recent decades, localized small landslides, such as the Mentou Ping
landslide and the Jiangdingya landslide [37], have emerged within certain sections. It
is important to note that the Xieliupo landslide is a large landslide located north of the
Nanyu landslide on an active fault line [40]. Continuous erosion at the base of the Bailong
River sustains its active state. Studies indicate significant deformation within this landslide
slope, posing challenges in effectively monitoring adequate deformation points [45,46],
evident in the SBAS results shown in Figure 8c,d. The SBAS method primarily captures
signals at the base of the slope, but struggles to detect effective deformation points in the
upper regions. Conversely, the multi-direction phase gradient stacking method, showcased
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in the ascending and descending results in Figure 8a,b, reveals activity across the entire
slope. This contrast highlights the challenge faced by the SBAS in capturing comprehensive
deformation signals along the entire slope.
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In other small landslides, such as A8 in Figure 8a,c, the landslide boundaries detected
by this paper’s method are in high agreement with the areas with deformations obtained
by the SBAS. This is also true of D27, D28, and D29 in Figure 8b,d. Comparing the results
of the method in this paper with the SBAS method, it is easy to find that the results of
phase gradient stacking are positively correlated with the magnitude of deformation in the
detectable region. Landslides with large deformations, such as D28, also show relatively
high values in the results of phase gradient stacking. In contrast, landslides with smaller
deformations, such as D27, also show relatively low values in the results of phase gradient
stacking. This is mainly due to the fact that landslides with large morphology variables
also have more drastic phase changes in the interferograms, so the phase gradients are
relatively large. This is why the A7/D7 Xieliupo landslides have the highest values of
stacked phase gradients.

This method quickly extracts the landslides from the differential interferograms, pro-
viding a reference for quickly locating the landslide with deformation and improving
the efficiency of large-scale landslide surveys. Since the method is based on wrapped
differential interferograms, phase unwrapping is not required during data processing. The
elapsed time of the multi-direction phase gradient stacking method and the SBAS method
are listed in Table 4. There are a total of 109 interferograms in the ascending data and 107 in-
terferograms in the descending data. The size of the study area is 1507 × 1045 pixels, about
927.19 km2, and the geometric distortion area is removed. The effective gradient points
of the ascending and descending tracks are about 1,325,600 and 1,388,900, respectively.
Approximately 297,400 effective deformation points were calculated for the ascending track
and 429,500 effective deformation points for the descending track. As shown in Table 4, the
time applied by the multi-direction phase gradient stacking method in the two data sets is
much lower than the time of the SBAS, which is consistent with our expectations and can
save a lot of time on the basis of obtaining effective landslide results, thereby improving
landslide identification efficiency.
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Table 4. Comparison of efficiency between the multi-direction phase gradient stacking method and
the SBAS method.

Method
Total Time (Seconds)

Ascending Descending

Multi-direction
phase gradient stacking 404 375

SBAS 3158 3427

5.2. Comparison of Range and Azimuth Phase Gradient Stacking

The application of the range and azimuth direction to seismic fault zones and active
faults has been investigated [26–28], but the detection of landslides using only the range
or azimuthal direction is subject to partial erroneous detection of landslides [34]. This is
mainly due to the fact that gradients mainly detect boundary information, so landslides
with deformation appear as two neighboring regions in the detection results of a single
direction phase gradient stacking [34], which leads to a situation where some landslides
are not signaled in one direction but are signaled in other directions. For example, the
two small landslides in Box 1 of Figure 9a–e cannot be detected in G0, while the landslide
boundaries can be clearly detected in other directions. As for the landslide in Box 2 in
Figure 9, the landslide boundary information is detected in the results of all four directions
(Figure 9a–d), while in the fused results, the results of all four directions are combined.
Since there is always a difference between the landslide direction and the irradiation
direction of the radar imaging [10], the landslide morphology detected by applying phase
gradient stacking in different directions is obviously different, such as the landslide in Box
3 in Figure 9. Although the landslide information can be detected in the results of all four
directions, the landslide is distributed along the range towards an angle of about 45◦, so it
shows more prominence in G45. Secondly, the landslide boundary information detected
in G135 can better complement the results of G45, so the fusion of all the results can obtain
more complete landslide boundary information. Overall, the fused results can combine
information from all directions, and the fusion of the four methods can attenuate some of
the noise signals and better highlight the landslide signals.

5.3. The Effect of Interference on the Selection of the Result

This method involves using short baseline sets, where different temporal baseline
thresholds can affect the results obtained. We evaluated the temporal baseline thresholds
at 12, 24, 36, 48, and 60 days, leveraging the stable 12-day revisit period of Sentinel-1A.
Figure 9 shows that as the temporal baseline threshold increases, subtle signals indicating
small landslides gradually become more apparent. In Figure 10, two small landslides within
the dotted circle were not detected using a 12-day temporal baseline threshold. However,
faint signals appeared at the 24-day threshold. At 36 days, distinct signals emerged, clearly
distinguishable from the non-landslide areas. These signals became more pronounced at
the 48- and 60-day thresholds. The capability of this method to detect landslides relies
on deformation signals within the differential interferogram. Some smaller landslides
exhibit weak deformations, which are imperceptible in the 12-day differential interfero-
gram, leading to undetected landslides. Longer time differentials showcase more evident
deformation signals, enabling this method to detect smaller landslides. Interestingly, as
the temporal baseline threshold increases, the signal strength of larger landslide points
gradually diminishes. Hence, in selecting a temporal baseline, using a 36-day threshold
for constructing short baseline sets proves effective. This threshold allows the detection of
smaller landslide signals while retaining most signals from larger landslides.
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Figure 9. The results of phase gradient stacking in four directions and multi-direction phase gradient
staking: (a) G0, the result of range direction; (b) G45, the result of a 45◦ Angle counterclockwise to the
range direction; (c) G90, azimuthal results; (d) G135, the result of 135◦ counterclockwise and range
direction; (e) Results of integration.
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It is evident that the phase gradient stacking method is closely related to whether
there are deformation signals in the temporal baseline and interferogram. According to
this feature, we can select data from a fixed period of time, such as the Sentinel-1A data of
6 months or one year, and initially screen out the regions where deformations may exist
over a large range. However, this approach cannot directly obtain temporal deformation
information to understand the motion state. Ultimately, time series InSAR technology is
needed to obtain temporal deformation of specific landslide points. This approach focuses
on regions with deformation, eliminating a large number of regions without deformation,
and thereby improving the efficiency with which we process and analyze data.
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6. Conclusions

In this paper, a multi-direction phase gradient stacking method based on differential
interferograms is proposed for landslide detection, and landslides in Zhouqu County and
its surrounding area are successfully detected. The method is based on the differential
interferogram of a small baseline set, and the abnormal region is obtained by multi-direction
phase gradient stacking. The landslides detected by this method are compared with that
detected by SBAS. It is found that the landslide detected by this method is highly consistent
with that detected by SBAS, indicating that landslides can be successfully detected by
this method. At the same time, landslides can also be detected by this method in the
incoherent region. More importantly, this method has great advantages in dealing with
large deformation landslides, and can obtain complete information of the entire landslide.
Additionally, the data processing efficiency of this method is much higher than that of the
SBAS method, and the landslide location can be obtained efficiently in large-scale landslide
detection. However, it should be noted that the method in this paper does not obtain
the deformation variable of the landslide, and can only indicate whether the landslide is
slippery or not, so the deformation characteristics of the landslide cannot be analyzed. The
research results also show that the selection of the temporal baseline threshold will greatly
affect the results of landslide detection. If the temporal baseline threshold is too small, some
landslides with weak deformations cannot be detected, whereas if the temporal baseline
threshold is too large, some landslide signals with large deformations will be weakened.
For example, the Sentinel-1 data, with a 36-day temporal baseline threshold, proved to be
the optimal temporal baseline threshold. However, whether a 36-day temporal baseline
threshold is optimal for all regions is not clear and will be addressed in subsequent studies.

The continuous development of SAR satellites will lead to the continuous surge of
SAR data. Traditional temporal InSAR technology needs to re-process a large range of SAR
data for newly acquired data in order to determine whether there are new geological hazard
points based on deformation. Compared with the traditional temporal InSAR which needs
to be untangled, this method can greatly improve the efficiency of identification. Therefore,
in a large-scale landslide survey, this method can be used to quickly extract the landslide
aggregation area, and the scale and aggregation degree of the landslide can be known,
providing a guideline for landslide hazard evaluators to assess the hazards of landslides.
Sentinel-1 data has a stable and short revisit period, which provides great convenience for
our method, which can collect a large amount of data in a short time for the acquisition
of results. However, the use of long-period data in this method is unknown. Follow-up
research should utilize deep learning to realize large-scale automatic landslide detection.
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Zealand: A New InSAR Phase-Gradient Based Time-Series Approach. Geophys. Res. Lett. 2023, 50, e2022GL102064. [CrossRef]

32. Hu, X.; Bürgmann, R.; Fielding, E.J.; Lee, H. Internal kinematics of the Slumgullion landslide (USA) from high-resolution UAVSAR
InSAR data. Remote Sens. Environ. 2020, 251, 112057. [CrossRef]

33. Li, D.; Tang, X.; Tu, Z.; Fang, C.; Ju, Y. Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China.
Remote Sens. 2023, 15, 3850. [CrossRef]

34. Fu, L.; Zhang, Q.; Wang, T.; Li, W.; Xu, Q.; Ge, D. Detecting slow-moving landslides using InSAR phase-gradient stacking and
deep-learning network. Front. Environ. Sci. 2022, 10, 963322. [CrossRef]

35. Xin, H. Slew of landslides unmask hidden geological hazards. Science 2010, 330, 744. [CrossRef] [PubMed]
36. Zhang, Y.; Meng, X.; Novellino, A.; Dijkstra, T.; Chen, G.; Jordan, C.; Li, Y.; Su, X. Characterization of pre-failure deformation and

evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 2021, 19, 35–50. [CrossRef]
37. Ma, S.; Qiu, H.; Hu, S.; Yang, D.; Liu, Z. Characteristics and geomorphology change detection analysis of the Jiangdingya

landslide on July 12, 2018, China. Landslides 2020, 18, 383–396. [CrossRef]
38. Ding, Y.X.; Peng, S.Z. Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability 2020, 12, 477.

[CrossRef]
39. Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038.

[CrossRef]
40. Dai, C.; Li, W.; Wang, D.; Lu, H.; Xu, Q.; Jian, J. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in

Zhouqu County, Gansu Province, Northwest China. J. Earth Sci. 2021, 32, 1092–1103. [CrossRef]
41. Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2013, 11, 167–194. [CrossRef]
42. Schäbitz, M.; Janssen, C.; Wenk, H.R.; Wirth, R.; Schuck, B.; Wetzel, H.U.; Meng, X.; Dresen, G. Microstructures in landslides in

northwest China—Implications for creeping displacements? J. Struct. Geol. 2018, 106, 70–85. [CrossRef]
43. Jiang, X.-z.; Wen, B.-p. Creep Behavior of the Slip Zone of a Giant Slow-Moving Landslide in Northwest China: The Suoertou

Landslide as an Example. In Landslide Science for a Safer Geoenvironment; Springer: Cham, Switzerland, 2014; pp. 141–145.
44. Liu, Z.; Qiu, H.; Zhu, Y.; Liu, Y.; Yang, D.; Ma, S.; Zhang, J.; Wang, Y.; Wang, L.; Tang, B. Efficient Identification and Monitoring of

Landslides by Time-Series InSAR Combining Single- and Multi-Look Phases. Remote Sens. 2022, 14, 1026. [CrossRef]
45. Li, M.; Zhang, L.; Yang, M.; Liao, M. Complex surface displacements of the Nanyu landslide in Zhouqu, China revealed by

multi-platform InSAR observations. Eng. Geol. 2023, 317, 107069. [CrossRef]
46. Zhang, Y.; Meng, X.; Chen, G.; Qiao, L.; Zeng, R.; Chang, J. Detection of geohazards in the Bailong River Basin using synthetic

aperture radar interferometry. Landslides 2015, 13, 1273–1284. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2011.10.020
https://doi.org/10.1109/TGRS.2011.2124465
https://doi.org/10.1785/0220190275
https://doi.org/10.1785/0120220109
https://doi.org/10.1029/2023GL104168
https://doi.org/10.1016/j.enggeo.2008.02.013
https://doi.org/10.1109/LGRS.2022.3207064
https://doi.org/10.1029/2022GL102064
https://doi.org/10.1016/j.rse.2020.112057
https://doi.org/10.3390/rs15153850
https://doi.org/10.3389/fenvs.2022.963322
https://doi.org/10.1126/science.330.6005.744
https://www.ncbi.nlm.nih.gov/pubmed/21051604
https://doi.org/10.1007/s10346-021-01744-z
https://doi.org/10.1007/s10346-020-01530-3
https://doi.org/10.3390/su12020477
https://doi.org/10.1029/1998GL900033
https://doi.org/10.1007/s12583-020-1380-0
https://doi.org/10.1007/s10346-013-0436-y
https://doi.org/10.1016/j.jsg.2017.11.009
https://doi.org/10.3390/rs14041026
https://doi.org/10.1016/j.enggeo.2023.107069
https://doi.org/10.1007/s10346-015-0660-8

	Introduction 
	Methods 
	Main Components of the Method 
	Principles Involved in the Method 
	Phase Gradient Stacking and Fusion 
	Landslide Detection 


	Study Area and Used Data 
	Study Area 
	Used Dataset 
	Data Processing 

	Result 
	Landslide Detection Based on Multi-Direction Phase Gradient Stacking 
	Landslide Detection by SBAS 

	Discussion 
	Comparison of the Difference and Efficiency of Multi-Direction Phase Gradient Stacking and SBAS for Typical Landslide Detection 
	Comparison of Range and Azimuth Phase Gradient Stacking 
	The Effect of Interference on the Selection of the Result 

	Conclusions 
	References

